| 1 |
%%%% % $Header$ |
% $Header$ |
| 2 |
%%%% % $Name$ |
% $Name$ |
| 3 |
%%%% %\usepackage{oldgerm} |
|
| 4 |
%%%% % I commented the following because it introduced excessive white space |
%tci%\documentclass[12pt]{book} |
| 5 |
%%%% %\usepackage{palatcm} % better PDF |
%tci%\usepackage{amsmath} |
| 6 |
%%%% % page headers and footers |
%tci%\usepackage{html} |
| 7 |
%%%% %\pagestyle{fancy} |
%tci%\usepackage{epsfig} |
| 8 |
%%%% % referencing |
%tci%\usepackage{graphics,subfigure} |
| 9 |
%%%% %% \newcommand{\refequ}[1]{equation (\ref{equ:#1})} |
%tci%\usepackage{array} |
| 10 |
%%%% %% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})} |
%tci%\usepackage{multirow} |
| 11 |
%%%% %% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}} |
%tci%\usepackage{fancyhdr} |
| 12 |
%%%% %% \newcommand{\reftabno}[1]{\ref{tab:#1}} |
%tci%\usepackage{psfrag} |
| 13 |
%%%% %% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}} |
|
| 14 |
%%%% %% \newcommand{\reffigno}[1]{\ref{fig:#1}} |
%tci%%TCIDATA{OutputFilter=Latex.dll} |
| 15 |
%%%% % stuff for psfrag |
%tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22} |
| 16 |
%%%% %% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}} |
%tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} |
| 17 |
%%%% %% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}} |
%tci%%TCIDATA{Language=American English} |
| 18 |
%%%% % This allows numbering of subsubsections |
|
| 19 |
%%%% % This changes the the chapter title |
%tci%\fancyhead{} |
| 20 |
%%%% %\renewcommand{\chaptername}{Section} |
%tci%\fancyhead[LO]{\slshape \rightmark} |
| 21 |
|
%tci%\fancyhead[RE]{\slshape \leftmark} |
| 22 |
|
%tci%\fancyhead[RO,LE]{\thepage} |
| 23 |
%%%% \documentclass[12pt]{book} |
%tci%\fancyfoot[CO,CE]{\today} |
| 24 |
%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
%tci%\fancyfoot[RO,LE]{ } |
| 25 |
%%%% \usepackage{amsmath} |
%tci%\renewcommand{\headrulewidth}{0.4pt} |
| 26 |
%%%% \usepackage{html} |
%tci%\renewcommand{\footrulewidth}{0.4pt} |
| 27 |
%%%% \usepackage{epsfig} |
%tci%\setcounter{secnumdepth}{3} |
| 28 |
%%%% \usepackage{graphics,subfigure} |
%tci%\input{tcilatex} |
|
%%%% \usepackage{array} |
|
|
%%%% \usepackage{multirow} |
|
|
%%%% \usepackage{fancyhdr} |
|
|
%%%% \usepackage{psfrag} |
|
|
%%%% |
|
|
%%%% %TCIDATA{OutputFilter=Latex.dll} |
|
|
%%%% %TCIDATA{LastRevised=Thursday, September 27, 2001 10:59:02} |
|
|
%%%% %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} |
|
|
%%%% %TCIDATA{Language=American English} |
|
|
%%%% |
|
|
%%%% \fancyhead{} |
|
|
%%%% \fancyhead[LO]{\slshape \rightmark} |
|
|
%%%% \fancyhead[RE]{\slshape \leftmark} |
|
|
%%%% \fancyhead[RO,LE]{\thepage} |
|
|
%%%% \fancyfoot[CO,CE]{\today} |
|
|
%%%% \fancyfoot[RO,LE]{ } |
|
|
%%%% \renewcommand{\headrulewidth}{0.4pt} |
|
|
%%%% \renewcommand{\footrulewidth}{0.4pt} |
|
|
%%%% \setcounter{secnumdepth}{3} |
|
|
%%%% |
|
|
%%%% \input{tcilatex} |
|
|
%%%% |
|
|
%%%% \begin{document} |
|
|
%%%% |
|
|
%%%% \tableofcontents |
|
| 29 |
|
|
| 30 |
\pagebreak |
%tci%\begin{document} |
| 31 |
|
|
| 32 |
|
%tci%\tableofcontents |
| 33 |
|
|
|
\part{MITgcm basics} |
|
| 34 |
|
|
| 35 |
% Section: Overview |
% Section: Overview |
| 36 |
|
|
| 54 |
\begin{itemize} |
\begin{itemize} |
| 55 |
\item it can be used to study both atmospheric and oceanic phenomena; one |
\item it can be used to study both atmospheric and oceanic phenomena; one |
| 56 |
hydrodynamical kernel is used to drive forward both atmospheric and oceanic |
hydrodynamical kernel is used to drive forward both atmospheric and oceanic |
| 57 |
models - see fig.1% |
models - see fig \ref{fig:onemodel} |
|
\marginpar{ |
|
|
Fig.1 One model}\ref{fig:onemodel} |
|
| 58 |
|
|
| 59 |
\begin{figure} |
%% CNHbegin |
| 60 |
\begin{center} |
\input{part1/one_model_figure} |
| 61 |
\resizebox{!}{4in}{ |
%% CNHend |
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/onemodel.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:onemodel} |
|
|
\end{figure} |
|
| 62 |
|
|
| 63 |
\item it has a non-hydrostatic capability and so can be used to study both |
\item it has a non-hydrostatic capability and so can be used to study both |
| 64 |
small-scale and large scale processes - see fig.2% |
small-scale and large scale processes - see fig \ref{fig:all-scales} |
|
\marginpar{ |
|
|
Fig.2 All scales}\ref{fig:all-scales} |
|
|
|
|
|
|
|
|
\begin{figure} |
|
|
\begin{center} |
|
|
\resizebox{!}{4in}{ |
|
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/scales.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:scales} |
|
|
\end{figure} |
|
| 65 |
|
|
| 66 |
|
%% CNHbegin |
| 67 |
|
\input{part1/all_scales_figure} |
| 68 |
|
%% CNHend |
| 69 |
|
|
| 70 |
\item finite volume techniques are employed yielding an intuitive |
\item finite volume techniques are employed yielding an intuitive |
| 71 |
discretization and support for the treatment of irregular geometries using |
discretization and support for the treatment of irregular geometries using |
| 72 |
orthogonal curvilinear grids and shaved cells - see fig.3% |
orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} |
| 73 |
\marginpar{ |
|
| 74 |
Fig.3 Finite volumes}\ref{fig:Finite volumes} |
%% CNHbegin |
| 75 |
|
\input{part1/fvol_figure} |
| 76 |
|
%% CNHend |
| 77 |
|
|
| 78 |
\item tangent linear and adjoint counterparts are automatically maintained |
\item tangent linear and adjoint counterparts are automatically maintained |
| 79 |
along with the forward model, permitting sensitivity and optimization |
along with the forward model, permitting sensitivity and optimization |
| 88 |
|
|
| 89 |
We begin by briefly showing some of the results of the model in action to |
We begin by briefly showing some of the results of the model in action to |
| 90 |
give a feel for the wide range of problems that can be addressed using it. |
give a feel for the wide range of problems that can be addressed using it. |
|
\pagebreak |
|
| 91 |
|
|
| 92 |
% $Header$ |
% $Header$ |
| 93 |
% $Name$ |
% $Name$ |
| 96 |
|
|
| 97 |
The MITgcm has been designed and used to model a wide range of phenomena, |
The MITgcm has been designed and used to model a wide range of phenomena, |
| 98 |
from convection on the scale of meters in the ocean to the global pattern of |
from convection on the scale of meters in the ocean to the global pattern of |
| 99 |
atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the |
atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the |
| 100 |
kinds of problems the model has been used to study, we briefly describe some |
kinds of problems the model has been used to study, we briefly describe some |
| 101 |
of them here. A more detailed description of the underlying formulation, |
of them here. A more detailed description of the underlying formulation, |
| 102 |
numerical algorithm and implementation that lie behind these calculations is |
numerical algorithm and implementation that lie behind these calculations is |
| 103 |
given later. Indeed it is easy to reproduce the results shown here: simply |
given later. Indeed many of the illustrative examples shown below can be |
| 104 |
download the model (the minimum you need is a PC running linux, together |
easily reproduced: simply download the model (the minimum you need is a PC |
| 105 |
with a FORTRAN\ 77 compiler) and follow the examples. |
running linux, together with a FORTRAN\ 77 compiler) and follow the examples |
| 106 |
|
described in detail in the documentation. |
| 107 |
|
|
| 108 |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
| 109 |
|
|
| 110 |
Fig.E1a.\ref{fig:Held-Suarez} is an instaneous plot of the 500$mb$ height |
A novel feature of MITgcm is its ability to simulate, using one basic algorithm, |
| 111 |
field obtained using a 5-level version of the atmospheric pressure isomorph |
both atmospheric and oceanographic flows at both small and large scales. |
|
run at 2.8$^{\circ }$ resolution. We see fully developed baroclinic eddies |
|
|
along the northern hemisphere storm track. There are no mountains or |
|
|
land-sea contrast in this calculation, but you can easily put them in. The |
|
|
model is driven by relaxation to a radiative-convective equilibrium profile, |
|
|
following the description set out in Held and Suarez; 1994 designed to test |
|
|
atmospheric hydrodynamical cores - there are no mountains or land-sea |
|
|
contrast. As decribed in Adcroft (2001), a `cubed sphere' is used to |
|
|
descretize the globe permitting a uniform gridding and obviated the need to |
|
|
fourier filter. |
|
|
|
|
|
Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal |
|
|
wind and meridional overturning streamfunction from the 5-level model. |
|
|
|
|
|
|
|
|
\begin{figure} |
|
|
\begin{center} |
|
|
\resizebox{!}{4in}{ |
|
|
\rotatebox{90}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/hscs.eps} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:hscs} |
|
|
\end{figure} |
|
|
|
|
|
|
|
|
A regular spherical lat-lon grid can also be used. |
|
|
|
|
|
\begin{figure} |
|
|
\begin{center} |
|
|
\resizebox{!}{4in}{ |
|
|
\rotatebox{90}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/hslatlon.eps} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:hslatlon} |
|
|
\end{figure} |
|
| 112 |
|
|
| 113 |
\subsection{Ocean gyres} |
Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$ |
| 114 |
|
temperature field obtained using the atmospheric isomorph of MITgcm run at |
| 115 |
|
2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole |
| 116 |
|
(blue) and warm air along an equatorial band (red). Fully developed |
| 117 |
|
baroclinic eddies spawned in the northern hemisphere storm track are |
| 118 |
|
evident. There are no mountains or land-sea contrast in this calculation, |
| 119 |
|
but you can easily put them in. The model is driven by relaxation to a |
| 120 |
|
radiative-convective equilibrium profile, following the description set out |
| 121 |
|
in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores - |
| 122 |
|
there are no mountains or land-sea contrast. |
| 123 |
|
|
| 124 |
|
%% CNHbegin |
| 125 |
|
\input{part1/cubic_eddies_figure} |
| 126 |
|
%% CNHend |
| 127 |
|
|
| 128 |
|
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
| 129 |
|
globe permitting a uniform gridding and obviated the need to Fourier filter. |
| 130 |
|
The `vector-invariant' form of MITgcm supports any orthogonal curvilinear |
