/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Annotation of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (hide annotations) (download) (as text)
Wed Oct 10 16:48:45 2001 UTC (23 years, 9 months ago) by cnh
Branch: MAIN
Changes since 1.2: +80 -14 lines
File MIME type: application/x-tex
Updates to part1 for figures

1 cnh 1.3 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $
2 cnh 1.2 % $Name: $
3     %\usepackage{oldgerm}
4     % I commented the following because it introduced excessive white space
5     %\usepackage{palatcm} % better PDF
6     % page headers and footers
7     %\pagestyle{fancy}
8     % referencing
9     %% \newcommand{\refequ}[1]{equation (\ref{equ:#1})}
10     %% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})}
11     %% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}}
12     %% \newcommand{\reftabno}[1]{\ref{tab:#1}}
13     %% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}}
14     %% \newcommand{\reffigno}[1]{\ref{fig:#1}}
15     % stuff for psfrag
16     %% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}}
17     %% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}}
18     % This allows numbering of subsubsections
19     % This changes the the chapter title
20     %\renewcommand{\chaptername}{Section}
21 cnh 1.1
22    
23     %%%% \documentclass[12pt]{book}
24 cnh 1.2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25 cnh 1.1 %%%% \usepackage{amsmath}
26     %%%% \usepackage{html}
27     %%%% \usepackage{epsfig}
28     %%%% \usepackage{graphics,subfigure}
29     %%%% \usepackage{array}
30     %%%% \usepackage{multirow}
31     %%%% \usepackage{fancyhdr}
32     %%%% \usepackage{psfrag}
33 cnh 1.2
34 cnh 1.1 %%%% %TCIDATA{OutputFilter=Latex.dll}
35 cnh 1.2 %%%% %TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
36 cnh 1.1 %%%% %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
37     %%%% %TCIDATA{Language=American English}
38 cnh 1.2
39 cnh 1.1 %%%% \fancyhead{}
40     %%%% \fancyhead[LO]{\slshape \rightmark}
41     %%%% \fancyhead[RE]{\slshape \leftmark}
42     %%%% \fancyhead[RO,LE]{\thepage}
43     %%%% \fancyfoot[CO,CE]{\today}
44     %%%% \fancyfoot[RO,LE]{ }
45     %%%% \renewcommand{\headrulewidth}{0.4pt}
46     %%%% \renewcommand{\footrulewidth}{0.4pt}
47     %%%% \setcounter{secnumdepth}{3}
48     %%%% \input{tcilatex}
49     %%%%
50     %%%% \begin{document}
51     %%%%
52     %%%% \tableofcontents
53 cnh 1.2 %%%%
54     %%%% \pagebreak
55 cnh 1.1
56 cnh 1.2 %%%% \part{MIT GCM basics}
57 cnh 1.1
58     % Section: Overview
59    
60 cnh 1.3 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $
61 cnh 1.1 % $Name: $
62    
63     \section{Introduction}
64    
65     This documentation provides the reader with the information necessary to
66     carry out numerical experiments using MITgcm. It gives a comprehensive
67     description of the continuous equations on which the model is based, the
68     numerical algorithms the model employs and a description of the associated
69     program code. Along with the hydrodynamical kernel, physical and
70     biogeochemical parameterizations of key atmospheric and oceanic processes
71     are available. A number of examples illustrating the use of the model in
72     both process and general circulation studies of the atmosphere and ocean are
73     also presented.
74    
75     MITgcm has a number of novel aspects:
76    
77     \begin{itemize}
78     \item it can be used to study both atmospheric and oceanic phenomena; one
79     hydrodynamical kernel is used to drive forward both atmospheric and oceanic
80 cnh 1.3 models - see fig%
81 cnh 1.1 \marginpar{
82     Fig.1 One model}\ref{fig:onemodel}
83    
84 cnh 1.3 %% CNHbegin
85     \input{part1/one_model_figure}
86     %% CNHend
87    
88 cnh 1.1 \item it has a non-hydrostatic capability and so can be used to study both
89 cnh 1.3 small-scale and large scale processes - see fig %
90 cnh 1.1 \marginpar{
91     Fig.2 All scales}\ref{fig:all-scales}
92    
93 cnh 1.3 %% CNHbegin
94     \input{part1/all_scales_figure}
95     %% CNHend
96    
97 cnh 1.1 \item finite volume techniques are employed yielding an intuitive
98     discretization and support for the treatment of irregular geometries using
99 cnh 1.3 orthogonal curvilinear grids and shaved cells - see fig %
100 cnh 1.1 \marginpar{
101 cnh 1.3 Fig.3 Finite volumes}\ref{fig:finite-volumes}
102    
103     %% CNHbegin
104     \input{part1/fvol_figure}
105     %% CNHend
106 cnh 1.1
107     \item tangent linear and adjoint counterparts are automatically maintained
108     along with the forward model, permitting sensitivity and optimization
109     studies.
110    
111     \item the model is developed to perform efficiently on a wide variety of
112     computational platforms.
113     \end{itemize}
114    
115     Key publications reporting on and charting the development of the model are
116     listed in an Appendix.
117    
118     We begin by briefly showing some of the results of the model in action to
119     give a feel for the wide range of problems that can be addressed using it.
120     \pagebreak
121    
122 cnh 1.3 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $
123 cnh 1.1 % $Name: $
124    
125     \section{Illustrations of the model in action}
126    
127     The MITgcm has been designed and used to model a wide range of phenomena,
128     from convection on the scale of meters in the ocean to the global pattern of
129     atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the
130     kinds of problems the model has been used to study, we briefly describe some
131     of them here. A more detailed description of the underlying formulation,
132     numerical algorithm and implementation that lie behind these calculations is
133 cnh 1.2 given later. Indeed many of the illustrative examples shown below can be
134     easily reproduced: simply download the model (the minimum you need is a PC
135     running linux, together with a FORTRAN\ 77 compiler) and follow the examples
136     described in detail in the documentation.
137 cnh 1.1
138     \subsection{Global atmosphere: `Held-Suarez' benchmark}
139    
140 cnh 1.2 A novel feature of MITgcm is its ability to simulate both atmospheric and
141     oceanographic flows at both small and large scales.
