| 49 |
|
|
| 50 |
\section{Introduction} |
\section{Introduction} |
| 51 |
\begin{rawhtml} |
\begin{rawhtml} |
| 52 |
<!-- CMIREDIR:innovations --> |
<!-- CMIREDIR:innovations: --> |
| 53 |
\end{rawhtml} |
\end{rawhtml} |
| 54 |
|
|
| 55 |
|
|
| 155 |
|
|
| 156 |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
| 157 |
\begin{rawhtml} |
\begin{rawhtml} |
| 158 |
<!-- CMIREDIR:atmospheric_example --> |
<!-- CMIREDIR:atmospheric_example: --> |
| 159 |
\end{rawhtml} |
\end{rawhtml} |
| 160 |
|
|
| 161 |
|
|
| 196 |
|
|
| 197 |
\subsection{Ocean gyres} |
\subsection{Ocean gyres} |
| 198 |
\begin{rawhtml} |
\begin{rawhtml} |
| 199 |
<!-- CMIREDIR:oceanic_example --> |
<!-- CMIREDIR:oceanic_example: --> |
| 200 |
\end{rawhtml} |
\end{rawhtml} |
| 201 |
\begin{rawhtml} |
\begin{rawhtml} |
| 202 |
<!-- CMIREDIR:ocean_gyres --> |
<!-- CMIREDIR:ocean_gyres: --> |
| 203 |
\end{rawhtml} |
\end{rawhtml} |
| 204 |
|
|
| 205 |
Baroclinic instability is a ubiquitous process in the ocean, as well as the |
Baroclinic instability is a ubiquitous process in the ocean, as well as the |
| 228 |
|
|
| 229 |
\subsection{Global ocean circulation} |
\subsection{Global ocean circulation} |
| 230 |
\begin{rawhtml} |
\begin{rawhtml} |
| 231 |
<!-- CMIREDIR:global_ocean_circulation --> |
<!-- CMIREDIR:global_ocean_circulation: --> |
| 232 |
\end{rawhtml} |
\end{rawhtml} |
| 233 |
|
|
| 234 |
Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at |
Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at |
| 249 |
|
|
| 250 |
\subsection{Convection and mixing over topography} |
\subsection{Convection and mixing over topography} |
| 251 |
\begin{rawhtml} |
\begin{rawhtml} |
| 252 |
<!-- CMIREDIR:mixing_over_topography --> |
<!-- CMIREDIR:mixing_over_topography: --> |
| 253 |
\end{rawhtml} |
\end{rawhtml} |
| 254 |
|
|
| 255 |
|
|
| 272 |
|
|
| 273 |
\subsection{Boundary forced internal waves} |
\subsection{Boundary forced internal waves} |
| 274 |
\begin{rawhtml} |
\begin{rawhtml} |
| 275 |
<!-- CMIREDIR:boundary_forced_internal_waves --> |
<!-- CMIREDIR:boundary_forced_internal_waves: --> |
| 276 |
\end{rawhtml} |
\end{rawhtml} |
| 277 |
|
|
| 278 |
The unique ability of MITgcm to treat non-hydrostatic dynamics in the |
The unique ability of MITgcm to treat non-hydrostatic dynamics in the |
| 294 |
|
|
| 295 |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
| 296 |
\begin{rawhtml} |
\begin{rawhtml} |
| 297 |
<!-- CMIREDIR:parameter_sensitivity --> |
<!-- CMIREDIR:parameter_sensitivity: --> |
| 298 |
\end{rawhtml} |
\end{rawhtml} |
| 299 |
|
|
| 300 |
Forward and tangent linear counterparts of MITgcm are supported using an |
Forward and tangent linear counterparts of MITgcm are supported using an |
| 317 |
|
|
| 318 |
\subsection{Global state estimation of the ocean} |
\subsection{Global state estimation of the ocean} |
| 319 |
\begin{rawhtml} |
\begin{rawhtml} |
| 320 |
<!-- CMIREDIR:global_state_estimation --> |
<!-- CMIREDIR:global_state_estimation: --> |
| 321 |
\end{rawhtml} |
\end{rawhtml} |
| 322 |
|
|
| 323 |
|
|
| 338 |
|
|
| 339 |
\subsection{Ocean biogeochemical cycles} |
\subsection{Ocean biogeochemical cycles} |
| 340 |
\begin{rawhtml} |
\begin{rawhtml} |
| 341 |
<!-- CMIREDIR:ocean_biogeo_cycles --> |
<!-- CMIREDIR:ocean_biogeo_cycles: --> |
| 342 |
\end{rawhtml} |
\end{rawhtml} |
| 343 |
|
|
| 344 |
MITgcm is being used to study global biogeochemical cycles in the ocean. For |
MITgcm is being used to study global biogeochemical cycles in the ocean. For |
| 356 |
|
|
| 357 |
\subsection{Simulations of laboratory experiments} |
\subsection{Simulations of laboratory experiments} |
| 358 |
\begin{rawhtml} |
\begin{rawhtml} |
| 359 |
<!-- CMIREDIR:classroom_exp --> |
<!-- CMIREDIR:classroom_exp: --> |
| 360 |
\end{rawhtml} |
\end{rawhtml} |
| 361 |
|
|
| 362 |
Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a |
Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a |
| 377 |
|
|
| 378 |
\section{Continuous equations in `r' coordinates} |
\section{Continuous equations in `r' coordinates} |
| 379 |
\begin{rawhtml} |
\begin{rawhtml} |
| 380 |
<!-- CMIREDIR:z-p_isomorphism --> |
<!-- CMIREDIR:z-p_isomorphism: --> |
| 381 |
\end{rawhtml} |
\end{rawhtml} |
| 382 |
|
|
| 383 |
To render atmosphere and ocean models from one dynamical core we exploit |
To render atmosphere and ocean models from one dynamical core we exploit |
| 656 |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
| 657 |
Non-hydrostatic forms} |
Non-hydrostatic forms} |
| 658 |
\begin{rawhtml} |
\begin{rawhtml} |
| 659 |
<!-- CMIREDIR:non_hydrostatic --> |
<!-- CMIREDIR:non_hydrostatic: --> |
| 660 |
\end{rawhtml} |
\end{rawhtml} |
| 661 |
|
|
| 662 |
|
|