| 1 |
cnh |
1.6 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.5 2001/10/15 19:34:28 adcroft Exp $ |
| 2 |
cnh |
1.2 |
% $Name: $ |
| 3 |
cnh |
1.1 |
|
| 4 |
adcroft |
1.4 |
%tci%\documentclass[12pt]{book} |
| 5 |
|
|
%tci%\usepackage{amsmath} |
| 6 |
|
|
%tci%\usepackage{html} |
| 7 |
|
|
%tci%\usepackage{epsfig} |
| 8 |
|
|
%tci%\usepackage{graphics,subfigure} |
| 9 |
|
|
%tci%\usepackage{array} |
| 10 |
|
|
%tci%\usepackage{multirow} |
| 11 |
|
|
%tci%\usepackage{fancyhdr} |
| 12 |
|
|
%tci%\usepackage{psfrag} |
| 13 |
|
|
|
| 14 |
|
|
%tci%%TCIDATA{OutputFilter=Latex.dll} |
| 15 |
|
|
%tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22} |
| 16 |
|
|
%tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} |
| 17 |
|
|
%tci%%TCIDATA{Language=American English} |
| 18 |
|
|
|
| 19 |
|
|
%tci%\fancyhead{} |
| 20 |
|
|
%tci%\fancyhead[LO]{\slshape \rightmark} |
| 21 |
|
|
%tci%\fancyhead[RE]{\slshape \leftmark} |
| 22 |
|
|
%tci%\fancyhead[RO,LE]{\thepage} |
| 23 |
|
|
%tci%\fancyfoot[CO,CE]{\today} |
| 24 |
|
|
%tci%\fancyfoot[RO,LE]{ } |
| 25 |
|
|
%tci%\renewcommand{\headrulewidth}{0.4pt} |
| 26 |
|
|
%tci%\renewcommand{\footrulewidth}{0.4pt} |
| 27 |
|
|
%tci%\setcounter{secnumdepth}{3} |
| 28 |
|
|
%tci%\input{tcilatex} |
| 29 |
|
|
|
| 30 |
|
|
%tci%\begin{document} |
| 31 |
|
|
|
| 32 |
|
|
%tci%\tableofcontents |
| 33 |
|
|
|
| 34 |
|
|
|
| 35 |
cnh |
1.1 |
% Section: Overview |
| 36 |
|
|
|
| 37 |
cnh |
1.6 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.5 2001/10/15 19:34:28 adcroft Exp $ |
| 38 |
cnh |
1.1 |
% $Name: $ |
| 39 |
|
|
|
| 40 |
|
|
\section{Introduction} |
| 41 |
|
|
|
| 42 |
|
|
This documentation provides the reader with the information necessary to |
| 43 |
|
|
carry out numerical experiments using MITgcm. It gives a comprehensive |
| 44 |
|
|
description of the continuous equations on which the model is based, the |
| 45 |
|
|
numerical algorithms the model employs and a description of the associated |
| 46 |
|
|
program code. Along with the hydrodynamical kernel, physical and |
| 47 |
|
|
biogeochemical parameterizations of key atmospheric and oceanic processes |
| 48 |
|
|
are available. A number of examples illustrating the use of the model in |
| 49 |
|
|
both process and general circulation studies of the atmosphere and ocean are |
| 50 |
|
|
also presented. |
| 51 |
|
|
|
| 52 |
|
|
MITgcm has a number of novel aspects: |
| 53 |
|
|
|
| 54 |
|
|
\begin{itemize} |
| 55 |
|
|
\item it can be used to study both atmospheric and oceanic phenomena; one |
| 56 |
|
|
hydrodynamical kernel is used to drive forward both atmospheric and oceanic |
| 57 |
adcroft |
1.4 |
models - see fig |
| 58 |
cnh |
1.1 |
\marginpar{ |
| 59 |
|
|
Fig.1 One model}\ref{fig:onemodel} |
| 60 |
|
|
|
| 61 |
cnh |
1.3 |
%% CNHbegin |
| 62 |
|
|
\input{part1/one_model_figure} |
| 63 |
|
|
%% CNHend |
| 64 |
|
|
|
| 65 |
cnh |
1.1 |
\item it has a non-hydrostatic capability and so can be used to study both |
| 66 |
adcroft |
1.4 |
small-scale and large scale processes - see fig |
| 67 |
cnh |
1.1 |
\marginpar{ |
| 68 |
|
|
Fig.2 All scales}\ref{fig:all-scales} |
| 69 |
|
|
|
| 70 |
cnh |
1.3 |
%% CNHbegin |
| 71 |
|
|
\input{part1/all_scales_figure} |
| 72 |
|
|
%% CNHend |
| 73 |
|
|
|
| 74 |
cnh |
1.1 |
\item finite volume techniques are employed yielding an intuitive |
| 75 |
|
|
discretization and support for the treatment of irregular geometries using |
| 76 |
adcroft |
1.4 |
orthogonal curvilinear grids and shaved cells - see fig |
| 77 |
cnh |
1.1 |
\marginpar{ |
| 78 |
cnh |
1.3 |
Fig.3 Finite volumes}\ref{fig:finite-volumes} |
| 79 |
|
|
|
| 80 |
|
|
%% CNHbegin |
| 81 |
|
|
\input{part1/fvol_figure} |
| 82 |
|
|
%% CNHend |
| 83 |
cnh |
1.1 |
|
| 84 |
|
|
\item tangent linear and adjoint counterparts are automatically maintained |
| 85 |
|
|
along with the forward model, permitting sensitivity and optimization |
| 86 |
|
|
studies. |
| 87 |
|
|
|
| 88 |
|
|
\item the model is developed to perform efficiently on a wide variety of |
| 89 |
|
|
computational platforms. |
| 90 |
|
|
\end{itemize} |
| 91 |
|
|
|
| 92 |
|
|
Key publications reporting on and charting the development of the model are |
| 93 |
|
|
listed in an Appendix. |
| 94 |
|
|
|
| 95 |
|
|
We begin by briefly showing some of the results of the model in action to |
| 96 |
|
|
give a feel for the wide range of problems that can be addressed using it. |
| 97 |
|
|
|
| 98 |
cnh |
1.6 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.5 2001/10/15 19:34:28 adcroft Exp $ |
| 99 |
cnh |
1.1 |
% $Name: $ |
| 100 |
|
|
|
| 101 |
|
|
\section{Illustrations of the model in action} |
| 102 |
|
|
|
| 103 |
|
|
The MITgcm has been designed and used to model a wide range of phenomena, |
| 104 |
|
|
from convection on the scale of meters in the ocean to the global pattern of |
| 105 |
|
|
atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the |
| 106 |
|
|
kinds of problems the model has been used to study, we briefly describe some |
| 107 |
|
|
of them here. A more detailed description of the underlying formulation, |
| 108 |
|
|
numerical algorithm and implementation that lie behind these calculations is |
| 109 |
cnh |
1.2 |
given later. Indeed many of the illustrative examples shown below can be |
| 110 |
|
|
easily reproduced: simply download the model (the minimum you need is a PC |
| 111 |
|
|
running linux, together with a FORTRAN\ 77 compiler) and follow the examples |
| 112 |
|
|
described in detail in the documentation. |
| 113 |
cnh |
1.1 |
|
| 114 |
|
|
\subsection{Global atmosphere: `Held-Suarez' benchmark} |
| 115 |
|
|
|
| 116 |
cnh |
1.2 |
A novel feature of MITgcm is its ability to simulate both atmospheric and |
| 117 |
|
|
oceanographic flows at both small and large scales. |
| 118 |
|
|
|
| 119 |
cnh |
1.3 |
Fig.E1a.\ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$ |
| 120 |
cnh |
1.2 |
temperature field obtained using the atmospheric isomorph of MITgcm run at |
| 121 |
|
|
2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole |
| 122 |
|
|
(blue) and warm air along an equatorial band (red). Fully developed |
| 123 |
|
|
baroclinic eddies spawned in the northern hemisphere storm track are |
| 124 |
|
|
evident. There are no mountains or land-sea contrast in this calculation, |
| 125 |
|
|
but you can easily put them in. The model is driven by relaxation to a |
| 126 |
|
|
radiative-convective equilibrium profile, following the description set out |
| 127 |
|
|
in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores - |
| 128 |
|
|
there are no mountains or land-sea contrast. |
| 129 |
|
|
|
| 130 |
cnh |
1.3 |
%% CNHbegin |
| 131 |
|
|
\input{part1/cubic_eddies_figure} |
| 132 |
|
|
%% CNHend |
| 133 |
|
|
|
| 134 |
cnh |
1.2 |
As described in Adcroft (2001), a `cubed sphere' is used to discretize the |
| 135 |
|
|
globe permitting a uniform gridding and obviated the need to fourier filter. |
| 136 |
|
|
The `vector-invariant' form of MITgcm supports any orthogonal curvilinear |
| 137 |
|
|
grid, of which the cubed sphere is just one of many choices. |
| 138 |
cnh |
1.1 |
|
| 139 |
|
|
Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal |
| 140 |
cnh |
1.2 |
wind and meridional overturning streamfunction from a 20-level version of |
| 141 |
|
|
the model. It compares favorable with more conventional spatial |
| 142 |
|
|
discretization approaches. |
| 143 |
cnh |
1.1 |
|
| 144 |
|
|
A regular spherical lat-lon grid can also be used. |
| 145 |
|
|
|
| 146 |
cnh |
1.3 |
%% CNHbegin |
| 147 |
|
|
\input{part1/hs_zave_u_figure} |
| 148 |
|
|
%% CNHend |
| 149 |
|
|
|
| 150 |
cnh |
1.2 |
\subsection{Ocean gyres} |
| 151 |
cnh |
1.1 |
|
| 152 |
cnh |
1.2 |
Baroclinic instability is a ubiquitous process in the ocean, as well as the |
| 153 |
|
|
atmosphere. Ocean eddies play an important role in modifying the |
| 154 |
|
|
hydrographic structure and current systems of the oceans. Coarse resolution |
| 155 |
|
|
models of the oceans cannot resolve the eddy field and yield rather broad, |
| 156 |
|
|
diffusive patterns of ocean currents. But if the resolution of our models is |
| 157 |
|
|
increased until the baroclinic instability process is resolved, numerical |
| 158 |
|
|
solutions of a different and much more realistic kind, can be obtained. |
| 159 |
|
|
|
| 160 |
|
|
Fig. ?.? shows the surface temperature and velocity field obtained from |
| 161 |
|
|
MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$ |
| 162 |
|
|
grid in which the pole has been rotated by 90$^{\circ }$ on to the equator |
| 163 |
|
|
(to avoid the converging of meridian in northern latitudes). 21 vertical |
| 164 |
|
|
levels are used in the vertical with a `lopped cell' representation of |
| 165 |
|
|
topography. The development and propagation of anomalously warm and cold |
| 166 |
|
|
eddies can be clearly been seen in the Gulf Stream region. The transport of |
| 167 |
|
|
warm water northward by the mean flow of the Gulf Stream is also clearly |
| 168 |
|
|
visible. |
| 169 |
cnh |
1.1 |
|
| 170 |
cnh |
1.3 |
%% CNHbegin |
| 171 |
|
|
\input{part1/ocean_gyres_figure} |
| 172 |
|
|
%% CNHend |
| 173 |
|
|
|
| 174 |
|
|
|
| 175 |
cnh |
1.1 |
\subsection{Global ocean circulation} |
| 176 |
|
|
|
| 177 |
|
|
Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$ |
| 178 |
cnh |
1.2 |
global ocean model run with 15 vertical levels. Lopped cells are used to |
| 179 |
|
|
represent topography on a regular $lat-lon$ grid extending from 70$^{\circ |
| 180 |
|
|
}N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with |
| 181 |
|
|
mixed boundary conditions on temperature and salinity at the surface. The |
| 182 |
|
|
transfer properties of ocean eddies, convection and mixing is parameterized |
| 183 |
|
|
in this model. |
| 184 |
|
|
|
| 185 |
|
|
Fig.E2b shows the meridional overturning circulation of the global ocean in |
| 186 |
|
|
Sverdrups. |
| 187 |
|
|
|
| 188 |
cnh |
1.3 |
%%CNHbegin |
| 189 |
|
|
\input{part1/global_circ_figure} |
| 190 |
|
|
%%CNHend |
| 191 |
|
|
|
| 192 |
cnh |
1.2 |
\subsection{Convection and mixing over topography} |
| 193 |
|
|
|
| 194 |
|
|
Dense plumes generated by localized cooling on the continental shelf of the |
| 195 |
|
|
ocean may be influenced by rotation when the deformation radius is smaller |
| 196 |
|
|
than the width of the cooling region. Rather than gravity plumes, the |
| 197 |
|
|
mechanism for moving dense fluid down the shelf is then through geostrophic |
| 198 |
|
|
eddies. The simulation shown in the figure (blue is cold dense fluid, red is |
| 199 |
|
|
warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to |
| 200 |
|
|
trigger convection by surface cooling. The cold, dense water falls down the |
| 201 |
|
|
slope but is deflected along the slope by rotation. It is found that |
| 202 |
|
|
entrainment in the vertical plane is reduced when rotational control is |
| 203 |
|
|
strong, and replaced by lateral entrainment due to the baroclinic |
| 204 |
|
|
instability of the along-slope current. |
| 205 |
cnh |
1.1 |
|
| 206 |
cnh |
1.3 |
%%CNHbegin |
| 207 |
|
|
\input{part1/convect_and_topo} |
| 208 |
|
|
%%CNHend |
| 209 |
|
|
|
| 210 |
cnh |
1.1 |
\subsection{Boundary forced internal waves} |
| 211 |
|
|
|
| 212 |
cnh |
1.2 |
The unique ability of MITgcm to treat non-hydrostatic dynamics in the |
| 213 |
|
|
presence of complex geometry makes it an ideal tool to study internal wave |
| 214 |
|
|
dynamics and mixing in oceanic canyons and ridges driven by large amplitude |
| 215 |
|
|
barotropic tidal currents imposed through open boundary conditions. |
| 216 |
|
|
|
| 217 |
|
|
Fig. ?.? shows the influence of cross-slope topographic variations on |
| 218 |
|
|
internal wave breaking - the cross-slope velocity is in color, the density |
| 219 |
|
|
contoured. The internal waves are excited by application of open boundary |
| 220 |
|
|
conditions on the left.\ They propagate to the sloping boundary (represented |
| 221 |
|
|
using MITgcm's finite volume spatial discretization) where they break under |
| 222 |
|
|
nonhydrostatic dynamics. |
| 223 |
|
|
|
| 224 |
cnh |
1.3 |
%%CNHbegin |
| 225 |
|
|
\input{part1/boundary_forced_waves} |
| 226 |
|
|
%%CNHend |
| 227 |
|
|
|
| 228 |
cnh |
1.2 |
\subsection{Parameter sensitivity using the adjoint of MITgcm} |
| 229 |
|
|
|
| 230 |
|
|
Forward and tangent linear counterparts of MITgcm are supported using an |
| 231 |
|
|
`automatic adjoint compiler'. These can be used in parameter sensitivity and |
| 232 |
|
|
data assimilation studies. |
| 233 |
|
|
|
| 234 |
|
|
As one example of application of the MITgcm adjoint, Fig.E4 maps the |
| 235 |
|
|
gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude |
| 236 |
adcroft |
1.4 |
of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $ |
| 237 |
cnh |
1.2 |
\mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is |
| 238 |
|
|
sensitive to heat fluxes over the Labrador Sea, one of the important sources |
| 239 |
|
|
of deep water for the thermohaline circulations. This calculation also |
| 240 |
|
|
yields sensitivities to all other model parameters. |
| 241 |
|
|
|
| 242 |
cnh |
1.3 |
%%CNHbegin |
| 243 |
|
|
\input{part1/adj_hf_ocean_figure} |
| 244 |
|
|
%%CNHend |
| 245 |
|
|
|
| 246 |
cnh |
1.2 |
\subsection{Global state estimation of the ocean} |
| 247 |
|
|
|
| 248 |
|
|
An important application of MITgcm is in state estimation of the global |
| 249 |
|
|
ocean circulation. An appropriately defined `cost function', which measures |
| 250 |
|
|
the departure of the model from observations (both remotely sensed and |
| 251 |
|
|
insitu) over an interval of time, is minimized by adjusting `control |
| 252 |
|
|
parameters' such as air-sea fluxes, the wind field, the initial conditions |
| 253 |
|
|
etc. Figure ?.? shows an estimate of the time-mean surface elevation of the |
| 254 |
|
|
ocean obtained by bringing the model in to consistency with altimetric and |
| 255 |
|
|
in-situ observations over the period 1992-1997. |
| 256 |
|
|
|
| 257 |
cnh |
1.3 |
%% CNHbegin |
| 258 |
|
|
\input{part1/globes_figure} |
| 259 |
|
|
%% CNHend |
| 260 |
|
|
|
| 261 |
cnh |
1.2 |
\subsection{Ocean biogeochemical cycles} |
| 262 |
|
|
|
| 263 |
|
|
MITgcm is being used to study global biogeochemical cycles in the ocean. For |
| 264 |
|
|
example one can study the effects of interannual changes in meteorological |
| 265 |
|
|
forcing and upper ocean circulation on the fluxes of carbon dioxide and |
| 266 |
|
|
oxygen between the ocean and atmosphere. The figure shows the annual air-sea |
| 267 |
|
|
flux of oxygen and its relation to density outcrops in the southern oceans |
| 268 |
|
|
from a single year of a global, interannually varying simulation. |
| 269 |
|
|
|
| 270 |
cnh |
1.3 |
%%CNHbegin |
| 271 |
|
|
\input{part1/biogeo_figure} |
| 272 |
|
|
%%CNHend |
| 273 |
cnh |
1.2 |
|
| 274 |
|
|
\subsection{Simulations of laboratory experiments} |
| 275 |
|
|
|
| 276 |
|
|
Figure ?.? shows MITgcm being used to simulate a laboratory experiment |
| 277 |
|
|
enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An |
| 278 |
|
|
initially homogeneous tank of water ($1m$ in diameter) is driven from its |
| 279 |
|
|
free surface by a rotating heated disk. The combined action of mechanical |
| 280 |
|
|
and thermal forcing creates a lens of fluid which becomes baroclinically |
| 281 |
|
|
unstable. The stratification and depth of penetration of the lens is |
| 282 |
|
|
arrested by its instability in a process analogous to that whic sets the |
| 283 |
|
|
stratification of the ACC. |
| 284 |
cnh |
1.1 |
|
| 285 |
cnh |
1.3 |
%%CNHbegin |
| 286 |
|
|
\input{part1/lab_figure} |
| 287 |
|
|
%%CNHend |
| 288 |
|
|
|
| 289 |
cnh |
1.6 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.5 2001/10/15 19:34:28 adcroft Exp $ |
| 290 |
cnh |
1.1 |
% $Name: $ |
| 291 |
|
|
|
| 292 |
|
|
\section{Continuous equations in `r' coordinates} |
| 293 |
|
|
|
| 294 |
|
|
To render atmosphere and ocean models from one dynamical core we exploit |
| 295 |
|
|
`isomorphisms' between equation sets that govern the evolution of the |
| 296 |
adcroft |
1.4 |
respective fluids - see fig.4 |
| 297 |
cnh |
1.1 |
\marginpar{ |
| 298 |
|
|
Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down |
| 299 |
|
|
and encoded. The model variables have different interpretations depending on |
| 300 |
|
|
whether the atmosphere or ocean is being studied. Thus, for example, the |
| 301 |
|
|
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
| 302 |
|
|
modeling the atmosphere and height, $z$, if we are modeling the ocean. |
| 303 |
|
|
|
| 304 |
cnh |
1.3 |
%%CNHbegin |
| 305 |
|
|
\input{part1/zandpcoord_figure.tex} |
| 306 |
|
|
%%CNHend |
| 307 |
|
|
|
| 308 |
cnh |
1.1 |
The state of the fluid at any time is characterized by the distribution of |
| 309 |
|
|
velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a |
| 310 |
|
|
`geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may |
| 311 |
|
|
depend on $\theta $, $S$, and $p$. The equations that govern the evolution |
| 312 |
|
|
of these fields, obtained by applying the laws of classical mechanics and |
| 313 |
|
|
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of |
| 314 |
adcroft |
1.4 |
a generic vertical coordinate, $r$, see fig.5 |
| 315 |
cnh |
1.1 |
\marginpar{ |
| 316 |
|
|
Fig.5 The vertical coordinate of model}: |
| 317 |
|
|
|
| 318 |
cnh |
1.3 |
%%CNHbegin |
| 319 |
|
|
\input{part1/vertcoord_figure.tex} |
| 320 |
|
|
%%CNHend |
| 321 |
|
|
|
| 322 |
cnh |
1.1 |
\begin{equation*} |
| 323 |
adcroft |
1.4 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
| 324 |
|
|
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} |
| 325 |
cnh |
1.1 |
\text{ horizontal mtm} |
| 326 |
|
|
\end{equation*} |
| 327 |
|
|
|
| 328 |
|
|
\begin{equation*} |
| 329 |
adcroft |
1.4 |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
| 330 |
cnh |
1.1 |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ |
| 331 |
|
|
vertical mtm} |
| 332 |
|
|
\end{equation*} |
| 333 |
|
|
|
| 334 |
|
|
\begin{equation} |
| 335 |
adcroft |
1.4 |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ |
| 336 |
cnh |
1.1 |
\partial r}=0\text{ continuity} \label{eq:continuous} |
| 337 |
|
|
\end{equation} |
| 338 |
|
|
|
| 339 |
|
|
\begin{equation*} |
| 340 |
cnh |
1.2 |
b=b(\theta ,S,r)\text{ equation of state} |
| 341 |
cnh |
1.1 |
\end{equation*} |
| 342 |
|
|
|
| 343 |
|
|
\begin{equation*} |
| 344 |
cnh |
1.2 |
\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} |
| 345 |
cnh |
1.1 |