142    
143 cnh 1.3 Fig.E1a.\ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
144 cnh 1.2 temperature field obtained using the atmospheric isomorph of MITgcm run at
145     2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
146     (blue) and warm air along an equatorial band (red). Fully developed
147     baroclinic eddies spawned in the northern hemisphere storm track are
148     evident. There are no mountains or land-sea contrast in this calculation,
149     but you can easily put them in. The model is driven by relaxation to a
150     radiative-convective equilibrium profile, following the description set out
151     in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
152     there are no mountains or land-sea contrast.
153    
154 cnh 1.3 %% CNHbegin
155     \input{part1/cubic_eddies_figure}
156     %% CNHend
157    
158 cnh 1.2 As described in Adcroft (2001), a `cubed sphere' is used to discretize the
159     globe permitting a uniform gridding and obviated the need to fourier filter.
160     The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
161     grid, of which the cubed sphere is just one of many choices.
162 cnh 1.1
163     Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal
164 cnh 1.2 wind and meridional overturning streamfunction from a 20-level version of
165     the model. It compares favorable with more conventional spatial
166     discretization approaches.
167 cnh 1.1
168     A regular spherical lat-lon grid can also be used.
169    
170 cnh 1.3 %% CNHbegin
171     \input{part1/hs_zave_u_figure}
172     %% CNHend
173    
174 cnh 1.2 \subsection{Ocean gyres}
175 cnh 1.1
176 cnh 1.2 Baroclinic instability is a ubiquitous process in the ocean, as well as the
177     atmosphere. Ocean eddies play an important role in modifying the
178     hydrographic structure and current systems of the oceans. Coarse resolution
179     models of the oceans cannot resolve the eddy field and yield rather broad,
180     diffusive patterns of ocean currents. But if the resolution of our models is
181     increased until the baroclinic instability process is resolved, numerical
182     solutions of a different and much more realistic kind, can be obtained.
183    
184     Fig. ?.? shows the surface temperature and velocity field obtained from
185     MITgcm run at $\frac{1}{6}^{\circ }$ horizontal resolution on a $lat-lon$
186     grid in which the pole has been rotated by 90$^{\circ }$ on to the equator
187     (to avoid the converging of meridian in northern latitudes). 21 vertical
188     levels are used in the vertical with a `lopped cell' representation of
189     topography. The development and propagation of anomalously warm and cold
190     eddies can be clearly been seen in the Gulf Stream region. The transport of
191     warm water northward by the mean flow of the Gulf Stream is also clearly
192     visible.
193 cnh 1.1
194 cnh 1.3 %% CNHbegin
195     \input{part1/ocean_gyres_figure}
196     %% CNHend
197    
198    
199 cnh 1.1 \subsection{Global ocean circulation}
200    
201     Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$
202 cnh 1.2 global ocean model run with 15 vertical levels. Lopped cells are used to
203     represent topography on a regular $lat-lon$ grid extending from 70$^{\circ
204     }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with
205     mixed boundary conditions on temperature and salinity at the surface. The
206     transfer properties of ocean eddies, convection and mixing is parameterized
207     in this model.
208    
209     Fig.E2b shows the meridional overturning circulation of the global ocean in
210     Sverdrups.
211    
212 cnh 1.3 %%CNHbegin
213     \input{part1/global_circ_figure}
214     %%CNHend
215    
216 cnh 1.2 \subsection{Convection and mixing over topography}
217    
218     Dense plumes generated by localized cooling on the continental shelf of the
219     ocean may be influenced by rotation when the deformation radius is smaller
220     than the width of the cooling region. Rather than gravity plumes, the
221     mechanism for moving dense fluid down the shelf is then through geostrophic
222     eddies. The simulation shown in the figure (blue is cold dense fluid, red is
223     warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
224     trigger convection by surface cooling. The cold, dense water falls down the
225     slope but is deflected along the slope by rotation. It is found that
226     entrainment in the vertical plane is reduced when rotational control is
227     strong, and replaced by lateral entrainment due to the baroclinic
228     instability of the along-slope current.
229 cnh 1.1
230 cnh 1.3 %%CNHbegin
231     \input{part1/convect_and_topo}
232     %%CNHend
233    
234 cnh 1.1 \subsection{Boundary forced internal waves}
235    
236 cnh 1.2 The unique ability of MITgcm to treat non-hydrostatic dynamics in the
237     presence of complex geometry makes it an ideal tool to study internal wave
238     dynamics and mixing in oceanic canyons and ridges driven by large amplitude
239     barotropic tidal currents imposed through open boundary conditions.
240    
241     Fig. ?.? shows the influence of cross-slope topographic variations on
242     internal wave breaking - the cross-slope velocity is in color, the density
243     contoured. The internal waves are excited by application of open boundary
244     conditions on the left.\ They propagate to the sloping boundary (represented
245     using MITgcm's finite volume spatial discretization) where they break under
246     nonhydrostatic dynamics.
247    
248 cnh 1.3 %%CNHbegin
249     \input{part1/boundary_forced_waves}
250     %%CNHend
251    
252 cnh 1.2 \subsection{Parameter sensitivity using the adjoint of MITgcm}
253    
254     Forward and tangent linear counterparts of MITgcm are supported using an
255     `automatic adjoint compiler'. These can be used in parameter sensitivity and
256     data assimilation studies.
257    
258     As one example of application of the MITgcm adjoint, Fig.E4 maps the
259     gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
260     of the overturning streamfunction shown in fig?.? at 40$^{\circ }$N and $%
261     \mathcal{H}$ is the air-sea heat flux 100 years before. We see that $J$ is
262     sensitive to heat fluxes over the Labrador Sea, one of the important sources
263     of deep water for the thermohaline circulations. This calculation also
264     yields sensitivities to all other model parameters.
265    
266 cnh 1.3 %%CNHbegin
267     \input{part1/adj_hf_ocean_figure}
268     %%CNHend
269    
270 cnh 1.2 \subsection{Global state estimation of the ocean}
271    
272     An important application of MITgcm is in state estimation of the global
273     ocean circulation. An appropriately defined `cost function', which measures
274     the departure of the model from observations (both remotely sensed and
275     insitu) over an interval of time, is minimized by adjusting `control
276     parameters' such as air-sea fluxes, the wind field, the initial conditions
277     etc. Figure ?.? shows an estimate of the time-mean surface elevation of the
278     ocean obtained by bringing the model in to consistency with altimetric and
279     in-situ observations over the period 1992-1997.
