| 37 |
% $Header$ |
% $Header$ |
| 38 |
% $Name$ |
% $Name$ |
| 39 |
|
|
| 40 |
\section{Introduction} |
This document provides the reader with the information necessary to |
|
|
|
|
This documentation provides the reader with the information necessary to |
|
| 41 |
carry out numerical experiments using MITgcm. It gives a comprehensive |
carry out numerical experiments using MITgcm. It gives a comprehensive |
| 42 |
description of the continuous equations on which the model is based, the |
description of the continuous equations on which the model is based, the |
| 43 |
numerical algorithms the model employs and a description of the associated |
numerical algorithms the model employs and a description of the associated |
| 47 |
both process and general circulation studies of the atmosphere and ocean are |
both process and general circulation studies of the atmosphere and ocean are |
| 48 |
also presented. |
also presented. |
| 49 |
|
|
| 50 |
|
\section{Introduction} |
| 51 |
|
\begin{rawhtml} |
| 52 |
|
<!-- CMIREDIR:innovations: --> |
| 53 |
|
\end{rawhtml} |
| 54 |
|
|
| 55 |
|
|
| 56 |
MITgcm has a number of novel aspects: |
MITgcm has a number of novel aspects: |
| 57 |
|
|
| 58 |
\begin{itemize} |
\begin{itemize} |
| 87 |
computational platforms. |
computational platforms. |
| 88 |
\end{itemize} |
\end{itemize} |
| 89 |
|
|
| 90 |
Key publications reporting on and charting the development of the model are: |
Key publications reporting on and charting the development of the model are |
| 91 |
|
\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99}: |
| 92 |
|
|
| 93 |
\begin{verbatim} |
\begin{verbatim} |
|
|
|
| 94 |
Hill, C. and J. Marshall, (1995) |
Hill, C. and J. Marshall, (1995) |
| 95 |
Application of a Parallel Navier-Stokes Model to Ocean Circulation in |
Application of a Parallel Navier-Stokes Model to Ocean Circulation in |
| 96 |
Parallel Computational Fluid Dynamics |
Parallel Computational Fluid Dynamics |
| 99 |
Elsevier Science B.V.: New York |
Elsevier Science B.V.: New York |
| 100 |
|
|
| 101 |
Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997) |
Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997) |
| 102 |
Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, |
Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling |
| 103 |
J. Geophysical Res., 102(C3), 5733-5752. |
J. Geophysical Res., 102(C3), 5733-5752. |
| 104 |
|
|
| 105 |
Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997) |
Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997) |
| 132 |
application to Atlantic heat transport variability |
application to Atlantic heat transport variability |
| 133 |
J. Geophysical Res., 104(C12), 29,529-29,547. |
J. Geophysical Res., 104(C12), 29,529-29,547. |
| 134 |
|
|
|
|
|
| 135 |
\end{verbatim} |
\end{verbatim} |
| 136 |
|
|
| 137 |
We begin by briefly showing some of the results of the model in action to |
We begin by briefly showing some of the results of the model in action to |
| 154 |
described in detail in the documentation. |
described in detail in the documentation. |
| 155 |
|
|
| 156 |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
| 157 |
|
\begin{rawhtml} |
| 158 |
|
<!-- CMIREDIR:atmospheric_example: --> |
| 159 |
|
\end{rawhtml} |
| 160 |
|
|
| 161 |
|
|
| 162 |
|
|
| 163 |
A novel feature of MITgcm is its ability to simulate, using one basic algorithm, |
A novel feature of MITgcm is its ability to simulate, using one basic algorithm, |
| 164 |
both atmospheric and oceanographic flows at both small and large scales. |
both atmospheric and oceanographic flows at both small and large scales. |
| 195 |
%% CNHend |
%% CNHend |
| 196 |
|
|
| 197 |
\subsection{Ocean gyres} |
\subsection{Ocean gyres} |
| 198 |
|
\begin{rawhtml} |
| 199 |
|
<!-- CMIREDIR:oceanic_example: --> |
| 200 |
|
\end{rawhtml} |
| 201 |
|
\begin{rawhtml} |