\end{equation*} |
| 346 |
|
|
|
| 347 |
|
|
\begin{equation*} |
| 348 |
cnh |
1.2 |
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} |
| 349 |
cnh |
1.1 |
\end{equation*} |
| 350 |
|
|
|
| 351 |
|
|
Here: |
| 352 |
|
|
|
| 353 |
|
|
\begin{equation*} |
| 354 |
cnh |
1.2 |
r\text{ is the vertical coordinate} |
| 355 |
cnh |
1.1 |
\end{equation*} |
| 356 |
|
|
|
| 357 |
|
|
\begin{equation*} |
| 358 |
|
|
\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ |
| 359 |
cnh |
1.2 |
is the total derivative} |
| 360 |
cnh |
1.1 |
\end{equation*} |
| 361 |
|
|
|
| 362 |
|
|
\begin{equation*} |
| 363 |
adcroft |
1.4 |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r} |
| 364 |
cnh |
1.2 |
\text{ is the `grad' operator} |
| 365 |
cnh |
1.1 |
\end{equation*} |
| 366 |
adcroft |
1.4 |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k} |
| 367 |
cnh |
1.1 |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
| 368 |
|
|
is a unit vector in the vertical |
| 369 |
|
|
|
| 370 |
|
|
\begin{equation*} |
| 371 |
cnh |
1.2 |
t\text{ is time} |
| 372 |
cnh |
1.1 |
\end{equation*} |
| 373 |
|
|
|
| 374 |
|
|
\begin{equation*} |
| 375 |
|
|
\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the |
| 376 |
cnh |
1.2 |
velocity} |
| 377 |
cnh |
1.1 |
\end{equation*} |
| 378 |
|
|
|
| 379 |
|
|
\begin{equation*} |
| 380 |
cnh |
1.2 |
\phi \text{ is the `pressure'/`geopotential'} |
| 381 |
cnh |
1.1 |
\end{equation*} |
| 382 |
|
|
|
| 383 |
|
|
\begin{equation*} |
| 384 |
cnh |
1.2 |
\vec{\Omega}\text{ is the Earth's rotation} |
| 385 |
cnh |
1.1 |
\end{equation*} |
| 386 |
|
|
|
| 387 |
|
|
\begin{equation*} |
| 388 |
cnh |
1.2 |
b\text{ is the `buoyancy'} |
| 389 |
cnh |
1.1 |
\end{equation*} |
| 390 |
|
|
|
| 391 |
|
|
\begin{equation*} |
| 392 |
cnh |
1.2 |
\theta \text{ is potential temperature} |
| 393 |
cnh |
1.1 |
\end{equation*} |
| 394 |
|
|
|
| 395 |
|
|
\begin{equation*} |
| 396 |
cnh |
1.2 |
S\text{ is specific humidity in the atmosphere; salinity in the ocean} |
| 397 |
cnh |
1.1 |
\end{equation*} |
| 398 |
|
|
|
| 399 |
|
|
\begin{equation*} |
| 400 |
adcroft |
1.4 |
\mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{ |
| 401 |
cnh |
1.1 |
\mathbf{v}} |
| 402 |
|
|
\end{equation*} |
| 403 |
|
|
|
| 404 |
|
|
\begin{equation*} |
| 405 |
cnh |
1.2 |
\mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta |
| 406 |
cnh |
1.1 |
\end{equation*} |
| 407 |
|
|
|
| 408 |
|
|
\begin{equation*} |
| 409 |
|
|
\mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S |
| 410 |
|
|
\end{equation*} |
| 411 |
|
|
|
| 412 |
|
|
The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by |
| 413 |
|
|
extensive `physics' packages for atmosphere and ocean described in Chapter 6. |
| 414 |
|
|
|
| 415 |
|
|
\subsection{Kinematic Boundary conditions} |
| 416 |
|
|
|
| 417 |
|
|
\subsubsection{vertical} |
| 418 |
|
|
|
| 419 |
|
|
at fixed and moving $r$ surfaces we set (see fig.5): |
| 420 |
|
|
|
| 421 |
|
|
\begin{equation} |
| 422 |
|
|
\dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} |
| 423 |
|
|
\label{eq:fixedbc} |
| 424 |
|
|
\end{equation} |
| 425 |
|
|
|
| 426 |
|
|
\begin{equation} |
| 427 |
|
|
\dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \ |
| 428 |
|
|
(oceansurface,bottomoftheatmosphere)} \label{eq:movingbc} |
| 429 |
|
|
\end{equation} |
| 430 |
|
|
|
| 431 |
|
|
Here |
| 432 |
|
|
|
| 433 |
|
|
\begin{equation*} |
| 434 |
cnh |
1.2 |
R_{moving}=R_{o}+\eta |
| 435 |
cnh |
1.1 |
\end{equation*} |
| 436 |
|
|
where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on |
| 437 |
|
|
whether we are in the atmosphere or ocean) of the `moving surface' in the |
| 438 |
|
|
resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence |
| 439 |
|
|
of motion. |
| 440 |
|
|
|
| 441 |
|
|
\subsubsection{horizontal} |
| 442 |
|
|
|
| 443 |
|
|
\begin{equation} |
| 444 |
|
|
\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow} |
| 445 |
adcroft |
1.4 |
\end{equation} |
| 446 |
cnh |
1.1 |
where $\vec{\mathbf{n}}$ is the normal to a solid boundary. |
| 447 |
|
|
|
| 448 |
|
|
\subsection{Atmosphere} |
| 449 |
|
|
|
| 450 |
|
|
In the atmosphere, see fig.5, we interpret: |
| 451 |
|
|
|
| 452 |
|
|
\begin{equation} |
| 453 |
|
|
r=p\text{ is the pressure} \label{eq:atmos-r} |
| 454 |
|
|
\end{equation} |
| 455 |
|
|
|
| 456 |
|
|
\begin{equation} |
| 457 |
|
|
\dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{ |
| 458 |
|
|
coordinates} \label{eq:atmos-omega} |
| 459 |
|
|
\end{equation} |
| 460 |
|
|
|
| 461 |
|
|
\begin{equation} |
| 462 |
|
|
\phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi} |
| 463 |
|
|
\end{equation} |
| 464 |
|
|
|
| 465 |
|
|
\begin{equation} |
| 466 |
|
|
b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy} |
| 467 |
|
|
\label{eq:atmos-b} |
| 468 |
|
|
\end{equation} |
| 469 |
|
|
|
| 470 |
|
|
\begin{equation} |
| 471 |
|
|
\theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature} |
| 472 |
|
|
\label{eq:atmos-theta} |
| 473 |
|
|
\end{equation} |
| 474 |
|
|
|
| 475 |
|
|
\begin{equation} |
| 476 |
|
|
S=q,\text{ is the specific humidity} \label{eq:atmos-s} |
| 477 |
|
|
\end{equation} |
| 478 |
|
|
where |
| 479 |
|
|
|
| 480 |
|
|
\begin{equation*} |
| 481 |
|
|
T\text{ is absolute temperature} |
| 482 |
adcroft |
1.4 |
\end{equation*} |
| 483 |
cnh |
1.1 |
\begin{equation*} |
| 484 |
|
|
p\text{ is the pressure} |
| 485 |
adcroft |
1.4 |
\end{equation*} |
| 486 |
cnh |
1.1 |
\begin{eqnarray*} |
| 487 |
|
|
&&z\text{ is the height of the pressure surface} \\ |
| 488 |
|
|
&&g\text{ is the acceleration due to gravity} |
| 489 |
|
|
\end{eqnarray*} |
| 490 |
|
|
|
| 491 |
|
|
In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of |
| 492 |
|
|
the Exner function $\Pi (p)$ given by (see Appendix Atmosphere) |
| 493 |
|
|
\begin{equation} |
| 494 |
|
|
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner} |
| 495 |
adcroft |
1.4 |
\end{equation} |
| 496 |
cnh |
1.1 |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas |
| 497 |
|
|
constant and $c_{p}$ the specific heat of air at constant pressure. |
| 498 |
|
|
|
| 499 |
|
|
At the top of the atmosphere (which is `fixed' in our $r$ coordinate): |
| 500 |
|
|
|
| 501 |
|
|
\begin{equation*} |
| 502 |
cnh |
1.2 |
R_{fixed}=p_{top}=0 |
| 503 |
cnh |
1.1 |
\end{equation*} |
| 504 |
|
|
In a resting atmosphere the elevation of the mountains at the bottom is |
| 505 |
|
|
given by |
| 506 |
|
|
\begin{equation*} |
| 507 |
cnh |
1.2 |
R_{moving}=R_{o}(x,y)=p_{o}(x,y) |
| 508 |
cnh |
1.1 |
\end{equation*} |
| 509 |
|
|
i.e. the (hydrostatic) pressure at the top of the mountains in a resting |
| 510 |
|
|
atmosphere. |
| 511 |
|
|
|
| 512 |
|
|
The boundary conditions at top and bottom are given by: |
| 513 |
|
|
|
| 514 |
|
|
\begin{eqnarray} |
| 515 |
|
|
&&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)} |
| 516 |
|
|
\label{eq:fixed-bc-atmos} \\ |
| 517 |
|
|
\omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the |
| 518 |
|
|
atmosphere)} \label{eq:moving-bc-atmos} |
| 519 |
|
|
\end{eqnarray} |
| 520 |
|
|
|
| 521 |
|
|
Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent |
| 522 |
|
|
set of atmospheric equations which, for convenience, are written out in $p$ |
| 523 |
|
|
coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). |
| 524 |
|
|
|
| 525 |
|
|
\subsection{Ocean} |
| 526 |
|
|
|
| 527 |
|
|
In the ocean we interpret: |
| 528 |
|
|
\begin{eqnarray} |
| 529 |
|
|
r &=&z\text{ is the height} \label{eq:ocean-z} \\ |
| 530 |
|
|
\dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} |
| 531 |
|
|
\label{eq:ocean-w} \\ |
| 532 |
|
|
\phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\ |
| 533 |
|
|
b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho |
| 534 |
|
|
_{c}\right) \text{ is the buoyancy} \label{eq:ocean-b} |
| 535 |
|
|
\end{eqnarray} |
| 536 |
|
|
where $\rho _{c}$ is a fixed reference density of water and $g$ is the |
| 537 |
|
|
acceleration due to gravity.\noindent |
| 538 |
|
|
|
| 539 |
|
|
In the above |
| 540 |
|
|
|
| 541 |
|
|
At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$. |
| 542 |
|
|
|
| 543 |
|
|
The surface of the ocean is given by: $R_{moving}=\eta $ |
| 544 |
|
|
|
| 545 |
adcroft |
1.4 |
The position of the resting free surface of the ocean is given by $ |
| 546 |
cnh |
1.1 |
R_{o}=Z_{o}=0$. |
| 547 |
|
|
|
| 548 |
|
|
Boundary conditions are: |
| 549 |
|
|
|
| 550 |
|
|
\begin{eqnarray} |
| 551 |
|
|
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean} |
| 552 |
|
|
\\ |
| 553 |
adcroft |
1.4 |
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) |
| 554 |
cnh |
1.1 |
\label{eq:moving-bc-ocean}} |
| 555 |
|
|
\end{eqnarray} |
| 556 |
|
|
where $\eta $ is the elevation of the free surface. |
| 557 |
|
|
|
| 558 |
|
|
Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations |
| 559 |
|
|
which, for convenience, are written out in $z$ coordinates in Appendix Ocean |
| 560 |
|
|
- see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}). |
| 561 |
|
|
|
| 562 |
|
|
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
| 563 |
|
|
Non-hydrostatic forms} |
| 564 |
|
|
|
| 565 |
|
|
Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms: |
| 566 |
|
|
|
| 567 |
|
|
\begin{equation} |
| 568 |
|
|