280    
281 cnh 1.3 %% CNHbegin
282     \input{part1/globes_figure}
283     %% CNHend
284    
285 cnh 1.2 \subsection{Ocean biogeochemical cycles}
286    
287     MITgcm is being used to study global biogeochemical cycles in the ocean. For
288     example one can study the effects of interannual changes in meteorological
289     forcing and upper ocean circulation on the fluxes of carbon dioxide and
290     oxygen between the ocean and atmosphere. The figure shows the annual air-sea
291     flux of oxygen and its relation to density outcrops in the southern oceans
292     from a single year of a global, interannually varying simulation.
293    
294 cnh 1.3 %%CNHbegin
295     \input{part1/biogeo_figure}
296     %%CNHend
297 cnh 1.2
298     \subsection{Simulations of laboratory experiments}
299    
300     Figure ?.? shows MITgcm being used to simulate a laboratory experiment
301     enquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
302     initially homogeneous tank of water ($1m$ in diameter) is driven from its
303     free surface by a rotating heated disk. The combined action of mechanical
304     and thermal forcing creates a lens of fluid which becomes baroclinically
305     unstable. The stratification and depth of penetration of the lens is
306     arrested by its instability in a process analogous to that whic sets the
307     stratification of the ACC.
308 cnh 1.1
309 cnh 1.3 %%CNHbegin
310     \input{part1/lab_figure}
311     %%CNHend
312    
313     % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $
314 cnh 1.1 % $Name: $
315    
316     \section{Continuous equations in `r' coordinates}
317    
318     To render atmosphere and ocean models from one dynamical core we exploit
319     `isomorphisms' between equation sets that govern the evolution of the
320     respective fluids - see fig.4%
321     \marginpar{
322     Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down
323     and encoded. The model variables have different interpretations depending on
324     whether the atmosphere or ocean is being studied. Thus, for example, the
325     vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
326     modeling the atmosphere and height, $z$, if we are modeling the ocean.
327    
328 cnh 1.3 %%CNHbegin
329     \input{part1/zandpcoord_figure.tex}
330     %%CNHend
331    
332 cnh 1.1 The state of the fluid at any time is characterized by the distribution of
333     velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
334     `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
335     depend on $\theta $, $S$, and $p$. The equations that govern the evolution
336     of these fields, obtained by applying the laws of classical mechanics and
337     thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
338     a generic vertical coordinate, $r$, see fig.5%
339     \marginpar{
340     Fig.5 The vertical coordinate of model}:
341    
342 cnh 1.3 %%CNHbegin
343     \input{part1/vertcoord_figure.tex}
344     %%CNHend
345    
346 cnh 1.1 \begin{equation*}
347     \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}%
348     \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}%
349     \text{ horizontal mtm}
350     \end{equation*}
351    
352     \begin{equation*}
353     \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{%
354     v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
355     vertical mtm}
356     \end{equation*}
357    
358     \begin{equation}
359     \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{%
360     \partial r}=0\text{ continuity} \label{eq:continuous}
361     \end{equation}
362    
363     \begin{equation*}
364 cnh 1.2 b=b(\theta ,S,r)\text{ equation of state}
365 cnh 1.1 \end{equation*}
366    
367     \begin{equation*}
368 cnh 1.2 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
369 cnh 1.1 \end{equation*}
370    
371     \begin{equation*}
372 cnh 1.2 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
373 cnh 1.1 \end{equation*}
374    
375     Here:
376    
377     \begin{equation*}
378 cnh 1.2 r\text{ is the vertical coordinate}
379 cnh 1.1 \end{equation*}
380    
381     \begin{equation*}
382     \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
383 cnh 1.2 is the total derivative}
384 cnh 1.1 \end{equation*}
385    
386     \begin{equation*}
387     \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}%
388 cnh 1.2 \text{ is the `grad' operator}
389 cnh 1.1 \end{equation*}
390     with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}%
391     \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
392     is a unit vector in the vertical
393    
394     \begin{equation*}
395 cnh 1.2 t\text{ is time}
396 cnh 1.1 \end{equation*}
397    
398     \begin{equation*}
399     \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
400 cnh 1.2 velocity}
401 cnh 1.1 \end{equation*}
402    
403     \begin{equation*}
404 cnh 1.2 \phi \text{ is the `pressure'/`geopotential'}
405 cnh 1.1 \end{equation*}
406    
407     \begin{equation*}
408 cnh 1.2 \vec{\Omega}\text{ is the Earth's rotation}
409 cnh 1.1 \end{equation*}
410    
411     \begin{equation*}
412 cnh 1.2 b\text{ is the `buoyancy'}
413 cnh 1.1 \end{equation*}
414    
415     \begin{equation*}
416 cnh 1.2 \theta \text{ is potential temperature}
417 cnh 1.1 \end{equation*}
418    
419     \begin{equation*}
420 cnh 1.2 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
421 cnh 1.1 \end{equation*}
422    
423     \begin{equation*}
424     \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{%
425     \mathbf{v}}
426     \end{equation*}
427    
428     \begin{equation*}
429 cnh 1.2 \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta
430 cnh 1.1 \end{equation*}
431    
432     \begin{equation*}
433     \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
434     \end{equation*}
435    
436     The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
437     extensive `physics' packages for atmosphere and ocean described in Chapter 6.
438    
439     \subsection{Kinematic Boundary conditions}
440    
441     \subsubsection{vertical}
442    
443     at fixed and moving $r$ surfaces we set (see fig.5):
444    
445     \begin{equation}
446     \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
447     \label{eq:fixedbc}
448     \end{equation}
449    
450     \begin{equation}
451     \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
452     (oceansurface,bottomoftheatmosphere)} \label{eq:movingbc}
453     \end{equation}
454    
455     Here
456    
457     \begin{equation*}
458 cnh 1.2 R_{moving}=R_{o}+\eta
459 cnh 1.1 \end{equation*}
460     where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
461     whether we are in the atmosphere or ocean) of the `moving surface' in the
462     resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
463     of motion.
464    
465     \subsubsection{horizontal}
466    
467     \begin{equation}
468     \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
469     \end{equation}%
470     where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
471    
472     \subsection{Atmosphere}
473    
474     In the atmosphere, see fig.5, we interpret:
475    
476     \begin{equation}
477     r=p\text{ is the pressure} \label{eq:atmos-r}
478     \end{equation}
479    
480     \begin{equation}
481     \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
482     coordinates} \label{eq:atmos-omega}
483     \end{equation}
484    
485     \begin{equation}
486     \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
487     \end{equation}
488    
489     \begin{equation}
490     b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
491     \label{eq:atmos-b}
492     \end{equation}
493    
494     \begin{equation}
495     \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
496     \label{eq:atmos-theta}
497     \end{equation}
498    
499     \begin{equation}
500     S=q,\text{ is the specific humidity} \label{eq:atmos-s}
501     \end{equation}
502     where
503    
504     \begin{equation*}
505     T\text{ is absolute temperature}
506     \end{equation*}%
507     \begin{equation*}
508     p\text{ is the pressure}
509     \end{equation*}%
510     \begin{eqnarray*}
511     &&z\text{ is the height of the pressure surface} \\
512     &&g\text{ is the acceleration due to gravity}
513     \end{eqnarray*}
514    
515     In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
516     the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
517     \begin{equation}
518     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
519     \end{equation}%
520     where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
521     constant and $c_{p}$ the specific heat of air at constant pressure.
522    
523     At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
524    
525     \begin{equation*}
526 cnh 1.2 R_{fixed}=p_{top}=0
527 cnh 1.1 \end{equation*}
528     In a resting atmosphere the elevation of the mountains at the bottom is
529     given by
530     \begin{equation*}
531 cnh 1.2 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
532 cnh 1.1 \end{equation*}
533     i.e. the (hydrostatic) pressure at the top of the mountains in a resting
534     atmosphere.
535    
536     The boundary conditions at top and bottom are given by:
537    
538     \begin{eqnarray}
539     &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
540     \label{eq:fixed-bc-atmos} \\
541     \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
542     atmosphere)} \label{eq:moving-bc-atmos}
543     \end{eqnarray}
544    
545     Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent
546     set of atmospheric equations which, for convenience, are written out in $p$
547     coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
548    
549     \subsection{Ocean}
550    
551     In the ocean we interpret:
552     \begin{eqnarray}
553     r &=&z\text{ is the height} \label{eq:ocean-z} \\
554     \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
555     \label{eq:ocean-w} \\
556     \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
557     b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
558     _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
559     \end{eqnarray}
560     where $\rho _{c}$ is a fixed reference density of water and $g$ is the
561     acceleration due to gravity.\noindent
562    
563     In the above
564    
565     At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
566    
567     The surface of the ocean is given by: $R_{moving}=\eta $
568    
569     The position of the resting free surface of the ocean is given by $%
570     R_{o}=Z_{o}=0$.
571    
572     Boundary conditions are:
573    
574     \begin{eqnarray}
575     w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
576     \\
577     w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) %
578     \label{eq:moving-bc-ocean}}
579     \end{eqnarray}
580     where $\eta $ is the elevation of the free surface.
581    
582     Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations
583     which, for convenience, are written out in $z$ coordinates in Appendix Ocean
584     - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
585    
586     \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
587     Non-hydrostatic forms}
588    
589     Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
590    
591     \begin{equation}
592     \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
593     \label{eq:phi-split}
594     \end{equation}%
595     and write eq(\ref{incompressible}a,b) in the form:
596    
597     \begin{equation}
598     \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
599     _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
600     _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
601     \end{equation}
602    
603     \begin{equation}
604     \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
605     \end{equation}
606    
607     \begin{equation}
608     \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{%
609     \partial r}=G_{\dot{r}} \label{eq:mom-w}
610     \end{equation}
611     Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
612    
613     The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref%
614     {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
615     terms in the momentum equations. In spherical coordinates they take the form%
616     \footnote{%
617     In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
618     in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref%
619     {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
620     the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (%
621     \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
622     discussion:
623    
624     \begin{equation}
625     \left.
626     \begin{tabular}{l}
627     $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
628     $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $
629     \\
630     $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $
631     \\
632     $+\mathcal{F}_{u}$%
633     \end{tabular}%
634     \ \right\} \left\{
635     \begin{tabular}{l}
636     \textit{advection} \\
637     \textit{metric} \\
638     \textit{Coriolis} \\
639     \textit{\ Forcing/Dissipation}%
640     \end{tabular}%
641 cnh 1.2 \ \right. \qquad \label{eq:gu-speherical}
642 cnh 1.1 \end{equation}
643    
644     \begin{equation}
645     \left.
646     \begin{tabular}{l}
647     $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
648     $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\}
649     $ \\
650     $-\left\{ -2\Omega u\sin lat\right\} $ \\
651     $+\mathcal{F}_{v}$%
652     \end{tabular}%
653     \ \right\} \left\{
654     \begin{tabular}{l}
655     \textit{advection} \\
656     \textit{metric} \\
657     \textit{Coriolis} \\
658     \textit{\ Forcing/Dissipation}%
659     \end{tabular}%
660 cnh 1.2 \ \right. \qquad \label{eq:gv-spherical}
661 cnh 1.1 \end{equation}%
662 cnh 1.2 \qquad \qquad \qquad \qquad \qquad
663 cnh 1.1
664     \begin{equation}
665     \left.
666     \begin{tabular}{l}
667     $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
668     $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
669     ${+}\underline{{2\Omega u\cos lat}}$ \\
670     $\underline{\underline{\mathcal{F}_{\dot{r}}}}$%
671     \end{tabular}%
672     \ \right\} \left\{
673     \begin{tabular}{l}
674     \textit{advection} \\
675     \textit{metric} \\
676     \textit{Coriolis} \\
677     \textit{\ Forcing/Dissipation}%
678     \end{tabular}%
679 cnh 1.2 \ \right. \label{eq:gw-spherical}
680 cnh 1.1 \end{equation}%
681 cnh 1.2 \qquad \qquad \qquad \qquad \qquad
682 cnh 1.1
683     In the above `${r}$' is the distance from the center of the earth and `$lat$%
684     ' is latitude.