| 202 |
|
<!-- CMIREDIR:ocean_gyres: --> |
| 203 |
|
\end{rawhtml} |
| 204 |
|
|
| 205 |
Baroclinic instability is a ubiquitous process in the ocean, as well as the |
Baroclinic instability is a ubiquitous process in the ocean, as well as the |
| 206 |
atmosphere. Ocean eddies play an important role in modifying the |
atmosphere. Ocean eddies play an important role in modifying the |
| 227 |
|
|
| 228 |
|
|
| 229 |
\subsection{Global ocean circulation} |
\subsection{Global ocean circulation} |
| 230 |
|
\begin{rawhtml} |
| 231 |
|
<!-- CMIREDIR:global_ocean_circulation: --> |
| 232 |
|
\end{rawhtml} |
| 233 |
|
|
| 234 |
Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at |
Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at |
| 235 |
the surface of a 4$^{\circ }$ |
the surface of a 4$^{\circ }$ |
| 248 |
%%CNHend |
%%CNHend |
| 249 |
|
|
| 250 |
\subsection{Convection and mixing over topography} |
\subsection{Convection and mixing over topography} |
| 251 |
|
\begin{rawhtml} |
| 252 |
|
<!-- CMIREDIR:mixing_over_topography: --> |
| 253 |
|
\end{rawhtml} |
| 254 |
|
|
| 255 |
|
|
| 256 |
Dense plumes generated by localized cooling on the continental shelf of the |
Dense plumes generated by localized cooling on the continental shelf of the |
| 257 |
ocean may be influenced by rotation when the deformation radius is smaller |
ocean may be influenced by rotation when the deformation radius is smaller |
| 271 |
%%CNHend |
%%CNHend |
| 272 |
|
|
| 273 |
\subsection{Boundary forced internal waves} |
\subsection{Boundary forced internal waves} |
| 274 |
|
\begin{rawhtml} |
| 275 |
|
<!-- CMIREDIR:boundary_forced_internal_waves: --> |
| 276 |
|
\end{rawhtml} |
| 277 |
|
|
| 278 |
The unique ability of MITgcm to treat non-hydrostatic dynamics in the |
The unique ability of MITgcm to treat non-hydrostatic dynamics in the |
| 279 |
presence of complex geometry makes it an ideal tool to study internal wave |
presence of complex geometry makes it an ideal tool to study internal wave |
| 293 |
%%CNHend |
%%CNHend |
| 294 |
|
|
| 295 |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
| 296 |
|
\begin{rawhtml} |
| 297 |
|
<!-- CMIREDIR:parameter_sensitivity: --> |
| 298 |
|
\end{rawhtml} |
| 299 |
|
|
| 300 |
Forward and tangent linear counterparts of MITgcm are supported using an |
Forward and tangent linear counterparts of MITgcm are supported using an |
| 301 |
`automatic adjoint compiler'. These can be used in parameter sensitivity and |
`automatic adjoint compiler'. These can be used in parameter sensitivity and |
| 316 |
%%CNHend |
%%CNHend |
| 317 |
|
|
| 318 |
\subsection{Global state estimation of the ocean} |
\subsection{Global state estimation of the ocean} |
| 319 |
|
\begin{rawhtml} |
| 320 |
|
<!-- CMIREDIR:global_state_estimation: --> |
| 321 |
|
\end{rawhtml} |
| 322 |
|
|
| 323 |
|
|
| 324 |
An important application of MITgcm is in state estimation of the global |
An important application of MITgcm is in state estimation of the global |
| 325 |
ocean circulation. An appropriately defined `cost function', which measures |
ocean circulation. An appropriately defined `cost function', which measures |
| 337 |
%% CNHend |
%% CNHend |
| 338 |
|
|
| 339 |
\subsection{Ocean biogeochemical cycles} |
\subsection{Ocean biogeochemical cycles} |
| 340 |
|
\begin{rawhtml} |
| 341 |
|
<!-- CMIREDIR:ocean_biogeo_cycles: --> |
| 342 |
|
\end{rawhtml} |
| 343 |
|
|
| 344 |
MITgcm is being used to study global biogeochemical cycles in the ocean. For |
MITgcm is being used to study global biogeochemical cycles in the ocean. For |
| 345 |
example one can study the effects of interannual changes in meteorological |
example one can study the effects of interannual changes in meteorological |
| 355 |
%%CNHend |
%%CNHend |
| 356 |
|
|
| 357 |
\subsection{Simulations of laboratory experiments} |