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
| 569 |
|
|
\label{eq:phi-split} |
| 570 |
adcroft |
1.4 |
\end{equation} |
| 571 |
cnh |
1.1 |
and write eq(\ref{incompressible}a,b) in the form: |
| 572 |
|
|
|
| 573 |
|
|
\begin{equation} |
| 574 |
|
|
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
| 575 |
|
|
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi |
| 576 |
|
|
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h} |
| 577 |
|
|
\end{equation} |
| 578 |
|
|
|
| 579 |
|
|
\begin{equation} |
| 580 |
|
|
\frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic} |
| 581 |
|
|
\end{equation} |
| 582 |
|
|
|
| 583 |
|
|
\begin{equation} |
| 584 |
adcroft |
1.4 |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{ |
| 585 |
cnh |
1.1 |
\partial r}=G_{\dot{r}} \label{eq:mom-w} |
| 586 |
|
|
\end{equation} |
| 587 |
|
|
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
| 588 |
|
|
|
| 589 |
adcroft |
1.4 |
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref |
| 590 |
cnh |
1.1 |
{eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis |
| 591 |
adcroft |
1.4 |
terms in the momentum equations. In spherical coordinates they take the form |
| 592 |
|
|
\footnote{ |
| 593 |
cnh |
1.1 |
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms |
| 594 |
adcroft |
1.4 |
in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref |
| 595 |
cnh |
1.1 |
{eq:gw-spherical}) are omitted; the singly-underlined terms are included in |
| 596 |
adcroft |
1.4 |
the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model ( |
| 597 |
cnh |
1.1 |
\textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full |
| 598 |
|
|
discussion: |
| 599 |
|
|
|
| 600 |
|
|
\begin{equation} |
| 601 |
|
|
\left. |
| 602 |
|
|
\begin{tabular}{l} |
| 603 |
|
|
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\ |
| 604 |
cnh |
1.6 |
$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $ |
| 605 |
cnh |
1.1 |
\\ |
| 606 |
cnh |
1.6 |
$-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $ |
| 607 |
cnh |
1.1 |
\\ |
| 608 |
adcroft |
1.4 |
$+\mathcal{F}_{u}$ |
| 609 |
|
|
\end{tabular} |
| 610 |
cnh |
1.1 |
\ \right\} \left\{ |
| 611 |
|
|
\begin{tabular}{l} |
| 612 |
|
|
\textit{advection} \\ |
| 613 |
|
|
\textit{metric} \\ |
| 614 |
|
|
\textit{Coriolis} \\ |
| 615 |
adcroft |
1.4 |
\textit{\ Forcing/Dissipation} |
| 616 |
|
|
\end{tabular} |
| 617 |
cnh |
1.2 |
\ \right. \qquad \label{eq:gu-speherical} |
| 618 |
cnh |
1.1 |
\end{equation} |
| 619 |
|
|
|
| 620 |
|
|
\begin{equation} |
| 621 |
|
|
\left. |
| 622 |
|
|
\begin{tabular}{l} |
| 623 |
|
|
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\ |
| 624 |
cnh |
1.6 |
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\} |
| 625 |
cnh |
1.1 |
$ \\ |
| 626 |
cnh |
1.6 |
$-\left\{ -2\Omega u\sin \varphi \right\} $ \\ |
| 627 |
adcroft |
1.4 |
$+\mathcal{F}_{v}$ |
| 628 |
|
|
\end{tabular} |
| 629 |
cnh |
1.1 |
\ \right\} \left\{ |
| 630 |
|
|
\begin{tabular}{l} |
| 631 |
|
|
\textit{advection} \\ |
| 632 |
|
|
\textit{metric} \\ |
| 633 |
|
|
\textit{Coriolis} \\ |
| 634 |
adcroft |
1.4 |
\textit{\ Forcing/Dissipation} |
| 635 |
|
|
\end{tabular} |
| 636 |
cnh |
1.2 |
\ \right. \qquad \label{eq:gv-spherical} |
| 637 |
adcroft |
1.4 |
\end{equation} |
| 638 |
cnh |
1.2 |
\qquad \qquad \qquad \qquad \qquad |
| 639 |
cnh |
1.1 |
|
| 640 |
|
|
\begin{equation} |
| 641 |
|
|
\left. |
| 642 |
|
|
\begin{tabular}{l} |
| 643 |
|
|
$G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\ |
| 644 |
|
|
$+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\ |
| 645 |
cnh |
1.6 |
${+}\underline{{2\Omega u\cos \varphi}}$ \\ |
| 646 |
adcroft |
1.4 |
$\underline{\underline{\mathcal{F}_{\dot{r}}}}$ |
| 647 |
|
|
\end{tabular} |
| 648 |
cnh |
1.1 |
\ \right\} \left\{ |
| 649 |
|
|
\begin{tabular}{l} |
| 650 |
|
|
\textit{advection} \\ |
| 651 |
|
|
\textit{metric} \\ |
| 652 |
|
|
\textit{Coriolis} \\ |
| 653 |
adcroft |
1.4 |
\textit{\ Forcing/Dissipation} |
| 654 |
|
|
\end{tabular} |
| 655 |
cnh |
1.2 |
\ \right. \label{eq:gw-spherical} |
| 656 |
adcroft |
1.4 |
\end{equation} |
| 657 |
cnh |
1.2 |
\qquad \qquad \qquad \qquad \qquad |
| 658 |
cnh |
1.1 |
|
| 659 |
cnh |
1.6 |
In the above `${r}$' is the distance from the center of the earth and `$\varphi$ |
| 660 |
cnh |
1.1 |
' is latitude. |
| 661 |
|
|
|
| 662 |
|
|
Grad and div operators in spherical coordinates are defined in appendix |
| 663 |
adcroft |
1.4 |
OPERATORS. |
| 664 |
cnh |
1.1 |
\marginpar{ |
| 665 |
|
|
Fig.6 Spherical polar coordinate system.} |
| 666 |
|
|
|
| 667 |
cnh |
1.3 |
%%CNHbegin |
| 668 |
|
|
\input{part1/sphere_coord_figure.tex} |
| 669 |
|
|
%%CNHend |
| 670 |
|
|
|
| 671 |
cnh |
1.1 |
\subsubsection{Shallow atmosphere approximation} |
| 672 |
|
|
|
| 673 |
|
|
Most models are based on the `hydrostatic primitive equations' (HPE's) in |
| 674 |
|
|
which the vertical momentum equation is reduced to a statement of |
| 675 |
|
|
hydrostatic balance and the `traditional approximation' is made in which the |
| 676 |
|
|
Coriolis force is treated approximately and the shallow atmosphere |
| 677 |
|
|
approximation is made.\ The MITgcm need not make the `traditional |
| 678 |
|
|
approximation'. To be able to support consistent non-hydrostatic forms the |
| 679 |
adcroft |
1.4 |
shallow atmosphere approximation can be relaxed - when dividing through by $ |
| 680 |
cnh |
1.2 |
r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, |
| 681 |
cnh |
1.1 |
the radius of the earth. |
| 682 |
|
|
|
| 683 |
|
|
\subsubsection{Hydrostatic and quasi-hydrostatic forms} |
| 684 |
|
|
|
| 685 |
|
|
These are discussed at length in Marshall et al (1997a). |
| 686 |
|
|
|
| 687 |
|
|
In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined |
| 688 |
|
|
terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) |
| 689 |
|
|
are neglected and `${r}$' is replaced by `$a$', the mean radius of the |
| 690 |
|
|
earth. Once the pressure is found at one level - e.g. by inverting a 2-d |
| 691 |
|
|
Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be |
| 692 |
adcroft |
1.4 |
computed at all other levels by integration of the hydrostatic relation, eq( |
| 693 |
cnh |
1.1 |
\ref{eq:hydrostatic}). |
| 694 |
|
|
|
| 695 |
|
|
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between |
| 696 |
|
|
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos |
| 697 |
cnh |
1.6 |
\varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic |
| 698 |
adcroft |
1.4 |
contribution to the pressure field: only the terms underlined twice in Eqs. ( |
| 699 |
cnh |
1.1 |
\ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero |
| 700 |
|
|
and, simultaneously, the shallow atmosphere approximation is relaxed. In |
| 701 |
|
|
\textbf{QH}\ \textit{all} the metric terms are retained and the full |
| 702 |
|
|
variation of the radial position of a particle monitored. The \textbf{QH}\ |
| 703 |
|
|
vertical momentum equation (\ref{eq:mom-w}) becomes: |
| 704 |
|
|
|
| 705 |
|
|
\begin{equation*} |
| 706 |
cnh |
1.6 |
\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi |
| 707 |
cnh |
1.1 |
\end{equation*} |
| 708 |
|
|
making a small correction to the hydrostatic pressure. |
| 709 |
|
|
|
| 710 |
|
|
\textbf{QH} has good energetic credentials - they are the same as for |
| 711 |
|
|
\textbf{HPE}. Importantly, however, it has the same angular momentum |
| 712 |
|
|
principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall |
| 713 |
|
|
et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved. |
| 714 |
|
|
|
| 715 |
|
|
\subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms} |
| 716 |
|
|
|
| 717 |
|
|
The MIT model presently supports a full non-hydrostatic ocean isomorph, but |
| 718 |
|
|
only a quasi-non-hydrostatic atmospheric isomorph. |
| 719 |
|
|
|
| 720 |
|
|
\paragraph{Non-hydrostatic Ocean} |
| 721 |
|
|
|
| 722 |
adcroft |
1.4 |
In the non-hydrostatic ocean model all terms in equations Eqs.(\ref |
| 723 |
cnh |
1.1 |
{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A |
| 724 |
|
|
three dimensional elliptic equation must be solved subject to Neumann |
| 725 |
|
|
boundary conditions (see below). It is important to note that use of the |
| 726 |
|
|
full \textbf{NH} does not admit any new `fast' waves in to the system - the |
| 727 |
|
|
incompressible condition eq(\ref{eq:continuous})c has already filtered out |
| 728 |
|
|
acoustic modes. It does, however, ensure that the gravity waves are treated |
| 729 |
|
|
accurately with an exact dispersion relation. The \textbf{NH} set has a |
| 730 |
|
|
complete angular momentum principle and consistent energetics - see White |
| 731 |
|
|
and Bromley, 1995; Marshall et.al.\ 1997a. |
| 732 |
|
|
|
| 733 |
|
|
\paragraph{Quasi-nonhydrostatic Atmosphere} |
| 734 |
|
|
|
| 735 |
adcroft |
1.4 |
In the non-hydrostatic version of our atmospheric model we approximate $\dot{ |
| 736 |
cnh |
1.1 |
r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical}) |
| 737 |
|
|
(but only here) by: |
| 738 |
|
|
|
| 739 |
|
|
\begin{equation} |
| 740 |
|
|
\dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w} |
| 741 |
adcroft |
1.4 |
\end{equation} |
| 742 |
cnh |
1.1 |
where $p_{hy}$ is the hydrostatic pressure. |
| 743 |
|
|
|
| 744 |
|
|
\subsubsection{Summary of equation sets supported by model} |
| 745 |
|
|
|
| 746 |
|
|
\paragraph{Atmosphere} |
| 747 |
|
|
|
| 748 |
|
|
Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the |
| 749 |
|
|
compressible non-Boussinesq equations in $p-$coordinates are supported. |
| 750 |
|
|
|
| 751 |
|
|
\subparagraph{Hydrostatic and quasi-hydrostatic} |
| 752 |
|
|
|
| 753 |
|
|
The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere |
| 754 |
|
|
- see eq(\ref{eq:atmos-prime}). |
| 755 |
|
|
|
| 756 |
|
|
\subparagraph{Quasi-nonhydrostatic} |
| 757 |
|
|
|
| 758 |
|
|
A quasi-nonhydrostatic form is also supported. |
| 759 |
|
|
|
| 760 |
|
|
\paragraph{Ocean} |
| 761 |
|
|
|
| 762 |
|
|
\subparagraph{Hydrostatic and quasi-hydrostatic} |
| 763 |
|
|
|
| 764 |
|
|
Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq |
| 765 |
|
|
equations in $z-$coordinates are supported. |
| 766 |
|
|
|
| 767 |
|
|
\subparagraph{Non-hydrostatic} |
| 768 |
|
|
|
| 769 |
adcroft |
1.4 |
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$ |
| 770 |
|
|
coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref |
| 771 |
cnh |
1.1 |
{eq:ocean-salt}). |
| 772 |
|
|
|
| 773 |
|
|
\subsection{Solution strategy} |
| 774 |
|
|
|
| 775 |
adcroft |
1.4 |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ |
| 776 |
|
|
NH} models is summarized in Fig.7. |
| 777 |
cnh |
1.1 |
\marginpar{ |
| 778 |
|
|
Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is |
| 779 |
|
|
first solved to find the surface pressure and the hydrostatic pressure at |
| 780 |
|
|
any level computed from the weight of fluid above. Under \textbf{HPE} and |
| 781 |
|
|
\textbf{QH} dynamics, the horizontal momentum equations are then stepped |
| 782 |
|
|
forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a |
| 783 |
|
|
3-d elliptic equation must be solved for the non-hydrostatic pressure before |
| 784 |
|
|
stepping forward the horizontal momentum equations; $\dot{r}$ is found by |
| 785 |
|
|
stepping forward the vertical momentum equation. |
| 786 |
|
|
|
| 787 |
cnh |
1.3 |
%%CNHbegin |
| 788 |
|
|
\input{part1/solution_strategy_figure.tex} |
| 789 |
|
|
%%CNHend |
| 790 |
|
|
|
| 791 |
cnh |
1.1 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
| 792 |
cnh |
1.6 |
course, some complication that goes with the inclusion of $\cos \varphi \ $ |
| 793 |
cnh |
1.1 |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
| 794 |
|
|
But this leads to negligible increase in computation. In \textbf{NH}, in |
| 795 |
|
|
contrast, one additional elliptic equation - a three-dimensional one - must |
| 796 |
|
|
be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is |
| 797 |
|
|
essentially negligible in the hydrostatic limit (see detailed discussion in |
| 798 |
|
|
Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the |
| 799 |
|
|
hydrostatic limit, is as computationally economic as the \textbf{HPEs}. |
| 800 |
|
|
|
| 801 |
|
|
\subsection{Finding the pressure field} |
| 802 |
|
|
|
| 803 |
|
|
Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the |
| 804 |
|
|
pressure field must be obtained diagnostically. We proceed, as before, by |
| 805 |
|
|
dividing the total (pressure/geo) potential in to three parts, a surface |
| 806 |
|
|
part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a |
| 807 |
|
|
non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and |
| 808 |
|
|
writing the momentum equation as in (\ref{eq:mom-h}). |
| 809 |
|
|
|
| 810 |
|
|
\subsubsection{Hydrostatic pressure} |
| 811 |
|
|
|
| 812 |
|
|
Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic}) |
| 813 |
|
|
vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield: |
| 814 |
|
|
|
| 815 |
|
|
\begin{equation*} |
| 816 |
adcroft |
1.4 |
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd} |
| 817 |
cnh |
1.2 |
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr |
| 818 |
cnh |
1.1 |
\end{equation*} |
| 819 |
|
|
and so |
| 820 |
|
|
|
| 821 |
|
|
\begin{equation} |
| 822 |
|
|
\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi} |
| 823 |
|
|
\end{equation} |
| 824 |
|
|
|
| 825 |
|
|
The model can be easily modified to accommodate a loading term (e.g |
| 826 |
|
|
atmospheric pressure pushing down on the ocean's surface) by setting: |
| 827 |
|
|
|
| 828 |
|
|
\begin{equation} |
| 829 |
|
|
\phi _{hyd}(r=R_{o})=loading \label{eq:loading} |
| 830 |
|
|
\end{equation} |
| 831 |
|
|
|
| 832 |
|
|
\subsubsection{Surface pressure} |
| 833 |
|
|
|
| 834 |
adcroft |
1.4 |
The surface pressure equation can be obtained by integrating continuity, ( |
| 835 |
cnh |
1.1 |
\ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
| 836 |
|
|
|
| 837 |
|
|
\begin{equation*} |
| 838 |
adcroft |
1.4 |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} |
| 839 |
cnh |
1.2 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
| 840 |
cnh |
1.1 |
\end{equation*} |
| 841 |
|
|
|
| 842 |
|
|
Thus: |
| 843 |
|
|
|
| 844 |
|
|
\begin{equation*} |
| 845 |
|
|
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
| 846 |
adcroft |
1.4 |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}} |
| 847 |
cnh |
1.2 |
_{h}dr=0 |
| 848 |
cnh |
1.1 |
\end{equation*} |
| 849 |
adcroft |
1.4 |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $ |
| 850 |
cnh |
1.1 |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
| 851 |
|
|
|
| 852 |
|
|
\begin{equation} |
| 853 |
|
|
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
| 854 |
|
|
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source} |
| 855 |
|
|
\label{eq:free-surface} |
| 856 |
adcroft |
1.4 |
\end{equation} |
| 857 |
cnh |
1.1 |
where we have incorporated a source term. |
| 858 |
|
|
|
| 859 |
|
|
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
| 860 |
|
|
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
| 861 |
|
|
be written |
| 862 |
|
|
\begin{equation} |
| 863 |
cnh |
1.2 |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) |
| 864 |
cnh |
1.1 |
\label{eq:phi-surf} |
| 865 |
adcroft |
1.4 |
\end{equation} |
| 866 |
cnh |
1.1 |
where $b_{s}$ is the buoyancy at the surface. |
| 867 |
|
|
|
| 868 |
adcroft |
1.4 |
In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref |
| 869 |
cnh |
1.1 |
{eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d |
| 870 |
|
|
elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free |
| 871 |
|
|
surface' and `rigid lid' approaches are available. |
| 872 |
|
|
|
| 873 |
|
|
\subsubsection{Non-hydrostatic pressure} |
| 874 |
|
|
|
| 875 |
adcroft |
1.4 |
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{ |
| 876 |
cnh |
1.1 |
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation |
| 877 |
|
|
(\ref{incompressible}), we deduce that: |
| 878 |
|
|
|
| 879 |
|
|
\begin{equation} |
| 880 |
adcroft |
1.4 |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ |
| 881 |
|
|
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla . |
| 882 |
cnh |
1.1 |
\vec{\mathbf{F}} \label{eq:3d-invert} |
| 883 |
|
|
\end{equation} |
| 884 |
|
|
|
| 885 |
|
|
For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$ |
| 886 |
|
|
subject to appropriate choice of boundary conditions. This method is usually |
| 887 |
|
|
called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969; |
| 888 |
|
|
Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}), |
| 889 |
|
|
the 3-d problem does not need to be solved. |
| 890 |
|
|
|
| 891 |
|
|
\paragraph{Boundary Conditions} |
| 892 |
|
|
|
| 893 |
|
|
We apply the condition of no normal flow through all solid boundaries - the |
| 894 |
|
|
coasts (in the ocean) and the bottom: |
| 895 |
|
|
|
| 896 |
|
|
\begin{equation} |
| 897 |
|
|
\vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow} |
| 898 |
|
|
\end{equation} |
| 899 |
|
|
where $\widehat{n}$ is a vector of unit length normal to the boundary. The |
| 900 |
|
|
kinematic condition (\ref{nonormalflow}) is also applied to the vertical |
| 901 |
adcroft |
1.4 |
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $ |
| 902 |
cnh |
1.1 |
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the |
| 903 |
|
|
tangential component of velocity, $v_{T}$, at all solid boundaries, |
| 904 |
|
|
depending on the form chosen for the dissipative terms in the momentum |
| 905 |
|
|
equations - see below. |
| 906 |
|
|
|
| 907 |
|
|
Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that: |
| 908 |
|
|
|
| 909 |
|
|
\begin{equation} |
| 910 |
|
|
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} |
| 911 |
|
|
\label{eq:inhom-neumann-nh} |
| 912 |
|
|
\end{equation} |
| 913 |
|
|
where |
| 914 |
|
|
|
| 915 |
|
|
\begin{equation*} |
| 916 |
|
|
\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi |
| 917 |
|
|
_{s}+\mathbf{\nabla }\phi _{hyd}\right) |
| 918 |
adcroft |
1.4 |
\end{equation*} |
| 919 |
cnh |
1.1 |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
| 920 |
|
|
(\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can |
| 921 |
|
|
exploit classical 3D potential theory and, by introducing an appropriately |
| 922 |
cnh |
1.2 |
chosen $\delta $-function sheet of `source-charge', replace the |
| 923 |
|
|
inhomogeneous boundary condition on pressure by a homogeneous one. The |
| 924 |
adcroft |
1.4 |
source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $ |
| 925 |
|
|
\vec{\mathbf{F}}.$ By simultaneously setting $ |
| 926 |
cnh |
1.1 |
\begin{array}{l} |
| 927 |
adcroft |
1.4 |
\widehat{n}.\vec{\mathbf{F}} |
| 928 |
|
|
\end{array} |
| 929 |
cnh |
1.1 |
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following |
| 930 |
cnh |
1.2 |
self-consistent but simpler homogenized Elliptic problem is obtained: |
| 931 |
cnh |
1.1 |
|
| 932 |
|
|
\begin{equation*} |
| 933 |
cnh |
1.2 |
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad |
| 934 |
adcroft |
1.4 |
\end{equation*} |
| 935 |
cnh |
1.1 |
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such |
| 936 |
adcroft |
1.4 |
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref |
| 937 |
cnh |
1.1 |
{eq:inhom-neumann-nh}) the modified boundary condition becomes: |
| 938 |
|
|
|
| 939 |
|
|
\begin{equation} |
| 940 |
|
|
\widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh} |
| 941 |
|
|
\end{equation} |
| 942 |
|
|
|
| 943 |
|
|
If the flow is `close' to hydrostatic balance then the 3-d inversion |
| 944 |
|
|
converges rapidly because $\phi _{nh}\ $is then only a small correction to |
| 945 |
|
|
the hydrostatic pressure field (see the discussion in Marshall et al, a,b). |
| 946 |
|
|
|
| 947 |
|
|
The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman}) |
| 948 |
|
|
does not vanish at $r=R_{moving}$, and so refines the pressure there. |
| 949 |
|
|
|
| 950 |
|
|
\subsection{Forcing/dissipation} |
| 951 |
|
|
|
| 952 |
|
|
\subsubsection{Forcing} |
| 953 |
|
|
|
| 954 |
|
|
The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by |
| 955 |
|
|
`physics packages' described in detail in chapter ??. |
| 956 |
|
|
|
| 957 |
|
|
\subsubsection{Dissipation} |
| 958 |
|
|
|
| 959 |
|
|
\paragraph{Momentum} |
| 960 |
|
|
|
| 961 |
|
|
Many forms of momentum dissipation are available in the model. Laplacian and |
| 962 |
|
|
biharmonic frictions are commonly used: |
| 963 |
|
|
|
| 964 |
|
|
\begin{equation} |
| 965 |
adcroft |
1.4 |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}} |
| 966 |
cnh |
1.1 |
+A_{4}\nabla _{h}^{4}v \label{eq:dissipation} |
| 967 |
|
|
\end{equation} |
| 968 |
|
|
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
| 969 |
|
|
coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic |
| 970 |
|
|
friction. These coefficients are the same for all velocity components. |
| 971 |
|
|
|
| 972 |
|
|
\paragraph{Tracers} |
| 973 |
|
|
|
| 974 |
|
|
The mixing terms for the temperature and salinity equations have a similar |
| 975 |
|
|
form to that of momentum except that the diffusion tensor can be |
| 976 |
adcroft |
1.4 |
non-diagonal and have varying coefficients. $\qquad $ |
| 977 |
cnh |
1.1 |
\begin{equation} |
| 978 |
|
|
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
| 979 |
|
|
_{h}^{4}(T,S) \label{eq:diffusion} |
| 980 |
|
|
\end{equation} |
| 981 |
adcroft |
1.4 |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $ |
| 982 |
cnh |
1.1 |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
| 983 |
|
|
the subgrid-scale fluxes of heat and salt are parameterized with constant |
| 984 |
|
|
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
| 985 |
|
|
reduces to a diagonal matrix with constant coefficients: |
| 986 |
|
|
|
| 987 |
|
|
\begin{equation} |
| 988 |
|
|
\qquad \qquad \qquad \qquad K=\left( |
| 989 |
|
|
\begin{array}{ccc} |
| 990 |
|
|
K_{h} & 0 & 0 \\ |
| 991 |
|
|
0 & K_{h} & 0 \\ |
| 992 |
adcroft |
1.4 |
0 & 0 & K_{v} |
| 993 |
cnh |
1.1 |
\end{array} |
| 994 |
|
|
\right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor} |
| 995 |
|
|
\end{equation} |
| 996 |
|
|
where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion |
| 997 |
|
|
coefficients. These coefficients are the same for all tracers (temperature, |
| 998 |
|
|
salinity ... ). |
| 999 |
|
|
|
| 1000 |
|
|
\subsection{Vector invariant form} |
| 1001 |
|
|
|
| 1002 |
adcroft |
1.4 |
For some purposes it is advantageous to write momentum advection in eq(\ref |
| 1003 |
cnh |
1.1 |
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: |
| 1004 |
|
|
|
| 1005 |
|
|
\begin{equation} |
| 1006 |
adcroft |
1.4 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
| 1007 |
|
|
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
| 1008 |
cnh |
1.2 |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
| 1009 |
cnh |
1.1 |
\label{eq:vi-identity} |
| 1010 |
adcroft |
1.4 |
\end{equation} |
| 1011 |
cnh |
1.1 |
This permits alternative numerical treatments of the non-linear terms based |
| 1012 |
|
|
on their representation as a vorticity flux. Because gradients of coordinate |
| 1013 |
|
|
vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit |
| 1014 |
adcroft |
1.4 |
representation of the metric terms in (\ref{eq:gu-speherical}), (\ref |
| 1015 |
cnh |
1.1 |
{eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information |
| 1016 |
|
|
about the geometry is contained in the areas and lengths of the volumes used |
| 1017 |
|
|
to discretize the model. |
| 1018 |
|
|
|
| 1019 |
|
|
\subsection{Adjoint} |
| 1020 |
|
|
|
| 1021 |
cnh |
1.2 |
Tangent linear and adjoint counterparts of the forward model and described |
| 1022 |
|
|
in Chapter 5. |
| 1023 |
cnh |
1.1 |
|
| 1024 |
cnh |
1.6 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.5 2001/10/15 19:34:28 adcroft Exp $ |
| 1025 |
cnh |
1.1 |
% $Name: $ |
| 1026 |
|
|
|
| 1027 |
|
|
\section{Appendix ATMOSPHERE} |
| 1028 |
|
|
|
| 1029 |
|
|
\subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure |
| 1030 |
|
|
coordinates} |
| 1031 |
|
|
|
| 1032 |
|
|
\label{sect-hpe-p} |
| 1033 |
|
|
|
| 1034 |
|
|
The hydrostatic primitive equations (HPEs) in p-coordinates are: |
| 1035 |
|
|
\begin{eqnarray} |
| 1036 |
adcroft |
1.4 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1037 |
cnh |
1.2 |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
| 1038 |
cnh |
1.1 |
\label{eq:atmos-mom} \\ |
| 1039 |
cnh |
1.2 |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
| 1040 |
adcroft |
1.4 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
| 1041 |
cnh |
1.1 |
\partial p} &=&0 \label{eq:atmos-cont} \\ |
| 1042 |
cnh |
1.2 |
p\alpha &=&RT \label{eq:atmos-eos} \\ |
| 1043 |
cnh |
1.1 |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat} |
| 1044 |
adcroft |
1.4 |
\end{eqnarray} |
| 1045 |
cnh |
1.1 |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
| 1046 |
|
|
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot |
| 1047 |
|
|
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total |
| 1048 |
cnh |
1.6 |
derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is |
| 1049 |
adcroft |
1.4 |
the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp |
| 1050 |
|
|
}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref |
| 1051 |
|
|
{eq:atmos-heat}) is the first law of thermodynamics where internal energy $ |
| 1052 |
|
|
e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $ |
| 1053 |
cnh |
1.1 |
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. |
| 1054 |
|
|
|
| 1055 |
|
|
It is convenient to cast the heat equation in terms of potential temperature |
| 1056 |
|
|
$\theta $ so that it looks more like a generic conservation law. |
| 1057 |
|
|
Differentiating (\ref{eq:atmos-eos}) we get: |
| 1058 |
|
|
\begin{equation*} |
| 1059 |
|
|
p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} |
| 1060 |
adcroft |
1.4 |
\end{equation*} |
| 1061 |
|
|
which, when added to the heat equation (\ref{eq:atmos-heat}) and using $ |
| 1062 |
cnh |
1.1 |
c_{p}=c_{v}+R$, gives: |
| 1063 |
|
|
\begin{equation} |
| 1064 |
|
|
c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} |
| 1065 |
|
|
\label{eq-p-heat-interim} |
| 1066 |
adcroft |
1.4 |
\end{equation} |
| 1067 |
cnh |
1.1 |
Potential temperature is defined: |
| 1068 |
|
|
\begin{equation} |
| 1069 |
|
|
\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp} |
| 1070 |
adcroft |
1.4 |
\end{equation} |
| 1071 |
cnh |
1.1 |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience |
| 1072 |
|
|
we will make use of the Exner function $\Pi (p)$ which defined by: |
| 1073 |
|
|
\begin{equation} |
| 1074 |
|
|
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner} |
| 1075 |
adcroft |
1.4 |
\end{equation} |
| 1076 |
cnh |
1.1 |
The following relations will be useful and are easily expressed in terms of |
| 1077 |
|
|
the Exner function: |
| 1078 |
|
|
\begin{equation*} |
| 1079 |
|
|
c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi |
| 1080 |
adcroft |
1.4 |
}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{ |
| 1081 |
|
|
\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p} |
| 1082 |
cnh |
1.1 |
\frac{Dp}{Dt} |
| 1083 |
adcroft |
1.4 |
\end{equation*} |
| 1084 |
cnh |
1.1 |
where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. |
| 1085 |
|
|
|
| 1086 |
|
|
The heat equation is obtained by noting that |
| 1087 |
|
|
\begin{equation*} |
| 1088 |
|
|
c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta |
| 1089 |
cnh |
1.2 |
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt} |
| 1090 |
cnh |
1.1 |
\end{equation*} |
| 1091 |
|
|
and on substituting into (\ref{eq-p-heat-interim}) gives: |
| 1092 |
|
|
\begin{equation} |
| 1093 |
|
|
\Pi \frac{D\theta }{Dt}=\mathcal{Q} |
| 1094 |
|
|
\label{eq:potential-temperature-equation} |
| 1095 |
|
|
\end{equation} |
| 1096 |
|
|
which is in conservative form. |
| 1097 |
|
|
|
| 1098 |
adcroft |
1.4 |
For convenience in the model we prefer to step forward (\ref |
| 1099 |
cnh |
1.1 |
{eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}). |
| 1100 |
|
|
|
| 1101 |
|
|
\subsubsection{Boundary conditions} |
| 1102 |
|
|
|
| 1103 |
|
|
The upper and lower boundary conditions are : |
| 1104 |
|
|
\begin{eqnarray} |
| 1105 |
|
|
\mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\ |
| 1106 |
|
|
\mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo} |
| 1107 |
|
|
\label{eq:boundary-condition-atmosphere} |
| 1108 |
|
|
\end{eqnarray} |
| 1109 |
|
|
In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega |
| 1110 |
|
|
=0 $); in $z$-coordinates and the lower boundary is analogous to a free |
| 1111 |
|
|
surface ($\phi $ is imposed and $\omega \neq 0$). |
| 1112 |
|
|
|
| 1113 |
|
|
\subsubsection{Splitting the geo-potential} |
| 1114 |
|
|
|
| 1115 |
|
|
For the purposes of initialization and reducing round-off errors, the model |
| 1116 |
|
|
deals with perturbations from reference (or ``standard'') profiles. For |
| 1117 |
|
|
example, the hydrostatic geopotential associated with the resting atmosphere |
| 1118 |
|
|
is not dynamically relevant and can therefore be subtracted from the |
| 1119 |
|
|
equations. The equations written in terms of perturbations are obtained by |
| 1120 |
|
|
substituting the following definitions into the previous model equations: |
| 1121 |
|
|
\begin{eqnarray} |
| 1122 |
|
|
\theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\ |
| 1123 |
|
|
\alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\ |
| 1124 |
|
|
\phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi} |
| 1125 |
|
|
\end{eqnarray} |
| 1126 |
|
|
The reference state (indicated by subscript ``0'') corresponds to |
| 1127 |
|
|
horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi |
| 1128 |
|
|
_{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi |
| 1129 |
|
|
_{o}(p_{o})=g~Z_{topo}$, defined: |
| 1130 |
|
|
\begin{eqnarray*} |
| 1131 |
|
|
\theta _{o}(p) &=&f^{n}(p) \\ |
| 1132 |
|
|
\alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\ |
| 1133 |
|
|
\phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp |
| 1134 |
|
|
\end{eqnarray*} |
| 1135 |
|
|
%\begin{eqnarray*} |
| 1136 |
|
|
%\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\ |
| 1137 |
|
|
%\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp |
| 1138 |
|
|
%\end{eqnarray*} |
| 1139 |
|
|
|
| 1140 |
|
|
The final form of the HPE's in p coordinates is then: |
| 1141 |
|
|
\begin{eqnarray} |
| 1142 |
adcroft |
1.4 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1143 |
cnh |
1.1 |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\ |
| 1144 |
|
|
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ |
| 1145 |
adcroft |
1.4 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
| 1146 |
cnh |
1.1 |
\partial p} &=&0 \\ |
| 1147 |
|
|
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ |
| 1148 |
|
|
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} |
| 1149 |
|
|
\end{eqnarray} |
| 1150 |
|
|
|
| 1151 |
cnh |
1.6 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.5 2001/10/15 19:34:28 adcroft Exp $ |
| 1152 |
cnh |
1.1 |
% $Name: $ |
| 1153 |
|
|
|
| 1154 |
|
|
\section{Appendix OCEAN} |
| 1155 |
|
|
|
| 1156 |
|
|
\subsection{Equations of motion for the ocean} |
| 1157 |
|
|
|
| 1158 |
|
|
We review here the method by which the standard (Boussinesq, incompressible) |
| 1159 |
|
|
HPE's for the ocean written in z-coordinates are obtained. The |
| 1160 |
|
|
non-Boussinesq equations for oceanic motion are: |
| 1161 |
|
|
\begin{eqnarray} |
| 1162 |
adcroft |
1.4 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1163 |
cnh |
1.1 |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\ |
| 1164 |
|
|
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
| 1165 |
|
|
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
| 1166 |
adcroft |
1.4 |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}} |
| 1167 |
cnh |
1.1 |
_{h}+\frac{\partial w}{\partial z} &=&0 \\ |
| 1168 |
cnh |
1.2 |
\rho &=&\rho (\theta ,S,p) \\ |
| 1169 |
cnh |
1.1 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ |
| 1170 |
|
|
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq} |
| 1171 |
adcroft |
1.4 |
\end{eqnarray} |
| 1172 |
cnh |
1.1 |
These equations permit acoustics modes, inertia-gravity waves, |
| 1173 |
|
|
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline |
| 1174 |
|
|
mode. As written, they cannot be integrated forward consistently - if we |
| 1175 |
|
|
step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be |
| 1176 |
adcroft |
1.4 |
consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref |
| 1177 |
cnh |
1.1 |
{eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is |
| 1178 |
|
|
therefore necessary to manipulate the system as follows. Differentiating the |
| 1179 |
|
|
EOS (equation of state) gives: |
| 1180 |
|
|
|
| 1181 |
|
|
\begin{equation} |
| 1182 |
|
|
\frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right| |
| 1183 |
|
|
_{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right| |
| 1184 |
|
|
_{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right| |
| 1185 |
|
|
_{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion} |
| 1186 |
|
|
\end{equation} |
| 1187 |
|
|
|
| 1188 |
|
|
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the |
| 1189 |
adcroft |
1.4 |
reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref |
| 1190 |
cnh |
1.1 |
{eq-zns-cont} gives: |
| 1191 |
|
|
\begin{equation} |
| 1192 |
adcroft |
1.4 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
| 1193 |
cnh |
1.1 |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |
| 1194 |
|
|
\end{equation} |
| 1195 |
|
|
where we have used an approximation sign to indicate that we have assumed |
| 1196 |
|
|
adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$. |
| 1197 |
|
|
Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that |
| 1198 |
|
|
can be explicitly integrated forward: |
| 1199 |
|
|
\begin{eqnarray} |
| 1200 |
adcroft |
1.4 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1201 |
cnh |
1.1 |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 1202 |
|
|
\label{eq-cns-hmom} \\ |
| 1203 |
|
|
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
| 1204 |
|
|
&=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\ |
| 1205 |
adcroft |
1.4 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ |
| 1206 |
cnh |
1.1 |
v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\ |
| 1207 |
|
|
\rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\ |
| 1208 |
|
|
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\ |
| 1209 |
|
|
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt} |
| 1210 |
|
|
\end{eqnarray} |
| 1211 |
|
|
|
| 1212 |
|
|
\subsubsection{Compressible z-coordinate equations} |
| 1213 |
|
|
|
| 1214 |
|
|
Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$ |
| 1215 |
|
|
wherever it appears in a product (ie. non-linear term) - this is the |
| 1216 |
|
|
`Boussinesq assumption'. The only term that then retains the full variation |
| 1217 |
|
|
in $\rho $ is the gravitational acceleration: |
| 1218 |
|
|
\begin{eqnarray} |
| 1219 |
adcroft |
1.4 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1220 |
cnh |
1.1 |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 1221 |
|
|
\label{eq-zcb-hmom} \\ |
| 1222 |
adcroft |
1.4 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}} |
| 1223 |
cnh |
1.1 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 1224 |
|
|
\label{eq-zcb-hydro} \\ |
| 1225 |
adcroft |
1.4 |
\frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{ |
| 1226 |
cnh |
1.1 |
\mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\ |
| 1227 |
|
|
\rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\ |
| 1228 |
|
|
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\ |
| 1229 |
|
|
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt} |
| 1230 |
|
|
\end{eqnarray} |
| 1231 |
|
|
These equations still retain acoustic modes. But, because the |
| 1232 |
adcroft |
1.4 |
``compressible'' terms are linearized, the pressure equation \ref |
| 1233 |
cnh |
1.1 |
{eq-zcb-cont} can be integrated implicitly with ease (the time-dependent |
| 1234 |
|
|
term appears as a Helmholtz term in the non-hydrostatic pressure equation). |
| 1235 |
|
|
These are the \emph{truly} compressible Boussinesq equations. Note that the |
| 1236 |
|
|
EOS must have the same pressure dependency as the linearized pressure term, |
| 1237 |
adcroft |
1.4 |
ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{ |
| 1238 |
cnh |
1.1 |
c_{s}^{2}}$, for consistency. |
| 1239 |
|
|
|
| 1240 |
|
|
\subsubsection{`Anelastic' z-coordinate equations} |
| 1241 |
|
|
|
| 1242 |
|
|
The anelastic approximation filters the acoustic mode by removing the |
| 1243 |
adcroft |
1.4 |
time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont} |
| 1244 |
|
|
). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o} |
| 1245 |
cnh |
1.1 |
\frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between |
| 1246 |
|
|
continuity and EOS. A better solution is to change the dependency on |
| 1247 |
|
|
pressure in the EOS by splitting the pressure into a reference function of |
| 1248 |
|
|
height and a perturbation: |
| 1249 |
|
|
\begin{equation*} |
| 1250 |
cnh |
1.2 |
\rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime }) |
| 1251 |
cnh |
1.1 |
\end{equation*} |
| 1252 |
|
|
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from |
| 1253 |
|
|
differentiating the EOS, the continuity equation then becomes: |
| 1254 |
|
|
\begin{equation*} |
| 1255 |
adcroft |
1.4 |
\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{ |
| 1256 |
|
|
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+ |
| 1257 |
cnh |
1.2 |
\frac{\partial w}{\partial z}=0 |
| 1258 |
cnh |
1.1 |
\end{equation*} |
| 1259 |
|
|
If the time- and space-scales of the motions of interest are longer than |
| 1260 |
adcroft |
1.4 |
those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt}, |
| 1261 |
cnh |
1.1 |
\mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and |
| 1262 |
adcroft |
1.4 |
$\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{ |
| 1263 |
cnh |
1.1 |
Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta |
| 1264 |
|
|
,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon |
| 1265 |
|
|
_{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation |
| 1266 |
|
|
and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the |
| 1267 |
|
|
anelastic continuity equation: |
| 1268 |
|
|
\begin{equation} |
| 1269 |
adcroft |
1.4 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}- |
| 1270 |
cnh |
1.1 |
\frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1} |
| 1271 |
|
|
\end{equation} |
| 1272 |
|
|
A slightly different route leads to the quasi-Boussinesq continuity equation |
| 1273 |
adcroft |
1.4 |
where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+ |
| 1274 |
|
|
\mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla } |
| 1275 |
cnh |
1.1 |
_{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding: |
| 1276 |
|
|
\begin{equation} |
| 1277 |
adcroft |
1.4 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{ |
| 1278 |
cnh |
1.1 |
\partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2} |
| 1279 |
|
|
\end{equation} |
| 1280 |
|
|
Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same |
| 1281 |
|
|
equation if: |
| 1282 |
|
|
\begin{equation} |
| 1283 |
|
|
\frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}} |
| 1284 |
|
|
\end{equation} |
| 1285 |
|
|
Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$ |
| 1286 |
adcroft |
1.4 |
and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{ |
| 1287 |
cnh |
1.1 |
g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The |
| 1288 |
|
|
full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are |
| 1289 |
|
|
then: |
| 1290 |
|
|
\begin{eqnarray} |
| 1291 |
adcroft |
1.4 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1292 |
cnh |
1.1 |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 1293 |
|
|
\label{eq-zab-hmom} \\ |
| 1294 |
adcroft |
1.4 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}} |
| 1295 |
cnh |
1.1 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 1296 |
|
|
\label{eq-zab-hydro} \\ |
| 1297 |
adcroft |
1.4 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{ |
| 1298 |
cnh |
1.1 |
\partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\ |
| 1299 |
|
|
\rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\ |
| 1300 |
|
|
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\ |
| 1301 |
|
|
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt} |
| 1302 |
|
|
\end{eqnarray} |
| 1303 |
|
|
|
| 1304 |
|
|
\subsubsection{Incompressible z-coordinate equations} |
| 1305 |
|
|
|
| 1306 |
|
|
Here, the objective is to drop the depth dependence of $\rho _{o}$ and so, |
| 1307 |
|
|
technically, to also remove the dependence of $\rho $ on $p_{o}$. This would |
| 1308 |
|
|
yield the ``truly'' incompressible Boussinesq equations: |
| 1309 |
|
|
\begin{eqnarray} |
| 1310 |
adcroft |
1.4 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1311 |
cnh |
1.1 |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 1312 |
|
|
\label{eq-ztb-hmom} \\ |
| 1313 |
adcroft |
1.4 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}} |
| 1314 |
cnh |
1.1 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 1315 |
|
|
\label{eq-ztb-hydro} \\ |
| 1316 |
|
|
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} |
| 1317 |
|
|
&=&0 \label{eq-ztb-cont} \\ |
| 1318 |
|
|
\rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\ |
| 1319 |
|
|
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\ |
| 1320 |
|
|
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt} |
| 1321 |
|
|
\end{eqnarray} |
| 1322 |
|
|
where $\rho _{c}$ is a constant reference density of water. |
| 1323 |
|
|
|
| 1324 |
|
|
\subsubsection{Compressible non-divergent equations} |
| 1325 |
|
|
|
| 1326 |
|
|
The above ``incompressible'' equations are incompressible in both the flow |
| 1327 |
|
|
and the density. In many oceanic applications, however, it is important to |
| 1328 |
|
|
retain compressibility effects in the density. To do this we must split the |
| 1329 |
|
|
density thus: |
| 1330 |
|
|
\begin{equation*} |
| 1331 |
|
|
\rho =\rho _{o}+\rho ^{\prime } |
| 1332 |
adcroft |
1.4 |
\end{equation*} |
| 1333 |
cnh |
1.1 |
We then assert that variations with depth of $\rho _{o}$ are unimportant |
| 1334 |
|
|
while the compressible effects in $\rho ^{\prime }$ are: |
| 1335 |
|
|
\begin{equation*} |
| 1336 |
|
|
\rho _{o}=\rho _{c} |
| 1337 |
adcroft |
1.4 |
\end{equation*} |
| 1338 |
cnh |
1.1 |
\begin{equation*} |
| 1339 |
|
|
\rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o} |
| 1340 |
adcroft |
1.4 |
\end{equation*} |
| 1341 |
cnh |
1.1 |
This then yields what we can call the semi-compressible Boussinesq |
| 1342 |
|
|
equations: |
| 1343 |
|
|
\begin{eqnarray} |
| 1344 |
adcroft |
1.4 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 1345 |
|
|
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{ |
| 1346 |
cnh |
1.1 |
\mathcal{F}}} \label{eq:ocean-mom} \\ |
| 1347 |
|
|
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho |
| 1348 |
|
|
_{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 1349 |
|
|
\label{eq:ocean-wmom} \\ |
| 1350 |
|
|
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} |
| 1351 |
|
|
&=&0 \label{eq:ocean-cont} \\ |
| 1352 |
|
|
\rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos} |
| 1353 |
|
|
\\ |
| 1354 |
|
|
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\ |
| 1355 |
|
|
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt} |
| 1356 |
adcroft |
1.4 |
\end{eqnarray} |
| 1357 |
cnh |
1.1 |
Note that the hydrostatic pressure of the resting fluid, including that |
| 1358 |
|
|
associated with $\rho _{c}$, is subtracted out since it has no effect on the |
| 1359 |
|
|
dynamics. |
| 1360 |
|
|
|
| 1361 |
|
|
Though necessary, the assumptions that go into these equations are messy |
| 1362 |
|
|
since we essentially assume a different EOS for the reference density and |
| 1363 |
|
|
the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon |
| 1364 |
|
|
_{nh}=0$ form of these equations that are used throughout the ocean modeling |
| 1365 |
|
|
community and referred to as the primitive equations (HPE). |
| 1366 |
|
|
|
| 1367 |
cnh |
1.6 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.5 2001/10/15 19:34:28 adcroft Exp $ |
| 1368 |
cnh |
1.1 |
% $Name: $ |
| 1369 |
|
|
|
| 1370 |
|
|
\section{Appendix:OPERATORS} |
| 1371 |
|
|
|
| 1372 |
|
|
\subsection{Coordinate systems} |
| 1373 |
|
|
|
| 1374 |
|
|
\subsubsection{Spherical coordinates} |
| 1375 |
|
|
|
| 1376 |
|
|
In spherical coordinates, the velocity components in the zonal, meridional |
| 1377 |
|
|
and vertical direction respectively, are given by (see Fig.2) : |
| 1378 |
|
|
|
| 1379 |
|
|
\begin{equation*} |
| 1380 |
cnh |
1.6 |
u=r\cos \varphi \frac{D\lambda }{Dt} |
| 1381 |
cnh |
1.1 |
\end{equation*} |
| 1382 |
|
|
|
| 1383 |
|
|
\begin{equation*} |
| 1384 |
cnh |
1.6 |
v=r\frac{D\varphi }{Dt}\qquad |
| 1385 |
cnh |
1.1 |
\end{equation*} |
| 1386 |
|
|
$\qquad \qquad \qquad \qquad $ |
| 1387 |
|
|
|
| 1388 |
|
|
\begin{equation*} |
| 1389 |
cnh |
1.2 |
\dot{r}=\frac{Dr}{Dt} |
| 1390 |
cnh |
1.1 |
\end{equation*} |
| 1391 |
|
|
|
| 1392 |
cnh |
1.6 |
Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial |
| 1393 |
cnh |
1.1 |
distance of the particle from the center of the earth, $\Omega $ is the |
| 1394 |
|
|
angular speed of rotation of the Earth and $D/Dt$ is the total derivative. |
| 1395 |
|
|
|
| 1396 |
|
|
The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in |
| 1397 |
|
|
spherical coordinates: |
| 1398 |
|
|
|
| 1399 |
|
|
\begin{equation*} |
| 1400 |
cnh |
1.6 |
\nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda } |
| 1401 |
|
|
,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r} |
| 1402 |
cnh |
1.2 |
\right) |
| 1403 |
cnh |
1.1 |
\end{equation*} |
| 1404 |
|
|
|
| 1405 |
|
|
\begin{equation*} |
| 1406 |
cnh |
1.6 |
\nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial |
| 1407 |
|
|
\lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\} |
| 1408 |
cnh |
1.2 |
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} |
| 1409 |
cnh |
1.1 |
\end{equation*} |
| 1410 |
|
|
|
| 1411 |
adcroft |
1.4 |
%tci%\end{document} |