685    
686     Grad and div operators in spherical coordinates are defined in appendix
687     OPERATORS.%
688     \marginpar{
689     Fig.6 Spherical polar coordinate system.}
690    
691 cnh 1.3 %%CNHbegin
692     \input{part1/sphere_coord_figure.tex}
693     %%CNHend
694    
695 cnh 1.1 \subsubsection{Shallow atmosphere approximation}
696    
697     Most models are based on the `hydrostatic primitive equations' (HPE's) in
698     which the vertical momentum equation is reduced to a statement of
699     hydrostatic balance and the `traditional approximation' is made in which the
700     Coriolis force is treated approximately and the shallow atmosphere
701     approximation is made.\ The MITgcm need not make the `traditional
702     approximation'. To be able to support consistent non-hydrostatic forms the
703 cnh 1.2 shallow atmosphere approximation can be relaxed - when dividing through by $%
704     r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
705 cnh 1.1 the radius of the earth.
706    
707     \subsubsection{Hydrostatic and quasi-hydrostatic forms}
708    
709     These are discussed at length in Marshall et al (1997a).
710    
711     In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
712     terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
713     are neglected and `${r}$' is replaced by `$a$', the mean radius of the
714     earth. Once the pressure is found at one level - e.g. by inverting a 2-d
715     Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
716     computed at all other levels by integration of the hydrostatic relation, eq(%
717     \ref{eq:hydrostatic}).
718    
719     In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
720     gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
721     \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
722     contribution to the pressure field: only the terms underlined twice in Eqs. (%
723     \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
724     and, simultaneously, the shallow atmosphere approximation is relaxed. In
725     \textbf{QH}\ \textit{all} the metric terms are retained and the full
726     variation of the radial position of a particle monitored. The \textbf{QH}\
727     vertical momentum equation (\ref{eq:mom-w}) becomes:
728    
729     \begin{equation*}
730 cnh 1.2 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat
731 cnh 1.1 \end{equation*}
732     making a small correction to the hydrostatic pressure.
733    
734     \textbf{QH} has good energetic credentials - they are the same as for
735     \textbf{HPE}. Importantly, however, it has the same angular momentum
736     principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
737     et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
738    
739     \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
740    
741     The MIT model presently supports a full non-hydrostatic ocean isomorph, but
742     only a quasi-non-hydrostatic atmospheric isomorph.
743    
744     \paragraph{Non-hydrostatic Ocean}
745    
746     In the non-hydrostatic ocean model all terms in equations Eqs.(\ref%
747     {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
748     three dimensional elliptic equation must be solved subject to Neumann
749     boundary conditions (see below). It is important to note that use of the
750     full \textbf{NH} does not admit any new `fast' waves in to the system - the
751     incompressible condition eq(\ref{eq:continuous})c has already filtered out
752     acoustic modes. It does, however, ensure that the gravity waves are treated
753     accurately with an exact dispersion relation. The \textbf{NH} set has a
754     complete angular momentum principle and consistent energetics - see White
755     and Bromley, 1995; Marshall et.al.\ 1997a.
756    
757     \paragraph{Quasi-nonhydrostatic Atmosphere}
758    
759     In the non-hydrostatic version of our atmospheric model we approximate $\dot{%
760     r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
761     (but only here) by:
762    
763     \begin{equation}
764     \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
765     \end{equation}%
766     where $p_{hy}$ is the hydrostatic pressure.
767    
768     \subsubsection{Summary of equation sets supported by model}
769    
770     \paragraph{Atmosphere}
771    
772     Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
773     compressible non-Boussinesq equations in $p-$coordinates are supported.
774    
775     \subparagraph{Hydrostatic and quasi-hydrostatic}
776    
777     The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
778     - see eq(\ref{eq:atmos-prime}).
779    
780     \subparagraph{Quasi-nonhydrostatic}
781    
782     A quasi-nonhydrostatic form is also supported.
783    
784     \paragraph{Ocean}
785    
786     \subparagraph{Hydrostatic and quasi-hydrostatic}
787    
788     Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
789     equations in $z-$coordinates are supported.
790    
791     \subparagraph{Non-hydrostatic}
792    
793     Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$%
794     coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref%
795     {eq:ocean-salt}).
796    
797     \subsection{Solution strategy}
798    
799     The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{%
800     NH} models is summarized in Fig.7.%
801     \marginpar{
802     Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is
803     first solved to find the surface pressure and the hydrostatic pressure at
804     any level computed from the weight of fluid above. Under \textbf{HPE} and
805     \textbf{QH} dynamics, the horizontal momentum equations are then stepped
806     forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
807     3-d elliptic equation must be solved for the non-hydrostatic pressure before
808     stepping forward the horizontal momentum equations; $\dot{r}$ is found by
809     stepping forward the vertical momentum equation.
810    
811 cnh 1.3 %%CNHbegin
812     \input{part1/solution_strategy_figure.tex}
813     %%CNHend
814    
815 cnh 1.1 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
816     course, some complication that goes with the inclusion of $\cos \phi \ $%
817     Coriolis terms and the relaxation of the shallow atmosphere approximation.
818     But this leads to negligible increase in computation. In \textbf{NH}, in
819     contrast, one additional elliptic equation - a three-dimensional one - must
820     be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
821     essentially negligible in the hydrostatic limit (see detailed discussion in
822     Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
823     hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
824    
825     \subsection{Finding the pressure field}
826    
827     Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
828     pressure field must be obtained diagnostically. We proceed, as before, by
829     dividing the total (pressure/geo) potential in to three parts, a surface
830     part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
831     non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
832     writing the momentum equation as in (\ref{eq:mom-h}).