\subsection{Simulations of laboratory experiments} |
| 358 |
|
\begin{rawhtml} |
| 359 |
|
<!-- CMIREDIR:classroom_exp: --> |
| 360 |
|
\end{rawhtml} |
| 361 |
|
|
| 362 |
Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a |
Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a |
| 363 |
laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An |
laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An |
| 364 |
initially homogeneous tank of water ($1m$ in diameter) is driven from its |
initially homogeneous tank of water ($1m$ in diameter) is driven from its |
| 365 |
free surface by a rotating heated disk. The combined action of mechanical |
free surface by a rotating heated disk. The combined action of mechanical |
| 366 |
and thermal forcing creates a lens of fluid which becomes baroclinically |
and thermal forcing creates a lens of fluid which becomes baroclinically |
| 376 |
% $Name$ |
% $Name$ |
| 377 |
|
|
| 378 |
\section{Continuous equations in `r' coordinates} |
\section{Continuous equations in `r' coordinates} |
| 379 |
|
\begin{rawhtml} |
| 380 |
|
<!-- CMIREDIR:z-p_isomorphism: --> |
| 381 |
|
\end{rawhtml} |
| 382 |
|
|
| 383 |
To render atmosphere and ocean models from one dynamical core we exploit |
To render atmosphere and ocean models from one dynamical core we exploit |
| 384 |
`isomorphisms' between equation sets that govern the evolution of the |
`isomorphisms' between equation sets that govern the evolution of the |
| 387 |
and encoded. The model variables have different interpretations depending on |
and encoded. The model variables have different interpretations depending on |
| 388 |
whether the atmosphere or ocean is being studied. Thus, for example, the |
whether the atmosphere or ocean is being studied. Thus, for example, the |
| 389 |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
| 390 |
modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations}) |
modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations}) |
| 391 |
and height, $z$, if we are modeling the ocean (right hand side of figure |
and height, $z$, if we are modeling the ocean (left hand side of figure |
| 392 |
\ref{fig:isomorphic-equations}). |
\ref{fig:isomorphic-equations}). |
| 393 |
|
|
| 394 |
%%CNHbegin |
%%CNHbegin |
| 409 |
\input{part1/vertcoord_figure.tex} |
\input{part1/vertcoord_figure.tex} |
| 410 |
%%CNHend |
%%CNHend |
| 411 |
|
|
| 412 |
\begin{equation*} |
\begin{equation} |
| 413 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
| 414 |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} |
| 415 |
\text{ horizontal mtm} \label{eq:horizontal_mtm} |
\text{ horizontal mtm} \label{eq:horizontal_mtm} |
| 416 |
\end{equation*} |
\end{equation} |
| 417 |
|
|
| 418 |
\begin{equation} |
\begin{equation} |
| 419 |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
| 512 |
at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}): |
at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}): |
| 513 |
|
|
| 514 |
\begin{equation} |
\begin{equation} |
| 515 |
\dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} |
\dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} |
| 516 |
\label{eq:fixedbc} |
\label{eq:fixedbc} |
| 517 |
\end{equation} |
\end{equation} |
| 518 |
|
|
| 519 |
\begin{equation} |
\begin{equation} |
| 520 |
\dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \ |
\dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \ |
| 521 |
(ocean surface,bottom of the atmosphere)} \label{eq:movingbc} |
(ocean surface,bottom of the atmosphere)} \label{eq:movingbc} |
| 522 |
\end{equation} |
\end{equation} |
| 523 |
|
|
| 611 |
atmosphere)} \label{eq:moving-bc-atmos} |
atmosphere)} \label{eq:moving-bc-atmos} |
| 612 |
\end{eqnarray} |
\end{eqnarray} |
| 613 |
|
|
| 614 |
Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) |