| 131 |
|
grid, of which the cubed sphere is just one of many choices. |
| 132 |
|
|
| 133 |
|
Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal |
| 134 |
|
wind from a 20-level configuration of |
| 135 |
|
the model. It compares favorable with more conventional spatial |
| 136 |
|
discretization approaches. The two plots show the field calculated using the |
| 137 |
|
cube-sphere grid and the flow calculated using a regular, spherical polar |
| 138 |
|
latitude-longitude grid. Both grids are supported within the model. |
| 139 |
|
|
| 140 |
|
%% CNHbegin |
| 141 |
|
\input{part1/hs_zave_u_figure} |
| 142 |
|
%% CNHend |
| 143 |
|
|
| 144 |
\subsection{Global ocean circulation} |
\subsection{Ocean gyres} |
| 145 |
|
|
| 146 |
Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$ |
Baroclinic instability is a ubiquitous process in the ocean, as well as the |
| 147 |
global ocean model run with 15 vertical levels. The model is driven using |
atmosphere. Ocean eddies play an important role in modifying the |
| 148 |
monthly-mean winds with mixed boundary conditions on temperature and |
hydrographic structure and current systems of the oceans. Coarse resolution |
| 149 |
salinity at the surface. Fig.E2b shows the overturning (thermohaline) |
models of the oceans cannot resolve the eddy field and yield rather broad, |
| 150 |
circulation. Lopped cells are used to represent topography on a regular $% |
diffusive patterns of ocean currents. But if the resolution of our models is |
| 151 |
lat-lon$ grid extending from 70$^{\circ }N$ to 70$^{\circ }S$. |
increased until the baroclinic instability process is resolved, numerical |
| 152 |
|
solutions of a different and much more realistic kind, can be obtained. |
| 153 |
|
|
| 154 |
\begin{figure} |
Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity |
| 155 |
\begin{center} |
field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal |
| 156 |
\resizebox{!}{4in}{ |
resolution on a $lat-lon$ |
| 157 |
% \rotatebox{90}{ |
grid in which the pole has been rotated by 90$^{\circ }$ on to the equator |
| 158 |
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/ocean_circ_455_2030.eps} |
(to avoid the converging of meridian in northern latitudes). 21 vertical |
| 159 |
% } |
levels are used in the vertical with a `lopped cell' representation of |
| 160 |
} |
topography. The development and propagation of anomalously warm and cold |
| 161 |
\end{center} |
eddies can be clearly seen in the Gulf Stream region. The transport of |
| 162 |
\label{fig:horizcirc} |
warm water northward by the mean flow of the Gulf Stream is also clearly |
| 163 |
\end{figure} |
visible. |
| 164 |
|
|
| 165 |
\begin{figure} |
%% CNHbegin |
| 166 |
\begin{center} |
\input{part1/ocean_gyres_figure} |
| 167 |
\resizebox{!}{4in}{ |
%% CNHend |
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/moc.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:moc} |
|
|
\end{figure} |
|
|
|
|
|
|
|
|
\subsection{Flow over topography} |
|
|
|
|
|
\subsection{Ocean convection} |
|
|
|
|
|
Fig.E3 shows convection over a slope using the non-hydrostatic ocean |
|
|
isomorph and lopped cells to respresent topography. .....The grid resolution |
|
|
is |
|
| 168 |
|
|
|
\subsection{Boundary forced internal waves} |
|
| 169 |
|
|
| 170 |
\subsection{Carbon outgassing sensitivity} |
\subsection{Global ocean circulation} |
| 171 |
|
|
| 172 |
Fig.E4 shows.... |
Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at |
| 173 |
|
the surface of a 4$^{\circ }$ |
| 174 |
|
global ocean model run with 15 vertical levels. Lopped cells are used to |
| 175 |
|
represent topography on a regular $lat-lon$ grid extending from 70$^{\circ |
| 176 |
|
}N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with |
| 177 |
|
mixed boundary conditions on temperature and salinity at the surface. The |
| 178 |
|
transfer properties of ocean eddies, convection and mixing is parameterized |
| 179 |
|
in this model. |
| 180 |
|
|
| 181 |
|
Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning |
| 182 |
|
circulation of the global ocean in Sverdrups. |
| 183 |
|
|
| 184 |
|
%%CNHbegin |
| 185 |
|
\input{part1/global_circ_figure} |
| 186 |
|
%%CNHend |
| 187 |
|
|
| 188 |
|
\subsection{Convection and mixing over topography} |
| 189 |
|
|
| 190 |
|
Dense plumes generated by localized cooling on the continental shelf of the |
| 191 |
|
ocean may be influenced by rotation when the deformation radius is smaller |
| 192 |
|
than the width of the cooling region. Rather than gravity plumes, the |
| 193 |
|
mechanism for moving dense fluid down the shelf is then through geostrophic |
| 194 |
|
eddies. The simulation shown in the figure \ref{fig::convect-and-topo} |
| 195 |
|
(blue is cold dense fluid, red is |
| 196 |
|
warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to |
| 197 |
|
trigger convection by surface cooling. The cold, dense water falls down the |
| 198 |
|
slope but is deflected along the slope by rotation. It is found that |
| 199 |
|
entrainment in the vertical plane is reduced when rotational control is |
| 200 |
|
strong, and replaced by lateral entrainment due to the baroclinic |
| 201 |
|
instability of the along-slope current. |
| 202 |
|
|
| 203 |
|
%%CNHbegin |
| 204 |
|
\input{part1/convect_and_topo} |
| 205 |
|
%%CNHend |
| 206 |
|
|
| 207 |
\begin{figure} |
\subsection{Boundary forced internal waves} |
|
\begin{center} |
|
|
\resizebox{!}{4in}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/co209.eps} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:co2mrt} |
|
|
\end{figure} |
|
| 208 |
|
|
| 209 |
|
The unique ability of MITgcm to treat non-hydrostatic dynamics in the |
| 210 |
|
presence of complex geometry makes it an ideal tool to study internal wave |
| 211 |
|
dynamics and mixing in oceanic canyons and ridges driven by large amplitude |
| 212 |
|
barotropic tidal currents imposed through open boundary conditions. |
| 213 |
|
|
| 214 |
|
Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope |
| 215 |
|
topographic variations on |
| 216 |
|
internal wave breaking - the cross-slope velocity is in color, the density |
| 217 |
|
contoured. The internal waves are excited by application of open boundary |
| 218 |
|
conditions on the left. They propagate to the sloping boundary (represented |
| 219 |
|
using MITgcm's finite volume spatial discretization) where they break under |
| 220 |
|
nonhydrostatic dynamics. |
| 221 |
|
|
| 222 |
|
%%CNHbegin |
| 223 |
|
\input{part1/boundary_forced_waves} |
| 224 |
|
%%CNHend |
| 225 |
|
|
| 226 |
|
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
| 227 |
|
|
| 228 |
|
Forward and tangent linear counterparts of MITgcm are supported using an |
| 229 |
|
`automatic adjoint compiler'. These can be used in parameter sensitivity and |
| 230 |
|
data assimilation studies. |
| 231 |
|
|
| 232 |
|
As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity} |
| 233 |
|
maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude |
| 234 |
|
of the overturning streamfunction shown in figure \ref{fig:large-scale-circ} |
| 235 |
|
at 60$^{\circ }$N and $ |
| 236 |
|
\mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over |
| 237 |
|
a 100 year period. We see that $J$ is |
| 238 |
|
sensitive to heat fluxes over the Labrador Sea, one of the important sources |
| 239 |
|
of deep water for the thermohaline circulations. This calculation also |
| 240 |
|
yields sensitivities to all other model parameters. |
| 241 |
|
|
| 242 |
|
%%CNHbegin |
| 243 |
|
\input{part1/adj_hf_ocean_figure} |
| 244 |
|
%%CNHend |
| 245 |
|
|
| 246 |
|
\subsection{Global state estimation of the ocean} |
| 247 |
|
|
| 248 |
|
An important application of MITgcm is in state estimation of the global |
| 249 |
|
ocean circulation. An appropriately defined `cost function', which measures |
| 250 |
|
the departure of the model from observations (both remotely sensed and |
| 251 |
|
insitu) over an interval of time, is minimized by adjusting `control |
| 252 |
|
parameters' such as air-sea fluxes, the wind field, the initial conditions |
| 253 |
|
etc. Figure \ref{fig:assimilated-globes} shows an estimate of the time-mean |
| 254 |
|
surface elevation of the ocean obtained by bringing the model in to |
| 255 |
|
consistency with altimetric and in-situ observations over the period |
| 256 |
|
1992-1997. {\bf CHANGE THIS TEXT - FIG FROM PATRICK/CARL/DETLEF} |
| 257 |
|
|
| 258 |
|
%% CNHbegin |
| 259 |
|
\input{part1/globes_figure} |
| 260 |
|
%% CNHend |
| 261 |
|
|
| 262 |
|
\subsection{Ocean biogeochemical cycles} |
| 263 |
|
|
| 264 |
|
MITgcm is being used to study global biogeochemical cycles in the ocean. For |
| 265 |
|
example one can study the effects of interannual changes in meteorological |
| 266 |
|
forcing and upper ocean circulation on the fluxes of carbon dioxide and |
| 267 |
|
oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows |
| 268 |
|
the annual air-sea flux of oxygen and its relation to density outcrops in |
| 269 |
|
the southern oceans from a single year of a global, interannually varying |
| 270 |
|
simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution |
| 271 |
|
telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown). |
| 272 |
|
|
| 273 |
|
%%CNHbegin |
| 274 |
|
\input{part1/biogeo_figure} |
| 275 |
|
%%CNHend |
| 276 |
|
|
| 277 |
|
\subsection{Simulations of laboratory experiments} |
| 278 |
|
|
| 279 |
|
Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a |
| 280 |
|
laboratory experiment enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An |
| 281 |
|
initially homogeneous tank of water ($1m$ in diameter) is driven from its |
| 282 |
|
free surface by a rotating heated disk. The combined action of mechanical |
| 283 |
|
and thermal forcing creates a lens of fluid which becomes baroclinically |
| 284 |
|
unstable. The stratification and depth of penetration of the lens is |
| 285 |
|
arrested by its instability in a process analogous to that which sets the |
| 286 |
|
stratification of the ACC. |
| 287 |
|
|
| 288 |
|
%%CNHbegin |
| 289 |
|
\input{part1/lab_figure} |
| 290 |
|
%%CNHend |
| 291 |
|
|
| 292 |
% $Header$ |
% $Header$ |
| 293 |
% $Name$ |
% $Name$ |
| 296 |
|
|
| 297 |
To render atmosphere and ocean models from one dynamical core we exploit |
To render atmosphere and ocean models from one dynamical core we exploit |
| 298 |
`isomorphisms' between equation sets that govern the evolution of the |
`isomorphisms' between equation sets that govern the evolution of the |
| 299 |
respective fluids - see fig.4% |
respective fluids - see figure \ref{fig:isomorphic-equations}. |
| 300 |
\marginpar{ |
One system of hydrodynamical equations is written down |
|
Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down |
|
| 301 |
and encoded. The model variables have different interpretations depending on |
and encoded. The model variables have different interpretations depending on |
| 302 |
whether the atmosphere or ocean is being studied. Thus, for example, the |
whether the atmosphere or ocean is being studied. Thus, for example, the |
| 303 |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
| 304 |
modeling the atmosphere and height, $z$, if we are modeling the ocean. |
modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations}) |
| 305 |
|
and height, $z$, if we are modeling the ocean (right hand side of figure |
| 306 |
|
\ref{fig:isomorphic-equations}). |
| 307 |
|
|
| 308 |
|
%%CNHbegin |
| 309 |
|
\input{part1/zandpcoord_figure.tex} |
| 310 |
|
%%CNHend |
| 311 |
|
|
| 312 |
The state of the fluid at any time is characterized by the distribution of |
The state of the fluid at any time is characterized by the distribution of |
| 313 |
velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a |
velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a |
| 315 |
depend on $\theta $, $S$, and $p$. The equations that govern the evolution |
depend on $\theta $, $S$, and $p$. The equations that govern the evolution |
| 316 |
of these fields, obtained by applying the laws of classical mechanics and |
of these fields, obtained by applying the laws of classical mechanics and |
| 317 |
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of |
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of |
| 318 |
a generic vertical coordinate, $r$, see fig.5% |
a generic vertical coordinate, $r$, so that the appropriate |
| 319 |
\marginpar{ |
kinematic boundary conditions can be applied isomorphically |
| 320 |
Fig.5 The vertical coordinate of model}: |
see figure \ref{fig:zandp-vert-coord}. |
| 321 |
|
|
| 322 |
\begin{figure} |
%%CNHbegin |
| 323 |
\begin{center} |
\input{part1/vertcoord_figure.tex} |
| 324 |
\resizebox{!}{4in}{ |
%%CNHend |
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/vertcoord.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:vertcoord} |
|
|
\end{figure} |
|
| 325 |
|
|
| 326 |
\begin{equation*} |
\begin{equation*} |
| 327 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
| 328 |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}% |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} |
| 329 |
\text{ horizontal mtm} |
\text{ horizontal mtm} |
| 330 |
\end{equation*} |
\end{equation*} |
| 331 |
|
|
| 332 |
\begin{equation*} |
\begin{equation*} |
| 333 |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{% |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
| 334 |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ |
| 335 |
vertical mtm} |
vertical mtm} |
| 336 |
\end{equation*} |
\end{equation*} |
| 337 |
|
|
| 338 |
\begin{equation} |
\begin{equation} |
| 339 |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{% |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ |
| 340 |
\partial r}=0\text{ continuity} \label{eq:continuous} |
\partial r}=0\text{ continuity} \label{eq:continuous} |
| 341 |
\end{equation} |
\end{equation} |
| 342 |
|
|
| 343 |
\begin{equation*} |
\begin{equation*} |
| 344 |
b=b(\theta ,S,r)\text{ equation of state} |
b=b(\theta ,S,r)\text{ equation of state} |
| 345 |
\end{equation*} |
\end{equation*} |
| 346 |
|
|
| 347 |
\begin{equation*} |
\begin{equation*} |
| 348 |
\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} |
\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} |
| 349 |
\end{equation*} |
\end{equation*} |
| 350 |
|
|
| 351 |
\begin{equation*} |
\begin{equation*} |
| 352 |
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} |
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} |
| 353 |
\end{equation*} |
\end{equation*} |
| 354 |
|
|
| 355 |
Here: |
Here: |
| 356 |
|
|
| 357 |
\begin{equation*} |
\begin{equation*} |
| 358 |
r\text{ is the vertical coordinate} |
r\text{ is the vertical coordinate} |
| 359 |
\end{equation*} |
\end{equation*} |
| 360 |
|
|
| 361 |
\begin{equation*} |
\begin{equation*} |
| 362 |
\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ |
\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ |
| 363 |
is the total derivative} |
is the total derivative} |
| 364 |
\end{equation*} |
\end{equation*} |
| 365 |
|
|
| 366 |
\begin{equation*} |
\begin{equation*} |
| 367 |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}% |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r} |
| 368 |
\text{ is the `grad' operator} |
\text{ is the `grad' operator} |
| 369 |
\end{equation*} |
\end{equation*} |
| 370 |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}% |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k} |
| 371 |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
| 372 |
is a unit vector in the vertical |
is a unit vector in the vertical |
| 373 |
|
|
| 374 |
\begin{equation*} |
\begin{equation*} |
| 375 |
t\text{ is time} |
t\text{ is time} |
| 376 |
\end{equation*} |
\end{equation*} |
| 377 |
|
|
| 378 |
\begin{equation*} |
\begin{equation*} |
| 379 |
\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the |
\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the |
| 380 |
velocity} |
velocity} |
| 381 |
\end{equation*} |
\end{equation*} |
| 382 |
|
|
| 383 |
\begin{equation*} |
\begin{equation*} |
| 384 |
\phi \text{ is the `pressure'/`geopotential'} |
\phi \text{ is the `pressure'/`geopotential'} |
| 385 |
\end{equation*} |
\end{equation*} |
| 386 |
|
|
| 387 |
\begin{equation*} |
\begin{equation*} |
| 388 |
\vec{\Omega}\text{ is the Earth's rotation} |
\vec{\Omega}\text{ is the Earth's rotation} |
| 389 |
\end{equation*} |
\end{equation*} |
| 390 |
|
|
| 391 |
\begin{equation*} |
\begin{equation*} |
| 392 |
b\text{ is the `buoyancy'} |
b\text{ is the `buoyancy'} |
| 393 |
\end{equation*} |
\end{equation*} |
| 394 |
|
|
| 395 |
\begin{equation*} |
\begin{equation*} |
| 396 |
\theta \text{ is potential temperature} |
\theta \text{ is potential temperature} |
| 397 |
\end{equation*} |
\end{equation*} |
| 398 |
|
|
| 399 |
\begin{equation*} |
\begin{equation*} |
| 400 |
S\text{ is specific humidity in the atmosphere; salinity in the ocean} |
S\text{ is specific humidity in the atmosphere; salinity in the ocean} |
| 401 |
\end{equation*} |
\end{equation*} |
| 402 |
|
|
| 403 |
\begin{equation*} |
\begin{equation*} |
| 404 |
\mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{% |
\mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{ |
| 405 |
\mathbf{v}} |
\mathbf{v}} |
| 406 |
\end{equation*} |
\end{equation*} |
| 407 |
|
|
| 408 |
\begin{equation*} |
\begin{equation*} |
| 409 |
\mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }% |
\mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta |
|
\theta |
|
| 410 |
\end{equation*} |
\end{equation*} |
| 411 |
|
|
| 412 |
\begin{equation*} |
\begin{equation*} |
| 414 |
\end{equation*} |
\end{equation*} |
| 415 |
|
|
| 416 |
The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by |
The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by |
| 417 |
extensive `physics' packages for atmosphere and ocean described in Chapter 6. |
`physics' and forcing packages for atmosphere and ocean. These are described |
| 418 |
|
in later chapters. |
| 419 |
|
|
| 420 |
\subsection{Kinematic Boundary conditions} |
\subsection{Kinematic Boundary conditions} |
| 421 |
|
|
| 422 |
\subsubsection{vertical} |
\subsubsection{vertical} |
| 423 |
|
|
| 424 |
at fixed and moving $r$ surfaces we set (see fig.5): |
at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}): |
| 425 |
|
|
| 426 |
\begin{equation} |
\begin{equation} |
| 427 |
\dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} |
\dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} |
| 436 |
Here |
Here |
| 437 |
|
|
| 438 |
\begin{equation*} |
\begin{equation*} |
| 439 |
R_{moving}=R_{o}+\eta |
R_{moving}=R_{o}+\eta |
| 440 |
\end{equation*} |
\end{equation*} |
| 441 |
where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on |
where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on |
| 442 |
whether we are in the atmosphere or ocean) of the `moving surface' in the |
whether we are in the atmosphere or ocean) of the `moving surface' in the |
| 447 |
|
|
| 448 |
\begin{equation} |
\begin{equation} |
| 449 |
\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow} |
\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow} |
| 450 |
\end{equation}% |
\end{equation} |
| 451 |
where $\vec{\mathbf{n}}$ is the normal to a solid boundary. |
where $\vec{\mathbf{n}}$ is the normal to a solid boundary. |
| 452 |
|
|
| 453 |
\subsection{Atmosphere} |
\subsection{Atmosphere} |
| 454 |
|
|
| 455 |
In the atmosphere, see fig.5, we interpret: |
In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret: |
| 456 |
|
|
| 457 |
\begin{equation} |
\begin{equation} |
| 458 |
r=p\text{ is the pressure} \label{eq:atmos-r} |
r=p\text{ is the pressure} \label{eq:atmos-r} |
| 484 |
|
|
| 485 |
\begin{equation*} |
\begin{equation*} |
| 486 |
T\text{ is absolute temperature} |
T\text{ is absolute temperature} |
| 487 |
\end{equation*}% |
\end{equation*} |
| 488 |
\begin{equation*} |
\begin{equation*} |
| 489 |
p\text{ is the pressure} |
p\text{ is the pressure} |
| 490 |
\end{equation*}% |
\end{equation*} |
| 491 |
\begin{eqnarray*} |
\begin{eqnarray*} |
| 492 |
&&z\text{ is the height of the pressure surface} \\ |
&&z\text{ is the height of the pressure surface} \\ |
| 493 |
&&g\text{ is the acceleration due to gravity} |
&&g\text{ is the acceleration due to gravity} |
| 497 |
the Exner function $\Pi (p)$ given by (see Appendix Atmosphere) |
the Exner function $\Pi (p)$ given by (see Appendix Atmosphere) |
| 498 |
\begin{equation} |
\begin{equation} |
| 499 |
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner} |
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner} |
| 500 |
\end{equation}% |
\end{equation} |
| 501 |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas |
| 502 |
constant and $c_{p}$ the specific heat of air at constant pressure. |
constant and $c_{p}$ the specific heat of air at constant pressure. |
| 503 |
|
|
| 504 |
At the top of the atmosphere (which is `fixed' in our $r$ coordinate): |
At the top of the atmosphere (which is `fixed' in our $r$ coordinate): |
| 505 |
|
|
| 506 |
\begin{equation*} |
\begin{equation*} |
| 507 |
R_{fixed}=p_{top}=0 |
R_{fixed}=p_{top}=0 |
| 508 |
\end{equation*} |
\end{equation*} |
| 509 |
In a resting atmosphere the elevation of the mountains at the bottom is |
In a resting atmosphere the elevation of the mountains at the bottom is |
| 510 |
given by |
given by |
| 511 |
\begin{equation*} |
\begin{equation*} |
| 512 |
R_{moving}=R_{o}(x,y)=p_{o}(x,y) |
R_{moving}=R_{o}(x,y)=p_{o}(x,y) |
| 513 |
\end{equation*} |
\end{equation*} |
| 514 |
i.e. the (hydrostatic) pressure at the top of the mountains in a resting |
i.e. the (hydrostatic) pressure at the top of the mountains in a resting |
| 515 |
atmosphere. |
atmosphere. |
| 547 |
|
|
| 548 |
The surface of the ocean is given by: $R_{moving}=\eta $ |
The surface of the ocean is given by: $R_{moving}=\eta $ |
| 549 |
|
|
| 550 |
The position of the resting free surface of the ocean is given by $% |
The position of the resting free surface of the ocean is given by $ |
| 551 |
R_{o}=Z_{o}=0$. |
R_{o}=Z_{o}=0$. |
| 552 |
|
|
| 553 |
Boundary conditions are: |
Boundary conditions are: |
| 555 |
\begin{eqnarray} |
\begin{eqnarray} |
| 556 |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean} |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean} |
| 557 |
\\ |
\\ |
| 558 |
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) % |
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) |
| 559 |
\label{eq:moving-bc-ocean}} |
\label{eq:moving-bc-ocean}} |
| 560 |
\end{eqnarray} |
\end{eqnarray} |
| 561 |
where $\eta $ is the elevation of the free surface. |
where $\eta $ is the elevation of the free surface. |
| 572 |
\begin{equation} |
\begin{equation} |
| 573 |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
| 574 |
\label{eq:phi-split} |
\label{eq:phi-split} |
| 575 |
\end{equation}% |
\end{equation} |
| 576 |
and write eq(\ref{incompressible}a,b) in the form: |
and write eq(\ref{incompressible}a,b) in the form: |
| 577 |
|
|
| 578 |
\begin{equation} |
\begin{equation} |
| 586 |
\end{equation} |
\end{equation} |
| 587 |
|
|
| 588 |
\begin{equation} |
\begin{equation} |
| 589 |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{% |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{ |
| 590 |
\partial r}=G_{\dot{r}} \label{eq:mom-w} |
\partial r}=G_{\dot{r}} \label{eq:mom-w} |
| 591 |
\end{equation} |
\end{equation} |
| 592 |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
| 593 |
|
|
| 594 |
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref% |
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref |
| 595 |
{eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis |
{eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis |
| 596 |
terms in the momentum equations. In spherical coordinates they take the form% |
terms in the momentum equations. In spherical coordinates they take the form |
| 597 |
\footnote{% |
\footnote{ |
| 598 |
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms |
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms |
| 599 |
in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref% |
in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref |
| 600 |
{eq:gw-spherical}) are omitted; the singly-underlined terms are included in |
{eq:gw-spherical}) are omitted; the singly-underlined terms are included in |
| 601 |
the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (% |
the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model ( |
| 602 |
\textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full |
\textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full |
| 603 |
discussion: |
discussion: |
| 604 |
|
|
| 606 |
\left. |
\left. |
| 607 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 608 |
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\ |
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\ |
| 609 |
$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $ |
$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $ |
| 610 |
\\ |
\\ |
| 611 |
$-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $ |
$-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $ |
| 612 |
\\ |
\\ |
| 613 |
$+\mathcal{F}_{u}$% |
$+\mathcal{F}_{u}$ |
| 614 |
\end{tabular}% |
\end{tabular} |
| 615 |
\ \right\} \left\{ |
\ \right\} \left\{ |
| 616 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 617 |
\textit{advection} \\ |
\textit{advection} \\ |
| 618 |
\textit{metric} \\ |
\textit{metric} \\ |
| 619 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
| 620 |
\textit{\ Forcing/Dissipation}% |
\textit{\ Forcing/Dissipation} |
| 621 |
\end{tabular}% |
\end{tabular} |
| 622 |
\ \right. \qquad \label{eq:gu-speherical} |
\ \right. \qquad \label{eq:gu-speherical} |
| 623 |
\end{equation} |
\end{equation} |
| 624 |
|
|
| 625 |
\begin{equation} |
\begin{equation} |
| 626 |
\left. |
\left. |
| 627 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 628 |
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\ |
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\ |
| 629 |
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\} |
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\} |
| 630 |
$ \\ |
$ \\ |
| 631 |
$-\left\{ -2\Omega u\sin lat\right\} $ \\ |
$-\left\{ -2\Omega u\sin \varphi \right\} $ \\ |
| 632 |
$+\mathcal{F}_{v}$% |
$+\mathcal{F}_{v}$ |
| 633 |
\end{tabular}% |
\end{tabular} |
| 634 |
\ \right\} \left\{ |
\ \right\} \left\{ |
| 635 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 636 |
\textit{advection} \\ |
\textit{advection} \\ |
| 637 |
\textit{metric} \\ |
\textit{metric} \\ |
| 638 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
| 639 |
\textit{\ Forcing/Dissipation}% |
\textit{\ Forcing/Dissipation} |
| 640 |
\end{tabular}% |
\end{tabular} |
| 641 |
\ \right. \qquad \label{eq:gv-spherical} |
\ \right. \qquad \label{eq:gv-spherical} |
| 642 |
\end{equation}% |
\end{equation} |
| 643 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
| 644 |
|
|
| 645 |
\begin{equation} |
\begin{equation} |
| 646 |
\left. |
\left. |
| 647 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 648 |
$G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\ |
$G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\ |
| 649 |
$+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\ |
$+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\ |
| 650 |
${+}\underline{{2\Omega u\cos lat}}$ \\ |
${+}\underline{{2\Omega u\cos \varphi}}$ \\ |
| 651 |
$\underline{\underline{\mathcal{F}_{\dot{r}}}}$% |
$\underline{\underline{\mathcal{F}_{\dot{r}}}}$ |
| 652 |
\end{tabular}% |
\end{tabular} |
| 653 |
\ \right\} \left\{ |
\ \right\} \left\{ |
| 654 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 655 |
\textit{advection} \\ |
\textit{advection} \\ |
| 656 |
\textit{metric} \\ |
\textit{metric} \\ |
| 657 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
| 658 |
\textit{\ Forcing/Dissipation}% |
\textit{\ Forcing/Dissipation} |
| 659 |
\end{tabular}% |
\end{tabular} |
| 660 |
\ \right. \label{eq:gw-spherical} |
\ \right. \label{eq:gw-spherical} |
| 661 |
\end{equation}% |
\end{equation} |
| 662 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
| 663 |
|
|
| 664 |
In the above `${r}$' is the distance from the center of the earth and `$lat$% |
In the above `${r}$' is the distance from the center of the earth and `$\varphi$ |
| 665 |
' is latitude. |
' is latitude. |
| 666 |
|
|
| 667 |
Grad and div operators in spherical coordinates are defined in appendix |
Grad and div operators in spherical coordinates are defined in appendix |
| 668 |
OPERATORS.% |
OPERATORS. |
| 669 |
\marginpar{ |
\marginpar{ |
| 670 |
Fig.6 Spherical polar coordinate system.} |
Fig.6 Spherical polar coordinate system.} |
| 671 |
|
|
| 672 |
\begin{figure} |
%%CNHbegin |
| 673 |
\begin{center} |
\input{part1/sphere_coord_figure.tex} |
| 674 |
\resizebox{!}{4in}{ |
%%CNHend |
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/spherical-polar.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:spcoord} |
|
|
\end{figure} |
|
|
|
|
| 675 |
|
|
| 676 |
\subsubsection{Shallow atmosphere approximation} |
\subsubsection{Shallow atmosphere approximation} |
| 677 |
|
|
| 681 |
Coriolis force is treated approximately and the shallow atmosphere |
Coriolis force is treated approximately and the shallow atmosphere |
| 682 |
approximation is made.\ The MITgcm need not make the `traditional |
approximation is made.\ The MITgcm need not make the `traditional |
| 683 |
approximation'. To be able to support consistent non-hydrostatic forms the |
approximation'. To be able to support consistent non-hydrostatic forms the |
| 684 |
shallow atmosphere approximation can be relaxed - when dividing through by $r |
shallow atmosphere approximation can be relaxed - when dividing through by $ |
| 685 |
$ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, |
r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, |
| 686 |
the radius of the earth. |
the radius of the earth. |
| 687 |
|
|
| 688 |
\subsubsection{Hydrostatic and quasi-hydrostatic forms} |
\subsubsection{Hydrostatic and quasi-hydrostatic forms} |
| 689 |
|
\label{sec:hydrostatic_and_quasi-hydrostatic_forms} |
| 690 |
|
|
| 691 |
These are discussed at length in Marshall et al (1997a). |
These are discussed at length in Marshall et al (1997a). |
| 692 |
|
|
| 695 |
are neglected and `${r}$' is replaced by `$a$', the mean radius of the |
are neglected and `${r}$' is replaced by `$a$', the mean radius of the |
| 696 |
earth. Once the pressure is found at one level - e.g. by inverting a 2-d |
earth. Once the pressure is found at one level - e.g. by inverting a 2-d |
| 697 |
Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be |
Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be |
| 698 |
computed at all other levels by integration of the hydrostatic relation, eq(% |
computed at all other levels by integration of the hydrostatic relation, eq( |
| 699 |
\ref{eq:hydrostatic}). |
\ref{eq:hydrostatic}). |
| 700 |
|
|
| 701 |
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between |
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between |
| 702 |
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos |
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos |
| 703 |
\phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic |
\varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic |
| 704 |
contribution to the pressure field: only the terms underlined twice in Eqs. (% |
contribution to the pressure field: only the terms underlined twice in Eqs. ( |
| 705 |
\ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero |
\ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero |
| 706 |
and, simultaneously, the shallow atmosphere approximation is relaxed. In |
and, simultaneously, the shallow atmosphere approximation is relaxed. In |
| 707 |
\textbf{QH}\ \textit{all} the metric terms are retained and the full |
\textbf{QH}\ \textit{all} the metric terms are retained and the full |
| 709 |
vertical momentum equation (\ref{eq:mom-w}) becomes: |
vertical momentum equation (\ref{eq:mom-w}) becomes: |
| 710 |
|
|
| 711 |
\begin{equation*} |
\begin{equation*} |
| 712 |
\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat |
\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi |
| 713 |
\end{equation*} |
\end{equation*} |
| 714 |
making a small correction to the hydrostatic pressure. |
making a small correction to the hydrostatic pressure. |
| 715 |
|
|
| 725 |
|
|
| 726 |
\paragraph{Non-hydrostatic Ocean} |
\paragraph{Non-hydrostatic Ocean} |
| 727 |
|
|
| 728 |
In the non-hydrostatic ocean model all terms in equations Eqs.(\ref% |
In the non-hydrostatic ocean model all terms in equations Eqs.(\ref |
| 729 |
{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A |
{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A |
| 730 |
three dimensional elliptic equation must be solved subject to Neumann |
three dimensional elliptic equation must be solved subject to Neumann |
| 731 |
boundary conditions (see below). It is important to note that use of the |
boundary conditions (see below). It is important to note that use of the |
| 738 |
|
|
| 739 |
\paragraph{Quasi-nonhydrostatic Atmosphere} |
\paragraph{Quasi-nonhydrostatic Atmosphere} |
| 740 |
|
|
| 741 |
In the non-hydrostatic version of our atmospheric model we approximate $\dot{% |
In the non-hydrostatic version of our atmospheric model we approximate $\dot{ |
| 742 |
r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical}) |
r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical}) |
| 743 |
(but only here) by: |
(but only here) by: |
| 744 |
|
|
| 745 |
\begin{equation} |
\begin{equation} |
| 746 |
\dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w} |
\dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w} |
| 747 |
\end{equation}% |
\end{equation} |
| 748 |
where $p_{hy}$ is the hydrostatic pressure. |
where $p_{hy}$ is the hydrostatic pressure. |
| 749 |
|
|
| 750 |
\subsubsection{Summary of equation sets supported by model} |
\subsubsection{Summary of equation sets supported by model} |
| 772 |
|
|
| 773 |
\subparagraph{Non-hydrostatic} |
\subparagraph{Non-hydrostatic} |
| 774 |
|
|
| 775 |
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$% |
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$ |
| 776 |
coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref% |
coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref |
| 777 |
{eq:ocean-salt}). |
{eq:ocean-salt}). |
| 778 |
|
|
| 779 |
\subsection{Solution strategy} |
\subsection{Solution strategy} |
| 780 |
|
|
| 781 |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{% |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ |
| 782 |
NH} models is summarized in Fig.7.% |
NH} models is summarized in Fig.7. |
| 783 |
\marginpar{ |
\marginpar{ |
| 784 |
Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is |
Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is |
| 785 |
first solved to find the surface pressure and the hydrostatic pressure at |
first solved to find the surface pressure and the hydrostatic pressure at |
| 790 |
stepping forward the horizontal momentum equations; $\dot{r}$ is found by |
stepping forward the horizontal momentum equations; $\dot{r}$ is found by |
| 791 |
stepping forward the vertical momentum equation. |
stepping forward the vertical momentum equation. |
| 792 |
|
|
| 793 |
\begin{figure} |
%%CNHbegin |
| 794 |
\begin{center} |
\input{part1/solution_strategy_figure.tex} |
| 795 |
\resizebox{!}{4in}{ |
%%CNHend |
|
\rotatebox{90}{ |
|
|
\rotatebox{180}{ |
|
|
\includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/soln_strategy.eps} |
|
|
} |
|
|
} |
|
|
} |
|
|
\end{center} |
|
|
\label{fig:solnstart} |
|
|
\end{figure} |
|
|
|
|
| 796 |
|
|
| 797 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
| 798 |
course, some complication that goes with the inclusion of $\cos \phi \ $% |
course, some complication that goes with the inclusion of $\cos \varphi \ $ |
| 799 |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
| 800 |
But this leads to negligible increase in computation. In \textbf{NH}, in |
But this leads to negligible increase in computation. In \textbf{NH}, in |
| 801 |
contrast, one additional elliptic equation - a three-dimensional one - must |
contrast, one additional elliptic equation - a three-dimensional one - must |
| 805 |
hydrostatic limit, is as computationally economic as the \textbf{HPEs}. |
hydrostatic limit, is as computationally economic as the \textbf{HPEs}. |
| 806 |
|
|
| 807 |
\subsection{Finding the pressure field} |
\subsection{Finding the pressure field} |
| 808 |
|
\label{sec:finding_the_pressure_field} |
| 809 |
|
|
| 810 |
Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the |
Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the |
| 811 |
pressure field must be obtained diagnostically. We proceed, as before, by |
pressure field must be obtained diagnostically. We proceed, as before, by |
| 820 |
vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield: |
vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield: |
| 821 |
|
|
| 822 |
\begin{equation*} |
\begin{equation*} |
| 823 |
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}% |
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd} |
| 824 |
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr |
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr |
| 825 |
\end{equation*} |
\end{equation*} |
| 826 |
and so |
and so |
| 827 |
|
|
| 838 |
|
|
| 839 |
\subsubsection{Surface pressure} |
\subsubsection{Surface pressure} |
| 840 |
|
|
| 841 |
The surface pressure equation can be obtained by integrating continuity, (% |
The surface pressure equation can be obtained by integrating continuity, ( |
| 842 |
\ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
\ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
| 843 |
|
|
| 844 |
\begin{equation*} |
\begin{equation*} |
| 845 |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}% |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} |
| 846 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
| 847 |
\end{equation*} |
\end{equation*} |
| 848 |
|
|
| 849 |
Thus: |
Thus: |
| 850 |
|
|
| 851 |
\begin{equation*} |
\begin{equation*} |
| 852 |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
| 853 |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}% |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}} |
| 854 |
_{h}dr=0 |
_{h}dr=0 |
| 855 |
\end{equation*} |
\end{equation*} |
| 856 |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $% |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $ |
| 857 |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
| 858 |
|
|
| 859 |
\begin{equation} |
\begin{equation} |
| 860 |
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
| 861 |
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source} |
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source} |
| 862 |
\label{eq:free-surface} |
\label{eq:free-surface} |
| 863 |
\end{equation}% |
\end{equation} |
| 864 |
where we have incorporated a source term. |
where we have incorporated a source term. |
| 865 |
|
|
| 866 |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
| 867 |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
| 868 |
be written |
be written |
| 869 |
\begin{equation} |
\begin{equation} |
| 870 |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) |
| 871 |
\label{eq:phi-surf} |
\label{eq:phi-surf} |
| 872 |
\end{equation}% |
\end{equation} |
| 873 |
where $b_{s}$ is the buoyancy at the surface. |
where $b_{s}$ is the buoyancy at the surface. |
| 874 |
|
|
| 875 |
In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref% |
In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref |
| 876 |
{eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d |
{eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d |
| 877 |
elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free |
elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free |
| 878 |
surface' and `rigid lid' approaches are available. |
surface' and `rigid lid' approaches are available. |
| 879 |
|
|
| 880 |
\subsubsection{Non-hydrostatic pressure} |
\subsubsection{Non-hydrostatic pressure} |
| 881 |
|
|
| 882 |
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{% |
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{ |
| 883 |
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation |
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation |
| 884 |
(\ref{incompressible}), we deduce that: |
(\ref{incompressible}), we deduce that: |
| 885 |
|
|
| 886 |
\begin{equation} |
\begin{equation} |
| 887 |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{% |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ |
| 888 |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .% |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla . |
| 889 |
\vec{\mathbf{F}} \label{eq:3d-invert} |
\vec{\mathbf{F}} \label{eq:3d-invert} |
| 890 |
\end{equation} |
\end{equation} |
| 891 |
|
|
| 905 |
\end{equation} |
\end{equation} |
| 906 |
where $\widehat{n}$ is a vector of unit length normal to the boundary. The |
where $\widehat{n}$ is a vector of unit length normal to the boundary. The |
| 907 |
kinematic condition (\ref{nonormalflow}) is also applied to the vertical |
kinematic condition (\ref{nonormalflow}) is also applied to the vertical |
| 908 |
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $% |
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $ |
| 909 |
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the |
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the |
| 910 |
tangential component of velocity, $v_{T}$, at all solid boundaries, |
tangential component of velocity, $v_{T}$, at all solid boundaries, |
| 911 |
depending on the form chosen for the dissipative terms in the momentum |
depending on the form chosen for the dissipative terms in the momentum |
| 922 |
\begin{equation*} |
\begin{equation*} |
| 923 |
\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi |
\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi |
| 924 |
_{s}+\mathbf{\nabla }\phi _{hyd}\right) |
_{s}+\mathbf{\nabla }\phi _{hyd}\right) |
| 925 |
\end{equation*}% |
\end{equation*} |
| 926 |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
| 927 |
(\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can |
(\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can |
| 928 |
exploit classical 3D potential theory and, by introducing an appropriately |
exploit classical 3D potential theory and, by introducing an appropriately |
| 929 |
chosen $\delta $-function sheet of `source-charge', replace the inhomogenous |
chosen $\delta $-function sheet of `source-charge', replace the |
| 930 |
boundary condition on pressure by a homogeneous one. The source term $rhs$ |
inhomogeneous boundary condition on pressure by a homogeneous one. The |
| 931 |
in (\ref{eq:3d-invert}) is the divergence of the vector $\vec{\mathbf{F}}.$ |
source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $ |
| 932 |
By simultaneously setting $% |
\vec{\mathbf{F}}.$ By simultaneously setting $ |
| 933 |
\begin{array}{l} |
\begin{array}{l} |
| 934 |
\widehat{n}.\vec{\mathbf{F}}% |
\widehat{n}.\vec{\mathbf{F}} |
| 935 |
\end{array}% |
\end{array} |
| 936 |
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following |
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following |
| 937 |
self-consistent but simpler homogenised Elliptic problem is obtained: |
self-consistent but simpler homogenized Elliptic problem is obtained: |
| 938 |
|
|
| 939 |
\begin{equation*} |
\begin{equation*} |
| 940 |
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad |
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad |
| 941 |
\end{equation*}% |
\end{equation*} |
| 942 |
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such |
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such |
| 943 |
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref% |
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref |
| 944 |
{eq:inhom-neumann-nh}) the modified boundary condition becomes: |
{eq:inhom-neumann-nh}) the modified boundary condition becomes: |
| 945 |
|
|
| 946 |
\begin{equation} |
\begin{equation} |
| 969 |
biharmonic frictions are commonly used: |
biharmonic frictions are commonly used: |
| 970 |
|
|
| 971 |
\begin{equation} |
\begin{equation} |
| 972 |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}% |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}} |
| 973 |
+A_{4}\nabla _{h}^{4}v \label{eq:dissipation} |
+A_{4}\nabla _{h}^{4}v \label{eq:dissipation} |
| 974 |
\end{equation} |
\end{equation} |
| 975 |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
| 980 |
|
|
| 981 |
The mixing terms for the temperature and salinity equations have a similar |
The mixing terms for the temperature and salinity equations have a similar |
| 982 |
form to that of momentum except that the diffusion tensor can be |
form to that of momentum except that the diffusion tensor can be |
| 983 |
non-diagonal and have varying coefficients. $\qquad $% |
non-diagonal and have varying coefficients. $\qquad $ |
| 984 |
\begin{equation} |
\begin{equation} |
| 985 |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
| 986 |
_{h}^{4}(T,S) \label{eq:diffusion} |
_{h}^{4}(T,S) \label{eq:diffusion} |
| 987 |
\end{equation} |
\end{equation} |
| 988 |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $% |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $ |
| 989 |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
| 990 |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
| 991 |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
| 996 |
\begin{array}{ccc} |
\begin{array}{ccc} |
| 997 |
K_{h} & 0 & 0 \\ |
K_{h} & 0 & 0 \\ |
| 998 |
0 & K_{h} & 0 \\ |
0 & K_{h} & 0 \\ |
| 999 |
0 & 0 & K_{v}% |
0 & 0 & K_{v} |
| 1000 |
\end{array} |
\end{array} |
| 1001 |
\right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor} |
\right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor} |
| 1002 |
\end{equation} |
\end{equation} |
| 1006 |
|
|
| 1007 |
\subsection{Vector invariant form} |
\subsection{Vector invariant form} |
| 1008 |
|
|
| 1009 |
For some purposes it is advantageous to write momentum advection in eq(\ref% |
For some purposes it is advantageous to write momentum advection in eq(\ref |
| 1010 |
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: |
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: |
| 1011 |
|
|
| 1012 |
\begin{equation} |
\begin{equation} |
| 1013 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
| 1014 |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla % |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
| 1015 |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
| 1016 |
\label{eq:vi-identity} |
\label{eq:vi-identity} |
| 1017 |
\end{equation}% |
\end{equation} |
| 1018 |
This permits alternative numerical treatments of the non-linear terms based |
This permits alternative numerical treatments of the non-linear terms based |
| 1019 |
on their representation as a vorticity flux. Because gradients of coordinate |
on their representation as a vorticity flux. Because gradients of coordinate |
| 1020 |
vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit |
vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit |
| 1021 |
representation of the metric terms in (\ref{eq:gu-speherical}), (\ref% |
representation of the metric terms in (\ref{eq:gu-speherical}), (\ref |
| 1022 |
{eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information |
{eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information |
| 1023 |
about the geometry is contained in the areas and lengths of the volumes used |
about the geometry is contained in the areas and lengths of the volumes used |
| 1024 |
to discretize the model. |
to discretize the model. |
| 1025 |
|
|
| 1026 |
\subsection{Adjoint} |
\subsection{Adjoint} |
| 1027 |
|
|
| 1028 |
Tangent linear and adoint counterparts of the forward model and described in |
Tangent linear and adjoint counterparts of the forward model and described |
| 1029 |
Chapter 5. |
in Chapter 5. |
| 1030 |
|
|
| 1031 |
% $Header$ |
% $Header$ |
| 1032 |
% $Name$ |
% $Name$ |
| 1040 |
|
|
| 1041 |
The hydrostatic primitive equations (HPEs) in p-coordinates are: |
The hydrostatic primitive equations (HPEs) in p-coordinates are: |
| 1042 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1043 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1044 |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
| 1045 |
\label{eq:atmos-mom} \\ |
\label{eq:atmos-mom} \\ |
| 1046 |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
| 1047 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
| 1048 |
\partial p} &=&0 \label{eq:atmos-cont} \\ |
\partial p} &=&0 \label{eq:atmos-cont} \\ |
| 1049 |
p\alpha &=&RT \label{eq:atmos-eos} \\ |
p\alpha &=&RT \label{eq:atmos-eos} \\ |
| 1050 |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
| 1051 |
\end{eqnarray}% |
\end{eqnarray} |
| 1052 |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
| 1053 |
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot |
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot |
| 1054 |
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total |
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total |
| 1055 |
derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is |
derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is |
| 1056 |
the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp% |
the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp |
| 1057 |
}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref% |
}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref |
| 1058 |
{eq:atmos-heat}) is the first law of thermodynamics where internal energy $% |
{eq:atmos-heat}) is the first law of thermodynamics where internal energy $ |
| 1059 |
e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $% |
e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $ |
| 1060 |
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. |
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. |
| 1061 |
|
|
| 1062 |
It is convenient to cast the heat equation in terms of potential temperature |
It is convenient to cast the heat equation in terms of potential temperature |
| 1064 |
Differentiating (\ref{eq:atmos-eos}) we get: |
Differentiating (\ref{eq:atmos-eos}) we get: |
| 1065 |
\begin{equation*} |
\begin{equation*} |
| 1066 |
p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} |
p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} |
| 1067 |
\end{equation*}% |
\end{equation*} |
| 1068 |
which, when added to the heat equation (\ref{eq:atmos-heat}) and using $% |
which, when added to the heat equation (\ref{eq:atmos-heat}) and using $ |
| 1069 |
c_{p}=c_{v}+R$, gives: |
c_{p}=c_{v}+R$, gives: |
| 1070 |
\begin{equation} |
\begin{equation} |
| 1071 |
c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} |
c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} |
| 1072 |
\label{eq-p-heat-interim} |
\label{eq-p-heat-interim} |
| 1073 |
\end{equation}% |
\end{equation} |
| 1074 |
Potential temperature is defined: |
Potential temperature is defined: |
| 1075 |
\begin{equation} |
\begin{equation} |
| 1076 |
\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp} |
\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp} |
| 1077 |
\end{equation}% |
\end{equation} |
| 1078 |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience |
| 1079 |
we will make use of the Exner function $\Pi (p)$ which defined by: |
we will make use of the Exner function $\Pi (p)$ which defined by: |
| 1080 |
\begin{equation} |
\begin{equation} |
| 1081 |
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner} |
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner} |
| 1082 |
\end{equation}% |
\end{equation} |
| 1083 |
The following relations will be useful and are easily expressed in terms of |
The following relations will be useful and are easily expressed in terms of |
| 1084 |
the Exner function: |
the Exner function: |
| 1085 |
\begin{equation*} |
\begin{equation*} |
| 1086 |
c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi |
c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi |
| 1087 |
}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{% |
}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{ |
| 1088 |
\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}% |
\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p} |
| 1089 |
\frac{Dp}{Dt} |
\frac{Dp}{Dt} |
| 1090 |
\end{equation*}% |
\end{equation*} |
| 1091 |
where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. |
where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. |
| 1092 |
|
|
| 1093 |
The heat equation is obtained by noting that |
The heat equation is obtained by noting that |
| 1094 |
\begin{equation*} |
\begin{equation*} |
| 1095 |
c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta |
c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta |
| 1096 |
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt} |
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt} |
| 1097 |
\end{equation*} |
\end{equation*} |
| 1098 |
and on substituting into (\ref{eq-p-heat-interim}) gives: |
and on substituting into (\ref{eq-p-heat-interim}) gives: |
| 1099 |
\begin{equation} |
\begin{equation} |
| 1102 |
\end{equation} |
\end{equation} |
| 1103 |
which is in conservative form. |
which is in conservative form. |
| 1104 |
|
|
| 1105 |
For convenience in the model we prefer to step forward (\ref% |
For convenience in the model we prefer to step forward (\ref |
| 1106 |
{eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}). |
{eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}). |
| 1107 |
|
|
| 1108 |
\subsubsection{Boundary conditions} |
\subsubsection{Boundary conditions} |
| 1146 |
|
|
| 1147 |
The final form of the HPE's in p coordinates is then: |
The final form of the HPE's in p coordinates is then: |
| 1148 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1149 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1150 |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\ |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\ |
| 1151 |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ |
| 1152 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
| 1153 |
\partial p} &=&0 \\ |
\partial p} &=&0 \\ |
| 1154 |
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ |
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ |
| 1155 |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} |
| 1166 |
HPE's for the ocean written in z-coordinates are obtained. The |
HPE's for the ocean written in z-coordinates are obtained. The |
| 1167 |
non-Boussinesq equations for oceanic motion are: |
non-Boussinesq equations for oceanic motion are: |
| 1168 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1169 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1170 |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\ |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\ |
| 1171 |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
| 1172 |
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
| 1173 |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}% |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}} |
| 1174 |
_{h}+\frac{\partial w}{\partial z} &=&0 \\ |
_{h}+\frac{\partial w}{\partial z} &=&0 \\ |
| 1175 |
\rho &=&\rho (\theta ,S,p) \\ |
\rho &=&\rho (\theta ,S,p) \\ |
| 1176 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ |
| 1177 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq} |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq} |
| 1178 |
\end{eqnarray}% |
\end{eqnarray} |
| 1179 |
These equations permit acoustics modes, inertia-gravity waves, |
These equations permit acoustics modes, inertia-gravity waves, |
| 1180 |
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline |
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline |
| 1181 |
mode. As written, they cannot be integrated forward consistently - if we |
mode. As written, they cannot be integrated forward consistently - if we |
| 1182 |
step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be |
step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be |
| 1183 |
consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref% |
consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref |
| 1184 |
{eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is |
{eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is |
| 1185 |
therefore necessary to manipulate the system as follows. Differentiating the |
therefore necessary to manipulate the system as follows. Differentiating the |
| 1186 |
EOS (equation of state) gives: |
EOS (equation of state) gives: |
| 1193 |
\end{equation} |
\end{equation} |
| 1194 |
|
|
| 1195 |
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the |
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the |
| 1196 |
reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref% |
reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref |
| 1197 |
{eq-zns-cont} gives: |
{eq-zns-cont} gives: |
| 1198 |
\begin{equation} |
\begin{equation} |
| 1199 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{% |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
| 1200 |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |
| 1201 |
\end{equation} |
\end{equation} |
| 1202 |
where we have used an approximation sign to indicate that we have assumed |
where we have used an approximation sign to indicate that we have assumed |
| 1204 |
Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that |
Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that |
| 1205 |
can be explicitly integrated forward: |
can be explicitly integrated forward: |
| 1206 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1207 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1208 |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 1209 |
\label{eq-cns-hmom} \\ |
\label{eq-cns-hmom} \\ |
| 1210 |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
| 1211 |
&=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\ |
&=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\ |
| 1212 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{% |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
| 1213 |
v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\ |
v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\ |
| 1214 |
\rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\ |
\rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\ |
| 1215 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\ |
| 1223 |
`Boussinesq assumption'. The only term that then retains the full variation |
`Boussinesq assumption'. The only term that then retains the full variation |
| 1224 |
in $\rho $ is the gravitational acceleration: |
in $\rho $ is the gravitational acceleration: |
| 1225 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1226 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1227 |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 1228 |
\label{eq-zcb-hmom} \\ |
\label{eq-zcb-hmom} \\ |
| 1229 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}% |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}} |
| 1230 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 1231 |
\label{eq-zcb-hydro} \\ |
\label{eq-zcb-hydro} \\ |
| 1232 |
\frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{% |
\frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{ |
| 1233 |
\mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\ |
\mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\ |
| 1234 |
\rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\ |
\rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\ |
| 1235 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\ |
| 1236 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt} |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt} |
| 1237 |
\end{eqnarray} |
\end{eqnarray} |
| 1238 |
These equations still retain acoustic modes. But, because the |
These equations still retain acoustic modes. But, because the |
| 1239 |
``compressible'' terms are linearized, the pressure equation \ref% |
``compressible'' terms are linearized, the pressure equation \ref |
| 1240 |
{eq-zcb-cont} can be integrated implicitly with ease (the time-dependent |
{eq-zcb-cont} can be integrated implicitly with ease (the time-dependent |
| 1241 |
term appears as a Helmholtz term in the non-hydrostatic pressure equation). |
term appears as a Helmholtz term in the non-hydrostatic pressure equation). |
| 1242 |
These are the \emph{truly} compressible Boussinesq equations. Note that the |
These are the \emph{truly} compressible Boussinesq equations. Note that the |
| 1243 |
EOS must have the same pressure dependency as the linearized pressure term, |
EOS must have the same pressure dependency as the linearized pressure term, |
| 1244 |
ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{% |
ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{ |
| 1245 |
c_{s}^{2}}$, for consistency. |
c_{s}^{2}}$, for consistency. |
| 1246 |
|
|
| 1247 |
\subsubsection{`Anelastic' z-coordinate equations} |
\subsubsection{`Anelastic' z-coordinate equations} |
| 1248 |
|
|
| 1249 |
The anelastic approximation filters the acoustic mode by removing the |
The anelastic approximation filters the acoustic mode by removing the |
| 1250 |
time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}% |
time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont} |
| 1251 |
). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}% |
). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o} |
| 1252 |
\frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between |
\frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between |
| 1253 |
continuity and EOS. A better solution is to change the dependency on |
continuity and EOS. A better solution is to change the dependency on |
| 1254 |
pressure in the EOS by splitting the pressure into a reference function of |
pressure in the EOS by splitting the pressure into a reference function of |
| 1255 |
height and a perturbation: |
height and a perturbation: |
| 1256 |
\begin{equation*} |
\begin{equation*} |
| 1257 |
\rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime }) |
\rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime }) |
| 1258 |
\end{equation*} |
\end{equation*} |
| 1259 |
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from |
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from |
| 1260 |
differentiating the EOS, the continuity equation then becomes: |
differentiating the EOS, the continuity equation then becomes: |
| 1261 |
\begin{equation*} |
\begin{equation*} |
| 1262 |
\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{% |
\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{ |
| 1263 |
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+% |
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+ |
| 1264 |
\frac{\partial w}{\partial z}=0 |
\frac{\partial w}{\partial z}=0 |
| 1265 |
\end{equation*} |
\end{equation*} |
| 1266 |
If the time- and space-scales of the motions of interest are longer than |
If the time- and space-scales of the motions of interest are longer than |
| 1267 |
those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},% |
those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt}, |
| 1268 |
\mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and |
\mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and |
| 1269 |
$\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{% |
$\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{ |
| 1270 |
Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta |
Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta |
| 1271 |
,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon |
,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon |
| 1272 |
_{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation |
_{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation |
| 1273 |
and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the |
and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the |
| 1274 |
anelastic continuity equation: |
anelastic continuity equation: |
| 1275 |
\begin{equation} |
\begin{equation} |
| 1276 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-% |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}- |
| 1277 |
\frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1} |
\frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1} |
| 1278 |
\end{equation} |
\end{equation} |
| 1279 |
A slightly different route leads to the quasi-Boussinesq continuity equation |
A slightly different route leads to the quasi-Boussinesq continuity equation |
| 1280 |
where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+% |
where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+ |
| 1281 |
\mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }% |
\mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla } |
| 1282 |
_{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding: |
_{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding: |
| 1283 |
\begin{equation} |
\begin{equation} |
| 1284 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{% |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{ |
| 1285 |
\partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2} |
\partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2} |
| 1286 |
\end{equation} |
\end{equation} |
| 1287 |
Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same |
Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same |
| 1290 |
\frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}} |
\frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}} |
| 1291 |
\end{equation} |
\end{equation} |
| 1292 |
Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$ |
Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$ |
| 1293 |
and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{% |
and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{ |
| 1294 |
g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The |
g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The |
| 1295 |
full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are |
full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are |
| 1296 |
then: |
then: |
| 1297 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1298 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1299 |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 1300 |
\label{eq-zab-hmom} \\ |
\label{eq-zab-hmom} \\ |
| 1301 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}% |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}} |
| 1302 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 1303 |
\label{eq-zab-hydro} \\ |
\label{eq-zab-hydro} \\ |
| 1304 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{% |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{ |
| 1305 |
\partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\ |
\partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\ |
| 1306 |
\rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\ |
\rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\ |
| 1307 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\ |
| 1314 |
technically, to also remove the dependence of $\rho $ on $p_{o}$. This would |
technically, to also remove the dependence of $\rho $ on $p_{o}$. This would |
| 1315 |
yield the ``truly'' incompressible Boussinesq equations: |
yield the ``truly'' incompressible Boussinesq equations: |
| 1316 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1317 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1318 |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 1319 |
\label{eq-ztb-hmom} \\ |
\label{eq-ztb-hmom} \\ |
| 1320 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}% |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}} |
| 1321 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 1322 |
\label{eq-ztb-hydro} \\ |
\label{eq-ztb-hydro} \\ |
| 1323 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} |
| 1336 |
density thus: |
density thus: |
| 1337 |
\begin{equation*} |
\begin{equation*} |
| 1338 |
\rho =\rho _{o}+\rho ^{\prime } |
\rho =\rho _{o}+\rho ^{\prime } |
| 1339 |
\end{equation*}% |
\end{equation*} |
| 1340 |
We then assert that variations with depth of $\rho _{o}$ are unimportant |
We then assert that variations with depth of $\rho _{o}$ are unimportant |
| 1341 |
while the compressible effects in $\rho ^{\prime }$ are: |
while the compressible effects in $\rho ^{\prime }$ are: |
| 1342 |
\begin{equation*} |
\begin{equation*} |
| 1343 |
\rho _{o}=\rho _{c} |
\rho _{o}=\rho _{c} |
| 1344 |
\end{equation*}% |
\end{equation*} |
| 1345 |
\begin{equation*} |
\begin{equation*} |
| 1346 |
\rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o} |
\rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o} |
| 1347 |
\end{equation*}% |
\end{equation*} |
| 1348 |
This then yields what we can call the semi-compressible Boussinesq |
This then yields what we can call the semi-compressible Boussinesq |
| 1349 |
equations: |
equations: |
| 1350 |
\begin{eqnarray} |
\begin{eqnarray} |
| 1351 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1352 |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{% |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{ |
| 1353 |
\mathcal{F}}} \label{eq:ocean-mom} \\ |
\mathcal{F}}} \label{eq:ocean-mom} \\ |
| 1354 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho |
| 1355 |
_{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
_{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 1360 |
\\ |
\\ |
| 1361 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\ |
| 1362 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt} |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt} |
| 1363 |
\end{eqnarray}% |
\end{eqnarray} |
| 1364 |
Note that the hydrostatic pressure of the resting fluid, including that |
Note that the hydrostatic pressure of the resting fluid, including that |
| 1365 |
associated with $\rho _{c}$, is subtracted out since it has no effect on the |
associated with $\rho _{c}$, is subtracted out since it has no effect on the |
| 1366 |
dynamics. |
dynamics. |
| 1384 |
and vertical direction respectively, are given by (see Fig.2) : |
and vertical direction respectively, are given by (see Fig.2) : |
| 1385 |
|
|
| 1386 |
\begin{equation*} |
\begin{equation*} |
| 1387 |
u=r\cos \phi \frac{D\lambda }{Dt} |
u=r\cos \varphi \frac{D\lambda }{Dt} |
| 1388 |
\end{equation*} |
\end{equation*} |
| 1389 |
|
|
| 1390 |
\begin{equation*} |
\begin{equation*} |
| 1391 |
v=r\frac{D\phi }{Dt}\qquad |
v=r\frac{D\varphi }{Dt}\qquad |
| 1392 |
\end{equation*} |
\end{equation*} |
| 1393 |
$\qquad \qquad \qquad \qquad $ |
$\qquad \qquad \qquad \qquad $ |
| 1394 |
|
|
| 1395 |
\begin{equation*} |
\begin{equation*} |
| 1396 |
\dot{r}=\frac{Dr}{Dt} |
\dot{r}=\frac{Dr}{Dt} |
| 1397 |
\end{equation*} |
\end{equation*} |
| 1398 |
|
|
| 1399 |
Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial |
Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial |
| 1400 |
distance of the particle from the center of the earth, $\Omega $ is the |
distance of the particle from the center of the earth, $\Omega $ is the |
| 1401 |
angular speed of rotation of the Earth and $D/Dt$ is the total derivative. |
angular speed of rotation of the Earth and $D/Dt$ is the total derivative. |
| 1402 |
|
|
| 1404 |
spherical coordinates: |
spherical coordinates: |
| 1405 |
|
|
| 1406 |
\begin{equation*} |
\begin{equation*} |
| 1407 |
\nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }% |
\nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda } |
| 1408 |
,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}% |
,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r} |
| 1409 |
\right) |
\right) |
| 1410 |
\end{equation*} |
\end{equation*} |
| 1411 |
|
|
| 1412 |
\begin{equation*} |
\begin{equation*} |
| 1413 |
\nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial |
\nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial |
| 1414 |
\lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\} |
\lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\} |
| 1415 |
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} |
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} |
| 1416 |
\end{equation*} |
\end{equation*} |
| 1417 |
|
|
| 1418 |
%%%% \end{document} |
%tci%\end{document} |