833    
834     \subsubsection{Hydrostatic pressure}
835    
836     Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
837     vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
838    
839     \begin{equation*}
840     \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}%
841 cnh 1.2 \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
842 cnh 1.1 \end{equation*}
843     and so
844    
845     \begin{equation}
846     \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
847     \end{equation}
848    
849     The model can be easily modified to accommodate a loading term (e.g
850     atmospheric pressure pushing down on the ocean's surface) by setting:
851    
852     \begin{equation}
853     \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
854     \end{equation}
855    
856     \subsubsection{Surface pressure}
857    
858     The surface pressure equation can be obtained by integrating continuity, (%
859     \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$
860    
861     \begin{equation*}
862     \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}%
863 cnh 1.2 }_{h}+\partial _{r}\dot{r}\right) dr=0
864 cnh 1.1 \end{equation*}
865    
866     Thus:
867    
868     \begin{equation*}
869     \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
870     +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}%
871 cnh 1.2 _{h}dr=0
872 cnh 1.1 \end{equation*}
873     where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $%
874     r $. The above can be rearranged to yield, using Leibnitz's theorem:
875    
876     \begin{equation}
877     \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
878     \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
879     \label{eq:free-surface}
880     \end{equation}%
881     where we have incorporated a source term.
882    
883     Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
884     (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can
885     be written
886     \begin{equation}
887 cnh 1.2 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
888 cnh 1.1 \label{eq:phi-surf}
889     \end{equation}%
890     where $b_{s}$ is the buoyancy at the surface.
891    
892     In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref%
893     {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
894     elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
895     surface' and `rigid lid' approaches are available.
896    
897     \subsubsection{Non-hydrostatic pressure}
898    
899     Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{%
900     \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation
901     (\ref{incompressible}), we deduce that:
902    
903     \begin{equation}
904     \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{%
905     \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .%
906     \vec{\mathbf{F}} \label{eq:3d-invert}
907     \end{equation}
908    
909     For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
910     subject to appropriate choice of boundary conditions. This method is usually
911     called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
912     Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
913     the 3-d problem does not need to be solved.
914    
915     \paragraph{Boundary Conditions}
916    
917     We apply the condition of no normal flow through all solid boundaries - the
918     coasts (in the ocean) and the bottom:
919    
920     \begin{equation}
921     \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
922     \end{equation}
923     where $\widehat{n}$ is a vector of unit length normal to the boundary. The
924     kinematic condition (\ref{nonormalflow}) is also applied to the vertical
925     velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $%
926     \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
927     tangential component of velocity, $v_{T}$, at all solid boundaries,
928     depending on the form chosen for the dissipative terms in the momentum
929     equations - see below.
930    
931     Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:
932    
933     \begin{equation}
934     \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
935     \label{eq:inhom-neumann-nh}
936     \end{equation}
937     where
938    
939     \begin{equation*}
940     \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
941     _{s}+\mathbf{\nabla }\phi _{hyd}\right)
942     \end{equation*}%
943     presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
944     (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
945     exploit classical 3D potential theory and, by introducing an appropriately
946 cnh 1.2 chosen $\delta $-function sheet of `source-charge', replace the
947     inhomogeneous boundary condition on pressure by a homogeneous one. The
948     source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $%
949     \vec{\mathbf{F}}.$ By simultaneously setting $%
950 cnh 1.1 \begin{array}{l}
951     \widehat{n}.\vec{\mathbf{F}}%
952     \end{array}%
953     =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
954 cnh 1.2 self-consistent but simpler homogenized Elliptic problem is obtained:
955 cnh 1.1
956     \begin{equation*}
957 cnh 1.2 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
958 cnh 1.1 \end{equation*}%
959     where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
960     that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref%
961     {eq:inhom-neumann-nh}) the modified boundary condition becomes:
962    
963     \begin{equation}
964     \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
965     \end{equation}
966    
967     If the flow is `close' to hydrostatic balance then the 3-d inversion
968     converges rapidly because $\phi _{nh}\ $is then only a small correction to
969     the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
970    
971     The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})
972     does not vanish at $r=R_{moving}$, and so refines the pressure there.
973    
974     \subsection{Forcing/dissipation}
975    
976     \subsubsection{Forcing}
977    
978     The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
979     `physics packages' described in detail in chapter ??.
980    
981     \subsubsection{Dissipation}
982    
983     \paragraph{Momentum}
984    
985     Many forms of momentum dissipation are available in the model. Laplacian and
986     biharmonic frictions are commonly used:
987    
988     \begin{equation}
989     D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}%
990     +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
991     \end{equation}
992     where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
993     coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
994     friction. These coefficients are the same for all velocity components.
995    
996     \paragraph{Tracers}
997    
998     The mixing terms for the temperature and salinity equations have a similar
999     form to that of momentum except that the diffusion tensor can be
1000     non-diagonal and have varying coefficients. $\qquad $%
1001     \begin{equation}
1002     D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
1003     _{h}^{4}(T,S) \label{eq:diffusion}
1004     \end{equation}
1005     where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $%
1006     horizontal coefficient for biharmonic diffusion. In the simplest case where
1007     the subgrid-scale fluxes of heat and salt are parameterized with constant
1008     horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
1009     reduces to a diagonal matrix with constant coefficients:
1010    
1011     \begin{equation}
1012     \qquad \qquad \qquad \qquad K=\left(
1013     \begin{array}{ccc}
1014     K_{h} & 0 & 0 \\
1015     0 & K_{h} & 0 \\
1016     0 & 0 & K_{v}%
1017     \end{array}
1018     \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
1019     \end{equation}
1020     where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
1021     coefficients. These coefficients are the same for all tracers (temperature,
1022     salinity ... ).
1023    
1024     \subsection{Vector invariant form}
1025    
1026     For some purposes it is advantageous to write momentum advection in eq(\ref%
1027     {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:
1028    
1029     \begin{equation}
1030     \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}%
1031     +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla %
1032 cnh 1.2 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1033 cnh 1.1 \label{eq:vi-identity}
1034     \end{equation}%
1035     This permits alternative numerical treatments of the non-linear terms based
1036     on their representation as a vorticity flux. Because gradients of coordinate
1037     vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1038     representation of the metric terms in (\ref{eq:gu-speherical}), (\ref%
1039     {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1040     about the geometry is contained in the areas and lengths of the volumes used
1041     to discretize the model.
1042    
1043     \subsection{Adjoint}
1044    
1045 cnh 1.2 Tangent linear and adjoint counterparts of the forward model and described
1046     in Chapter 5.
1047 cnh 1.1
1048 cnh 1.3 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $
1049 cnh 1.1 % $Name: $
1050    
1051     \section{Appendix ATMOSPHERE}
1052    
1053     \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
1054     coordinates}
1055    
1056     \label{sect-hpe-p}
1057    
1058     The hydrostatic primitive equations (HPEs) in p-coordinates are:
1059     \begin{eqnarray}
1060     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1061 cnh 1.2 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1062 cnh 1.1 \label{eq:atmos-mom} \\
1063 cnh 1.2 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
1064 cnh 1.1 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
1065     \partial p} &=&0 \label{eq:atmos-cont} \\
1066 cnh 1.2 p\alpha &=&RT \label{eq:atmos-eos} \\
1067 cnh 1.1 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1068     \end{eqnarray}%
1069     where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1070     surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1071     \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1072     derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is
1073     the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp%
1074     }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref%
1075     {eq:atmos-heat}) is the first law of thermodynamics where internal energy $%
1076     e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $%
1077     p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1078    
1079     It is convenient to cast the heat equation in terms of potential temperature
1080     $\theta $ so that it looks more like a generic conservation law.
1081     Differentiating (\ref{eq:atmos-eos}) we get:
1082     \begin{equation*}
1083     p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1084     \end{equation*}%
1085     which, when added to the heat equation (\ref{eq:atmos-heat}) and using $%
1086     c_{p}=c_{v}+R$, gives:
1087     \begin{equation}
1088     c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1089     \label{eq-p-heat-interim}
1090     \end{equation}%
1091     Potential temperature is defined:
1092     \begin{equation}
1093     \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1094     \end{equation}%
1095     where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1096     we will make use of the Exner function $\Pi (p)$ which defined by:
1097     \begin{equation}
1098     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1099     \end{equation}%
1100     The following relations will be useful and are easily expressed in terms of
1101     the Exner function:
1102     \begin{equation*}
1103     c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1104     }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{%
1105     \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}%
1106     \frac{Dp}{Dt}
1107     \end{equation*}%
1108     where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1109    
1110     The heat equation is obtained by noting that
1111     \begin{equation*}
1112     c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1113 cnh 1.2 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1114 cnh 1.1 \end{equation*}
1115     and on substituting into (\ref{eq-p-heat-interim}) gives:
1116     \begin{equation}
1117     \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1118     \label{eq:potential-temperature-equation}
1119     \end{equation}
1120     which is in conservative form.
1121    
1122     For convenience in the model we prefer to step forward (\ref%
1123     {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1124    
1125     \subsubsection{Boundary conditions}
1126    
1127     The upper and lower boundary conditions are :
1128     \begin{eqnarray}
1129     \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1130     \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1131     \label{eq:boundary-condition-atmosphere}
1132     \end{eqnarray}
1133     In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1134     =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1135     surface ($\phi $ is imposed and $\omega \neq 0$).
1136    
1137     \subsubsection{Splitting the geo-potential}
1138    
1139     For the purposes of initialization and reducing round-off errors, the model
1140     deals with perturbations from reference (or ``standard'') profiles. For
1141     example, the hydrostatic geopotential associated with the resting atmosphere
1142     is not dynamically relevant and can therefore be subtracted from the
1143     equations. The equations written in terms of perturbations are obtained by
1144     substituting the following definitions into the previous model equations:
1145     \begin{eqnarray}
1146     \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1147     \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1148     \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1149     \end{eqnarray}
1150     The reference state (indicated by subscript ``0'') corresponds to
1151     horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1152     _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1153     _{o}(p_{o})=g~Z_{topo}$, defined:
1154     \begin{eqnarray*}
1155     \theta _{o}(p) &=&f^{n}(p) \\
1156     \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1157     \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1158     \end{eqnarray*}
1159     %\begin{eqnarray*}
1160     %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1161     %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1162     %\end{eqnarray*}
1163    
1164     The final form of the HPE's in p coordinates is then:
1165     \begin{eqnarray}
1166     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1167     _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\
1168     \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1169     \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
1170     \partial p} &=&0 \\
1171     \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1172     \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime}
1173     \end{eqnarray}
1174    
1175 cnh 1.3 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $
1176 cnh 1.1 % $Name: $
1177    
1178     \section{Appendix OCEAN}
1179    
1180     \subsection{Equations of motion for the ocean}
1181    
1182     We review here the method by which the standard (Boussinesq, incompressible)
1183     HPE's for the ocean written in z-coordinates are obtained. The
1184     non-Boussinesq equations for oceanic motion are:
1185     \begin{eqnarray}
1186     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1187     _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1188     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1189     &=&\epsilon _{nh}\mathcal{F}_{w} \\
1190     \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}%
1191     _{h}+\frac{\partial w}{\partial z} &=&0 \\
1192 cnh 1.2 \rho &=&\rho (\theta ,S,p) \\
1193 cnh 1.1 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\
1194     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq}
1195     \end{eqnarray}%
1196     These equations permit acoustics modes, inertia-gravity waves,
1197     non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
1198     mode. As written, they cannot be integrated forward consistently - if we
1199     step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1200     consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref%
1201     {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1202     therefore necessary to manipulate the system as follows. Differentiating the
1203     EOS (equation of state) gives:
1204    
1205     \begin{equation}
1206     \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1207     _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1208     _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1209     _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1210     \end{equation}
1211    
1212     Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1213     reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref%
1214     {eq-zns-cont} gives:
1215     \begin{equation}
1216     \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
1217     v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1218     \end{equation}
1219     where we have used an approximation sign to indicate that we have assumed
1220     adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1221     Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1222     can be explicitly integrated forward:
1223     \begin{eqnarray}
1224     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1225     _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1226     \label{eq-cns-hmom} \\
1227     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1228     &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1229     \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
1230     v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1231     \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1232     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1233     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1234     \end{eqnarray}
1235    
1236     \subsubsection{Compressible z-coordinate equations}
1237    
1238     Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1239     wherever it appears in a product (ie. non-linear term) - this is the
1240     `Boussinesq assumption'. The only term that then retains the full variation
1241     in $\rho $ is the gravitational acceleration:
1242     \begin{eqnarray}
1243     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1244     _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1245     \label{eq-zcb-hmom} \\
1246     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
1247     \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1248     \label{eq-zcb-hydro} \\
1249     \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{%
1250     \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1251     \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1252     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1253     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1254     \end{eqnarray}
1255     These equations still retain acoustic modes. But, because the
1256     ``compressible'' terms are linearized, the pressure equation \ref%
1257     {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1258     term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1259     These are the \emph{truly} compressible Boussinesq equations. Note that the
1260     EOS must have the same pressure dependency as the linearized pressure term,
1261     ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{%
1262     c_{s}^{2}}$, for consistency.
1263    
1264     \subsubsection{`Anelastic' z-coordinate equations}
1265    
1266     The anelastic approximation filters the acoustic mode by removing the
1267     time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}%
1268     ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}%
1269     \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1270     continuity and EOS. A better solution is to change the dependency on
1271     pressure in the EOS by splitting the pressure into a reference function of
1272     height and a perturbation:
1273     \begin{equation*}
1274 cnh 1.2 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1275 cnh 1.1 \end{equation*}
1276     Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1277     differentiating the EOS, the continuity equation then becomes:
1278     \begin{equation*}
1279     \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{%
1280     Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+%
1281 cnh 1.2 \frac{\partial w}{\partial z}=0
1282 cnh 1.1 \end{equation*}
1283     If the time- and space-scales of the motions of interest are longer than
1284     those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},%
1285     \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1286     $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{%
1287     Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1288     ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1289     _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1290     and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1291     anelastic continuity equation:
1292     \begin{equation}
1293     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-%
1294     \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1295     \end{equation}
1296     A slightly different route leads to the quasi-Boussinesq continuity equation
1297     where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+%
1298     \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }%
1299     _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1300     \begin{equation}
1301     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
1302     \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1303     \end{equation}
1304     Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1305     equation if:
1306     \begin{equation}
1307     \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1308     \end{equation}
1309     Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1310     and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{%
1311     g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1312     full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1313     then:
1314     \begin{eqnarray}
1315     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1316     _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1317     \label{eq-zab-hmom} \\
1318     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
1319     \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1320     \label{eq-zab-hydro} \\
1321     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
1322     \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1323     \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1324     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1325     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1326     \end{eqnarray}
1327    
1328     \subsubsection{Incompressible z-coordinate equations}
1329    
1330     Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1331     technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1332     yield the ``truly'' incompressible Boussinesq equations:
1333     \begin{eqnarray}
1334     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1335     _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1336     \label{eq-ztb-hmom} \\
1337     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}%
1338     \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1339     \label{eq-ztb-hydro} \\
1340     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1341     &=&0 \label{eq-ztb-cont} \\
1342     \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1343     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1344     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1345     \end{eqnarray}
1346     where $\rho _{c}$ is a constant reference density of water.
1347    
1348     \subsubsection{Compressible non-divergent equations}
1349    
1350     The above ``incompressible'' equations are incompressible in both the flow
1351     and the density. In many oceanic applications, however, it is important to
1352     retain compressibility effects in the density. To do this we must split the
1353     density thus:
1354     \begin{equation*}
1355     \rho =\rho _{o}+\rho ^{\prime }
1356     \end{equation*}%
1357     We then assert that variations with depth of $\rho _{o}$ are unimportant
1358     while the compressible effects in $\rho ^{\prime }$ are:
1359     \begin{equation*}
1360     \rho _{o}=\rho _{c}
1361     \end{equation*}%
1362     \begin{equation*}
1363     \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1364     \end{equation*}%
1365     This then yields what we can call the semi-compressible Boussinesq
1366     equations:
1367     \begin{eqnarray}
1368     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1369     _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{%
1370     \mathcal{F}}} \label{eq:ocean-mom} \\
1371     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1372     _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1373     \label{eq:ocean-wmom} \\
1374     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1375     &=&0 \label{eq:ocean-cont} \\
1376     \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1377     \\
1378     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1379     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1380     \end{eqnarray}%
1381     Note that the hydrostatic pressure of the resting fluid, including that
1382     associated with $\rho _{c}$, is subtracted out since it has no effect on the
1383     dynamics.
1384    
1385     Though necessary, the assumptions that go into these equations are messy
1386     since we essentially assume a different EOS for the reference density and
1387     the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1388     _{nh}=0$ form of these equations that are used throughout the ocean modeling
1389     community and referred to as the primitive equations (HPE).
1390    
1391 cnh 1.3 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.2 2001/10/09 10:48:03 cnh Exp $
1392 cnh 1.1 % $Name: $
1393    
1394     \section{Appendix:OPERATORS}
1395    
1396     \subsection{Coordinate systems}
1397    
1398     \subsubsection{Spherical coordinates}
1399    
1400     In spherical coordinates, the velocity components in the zonal, meridional
1401     and vertical direction respectively, are given by (see Fig.2) :
1402    
1403     \begin{equation*}
1404 cnh 1.2 u=r\cos \phi \frac{D\lambda }{Dt}
1405 cnh 1.1 \end{equation*}
1406    
1407     \begin{equation*}
1408 cnh 1.2 v=r\frac{D\phi }{Dt}\qquad
1409 cnh 1.1 \end{equation*}
1410     $\qquad \qquad \qquad \qquad $
1411    
1412     \begin{equation*}
1413 cnh 1.2 \dot{r}=\frac{Dr}{Dt}
1414 cnh 1.1 \end{equation*}
1415    
1416     Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1417     distance of the particle from the center of the earth, $\Omega $ is the
1418     angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1419    
1420     The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in
1421     spherical coordinates:
1422    
1423     \begin{equation*}
1424     \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }%
1425     ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}%
1426 cnh 1.2 \right)
1427 cnh 1.1 \end{equation*}
1428    
1429     \begin{equation*}
1430     \nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial
1431     \lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\}
1432 cnh 1.2 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1433 cnh 1.1 \end{equation*}
1434    
1435     %%%% \end{document}

  ViewVC Help
Powered by ViewVC 1.1.22