Then the (hydrostatic form of) equations |
| 615 |
yields a consistent set of atmospheric equations which, for convenience, are written out in $p$ |
(\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yields a consistent |
| 616 |
coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). |
set of atmospheric equations which, for convenience, are written out |
| 617 |
|
in $p$ coordinates in Appendix Atmosphere - see |
| 618 |
|
eqs(\ref{eq:atmos-prime}). |
| 619 |
|
|
| 620 |
\subsection{Ocean} |
\subsection{Ocean} |
| 621 |
|
|
| 657 |
|
|
| 658 |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
| 659 |
Non-hydrostatic forms} |
Non-hydrostatic forms} |
| 660 |
|
\begin{rawhtml} |
| 661 |
|
<!-- CMIREDIR:non_hydrostatic: --> |
| 662 |
|
\end{rawhtml} |
| 663 |
|
|
| 664 |
|
|
| 665 |
Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms: |
Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms: |
| 666 |
|
|
| 668 |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
| 669 |
\label{eq:phi-split} |
\label{eq:phi-split} |
| 670 |
\end{equation} |
\end{equation} |
| 671 |
and write eq(\ref{eq:incompressible}) in the form: |
%and write eq(\ref{eq:incompressible}) in the form: |
| 672 |
|
% ^- this eq is missing (jmc) ; replaced with: |
| 673 |
|
and write eq( \ref{eq:horizontal_mtm}) in the form: |
| 674 |
|
|
| 675 |
\begin{equation} |
\begin{equation} |
| 676 |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
| 1100 |
|
|
| 1101 |
\subsection{Vector invariant form} |
\subsection{Vector invariant form} |
| 1102 |
|
|
| 1103 |
For some purposes it is advantageous to write momentum advection in eq(\ref |
For some purposes it is advantageous to write momentum advection in |
| 1104 |
{eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form: |
eq(\ref {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the |
| 1105 |
|
(so-called) `vector invariant' form: |
| 1106 |
|
|
| 1107 |
\begin{equation} |
\begin{equation} |
| 1108 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
| 1213 |
surface ($\phi $ is imposed and $\omega \neq 0$). |
surface ($\phi $ is imposed and $\omega \neq 0$). |
| 1214 |
|
|
| 1215 |
\subsubsection{Splitting the geo-potential} |
\subsubsection{Splitting the geo-potential} |
| 1216 |
|
\label{sec:hpe-p-geo-potential-split} |
| 1217 |
|
|
| 1218 |
For the purposes of initialization and reducing round-off errors, the model |
For the purposes of initialization and reducing round-off errors, the model |
| 1219 |
deals with perturbations from reference (or ``standard'') profiles. For |
deals with perturbations from reference (or ``standard'') profiles. For |
| 1243 |
The final form of the HPE's in p coordinates is then: |
The final form of the HPE's in p coordinates is then: |
| 1244 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1245 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1246 |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\ |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} |
| 1247 |
|
\label{eq:atmos-prime} \\ |
| 1248 |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ |
| 1249 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
| 1250 |
\partial p} &=&0 \\ |
\partial p} &=&0 \\ |
| 1290 |
_{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion} |
_{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion} |
| 1291 |
\end{equation} |
\end{equation} |
| 1292 |
|
|
| 1293 |
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the |
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is |
| 1294 |
reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives: |
the reciprocal of the sound speed ($c_{s}$) squared. Substituting into |
| 1295 |
|
\ref{eq-zns-cont} gives: |
| 1296 |
\begin{equation} |
\begin{equation} |
| 1297 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
| 1298 |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |