/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Annotation of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.29 - (hide annotations) (download) (as text)
Mon Aug 30 23:09:21 2010 UTC (14 years, 10 months ago) by jmc
Branch: MAIN
Changes since 1.28: +8 -7 lines
File MIME type: application/x-tex
clean-up latex built:
 (remove multiple definition of label; fix missing reference; replace
  non-standard latex stuff; ...)

1 jmc 1.29 % $Header: /u/gcmpack/manual/s_overview/text/manual.tex,v 1.28 2010/08/27 13:13:30 jmc Exp $
2 cnh 1.2 % $Name: $
3 cnh 1.1
4 adcroft 1.4 %tci%\documentclass[12pt]{book}
5     %tci%\usepackage{amsmath}
6     %tci%\usepackage{html}
7     %tci%\usepackage{epsfig}
8     %tci%\usepackage{graphics,subfigure}
9     %tci%\usepackage{array}
10     %tci%\usepackage{multirow}
11     %tci%\usepackage{fancyhdr}
12     %tci%\usepackage{psfrag}
13    
14     %tci%%TCIDATA{OutputFilter=Latex.dll}
15     %tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
16     %tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
17     %tci%%TCIDATA{Language=American English}
18    
19     %tci%\fancyhead{}
20     %tci%\fancyhead[LO]{\slshape \rightmark}
21     %tci%\fancyhead[RE]{\slshape \leftmark}
22     %tci%\fancyhead[RO,LE]{\thepage}
23     %tci%\fancyfoot[CO,CE]{\today}
24     %tci%\fancyfoot[RO,LE]{ }
25     %tci%\renewcommand{\headrulewidth}{0.4pt}
26     %tci%\renewcommand{\footrulewidth}{0.4pt}
27     %tci%\setcounter{secnumdepth}{3}
28     %tci%\input{tcilatex}
29    
30     %tci%\begin{document}
31    
32     %tci%\tableofcontents
33    
34    
35 cnh 1.1 % Section: Overview
36    
37 jmc 1.29 % $Header: /u/gcmpack/manual/s_overview/text/manual.tex,v 1.28 2010/08/27 13:13:30 jmc Exp $
38 cnh 1.1 % $Name: $
39    
40 cnh 1.16 This document provides the reader with the information necessary to
41 cnh 1.1 carry out numerical experiments using MITgcm. It gives a comprehensive
42     description of the continuous equations on which the model is based, the
43     numerical algorithms the model employs and a description of the associated
44     program code. Along with the hydrodynamical kernel, physical and
45     biogeochemical parameterizations of key atmospheric and oceanic processes
46     are available. A number of examples illustrating the use of the model in
47     both process and general circulation studies of the atmosphere and ocean are
48     also presented.
49    
50 cnh 1.16 \section{Introduction}
51 afe 1.18 \begin{rawhtml}
52 afe 1.19 <!-- CMIREDIR:innovations: -->
53 afe 1.18 \end{rawhtml}
54    
55 cnh 1.16
56 cnh 1.1 MITgcm has a number of novel aspects:
57    
58     \begin{itemize}
59     \item it can be used to study both atmospheric and oceanic phenomena; one
60     hydrodynamical kernel is used to drive forward both atmospheric and oceanic
61 cnh 1.7 models - see fig \ref{fig:onemodel}
62 cnh 1.1
63 cnh 1.3 %% CNHbegin
64 jmc 1.28 \input{s_overview/text/one_model_figure}
65 cnh 1.3 %% CNHend
66    
67 cnh 1.1 \item it has a non-hydrostatic capability and so can be used to study both
68 cnh 1.7 small-scale and large scale processes - see fig \ref{fig:all-scales}
69 cnh 1.1
70 cnh 1.3 %% CNHbegin
71 jmc 1.28 \input{s_overview/text/all_scales_figure}
72 cnh 1.3 %% CNHend
73    
74 cnh 1.1 \item finite volume techniques are employed yielding an intuitive
75     discretization and support for the treatment of irregular geometries using
76 cnh 1.7 orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
77 cnh 1.3
78     %% CNHbegin
79 jmc 1.28 \input{s_overview/text/fvol_figure}
80 cnh 1.3 %% CNHend
81 cnh 1.1
82     \item tangent linear and adjoint counterparts are automatically maintained
83     along with the forward model, permitting sensitivity and optimization
84     studies.
85    
86     \item the model is developed to perform efficiently on a wide variety of
87     computational platforms.
88     \end{itemize}
89    
90 jmc 1.27
91 cnh 1.16 Key publications reporting on and charting the development of the model are
92 jmc 1.27 \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,mars-eta:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04}
93     (an overview on the model formulation can also be found in \cite{adcroft:04c}):
94 cnh 1.12
95     \begin{verbatim}
96     Hill, C. and J. Marshall, (1995)
97     Application of a Parallel Navier-Stokes Model to Ocean Circulation in
98     Parallel Computational Fluid Dynamics
99     In Proceedings of Parallel Computational Fluid Dynamics: Implementations
100     and Results Using Parallel Computers, 545-552.
101     Elsevier Science B.V.: New York
102    
103     Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
104 cnh 1.16 Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling
105 cnh 1.12 J. Geophysical Res., 102(C3), 5733-5752.
106    
107     Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
108     A finite-volume, incompressible Navier Stokes model for studies of the ocean
109     on parallel computers,
110     J. Geophysical Res., 102(C3), 5753-5766.
111    
112     Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
113     Representation of topography by shaved cells in a height coordinate ocean
114     model
115     Mon Wea Rev, vol 125, 2293-2315
116    
117     Marshall, J., Jones, H. and C. Hill, (1998)
118     Efficient ocean modeling using non-hydrostatic algorithms
119     Journal of Marine Systems, 18, 115-134
120    
121     Adcroft, A., Hill C. and J. Marshall: (1999)
122     A new treatment of the Coriolis terms in C-grid models at both high and low
123     resolutions,
124     Mon. Wea. Rev. Vol 127, pages 1928-1936
125    
126     Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
127     A Strategy for Terascale Climate Modeling.
128 cnh 1.14 In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
129     in Meteorology, pages 406-425
130     World Scientific Publishing Co: UK
131 cnh 1.12
132     Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
133     Construction of the adjoint MIT ocean general circulation model and
134     application to Atlantic heat transport variability
135     J. Geophysical Res., 104(C12), 29,529-29,547.
136    
137     \end{verbatim}
138 cnh 1.1
139     We begin by briefly showing some of the results of the model in action to
140     give a feel for the wide range of problems that can be addressed using it.
141    
142 jmc 1.29 % $Header: /u/gcmpack/manual/s_overview/text/manual.tex,v 1.28 2010/08/27 13:13:30 jmc Exp $
143 cnh 1.1 % $Name: $
144    
145     \section{Illustrations of the model in action}
146    
147 edhill 1.24 MITgcm has been designed and used to model a wide range of phenomena,
148 cnh 1.1 from convection on the scale of meters in the ocean to the global pattern of
149 cnh 1.7 atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
150 cnh 1.1 kinds of problems the model has been used to study, we briefly describe some
151     of them here. A more detailed description of the underlying formulation,
152     numerical algorithm and implementation that lie behind these calculations is
153 cnh 1.2 given later. Indeed many of the illustrative examples shown below can be
154     easily reproduced: simply download the model (the minimum you need is a PC
155 cnh 1.10 running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
156 cnh 1.2 described in detail in the documentation.
157 cnh 1.1
158     \subsection{Global atmosphere: `Held-Suarez' benchmark}
159 afe 1.18 \begin{rawhtml}
160 afe 1.19 <!-- CMIREDIR:atmospheric_example: -->
161 afe 1.18 \end{rawhtml}
162    
163    
164 cnh 1.1
165 cnh 1.7 A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
166     both atmospheric and oceanographic flows at both small and large scales.
167 cnh 1.2
168 cnh 1.7 Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
169 cnh 1.2 temperature field obtained using the atmospheric isomorph of MITgcm run at
170 edhill 1.25 $2.8^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
171 cnh 1.2 (blue) and warm air along an equatorial band (red). Fully developed
172     baroclinic eddies spawned in the northern hemisphere storm track are
173     evident. There are no mountains or land-sea contrast in this calculation,
174     but you can easily put them in. The model is driven by relaxation to a
175     radiative-convective equilibrium profile, following the description set out
176     in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
177     there are no mountains or land-sea contrast.
178    
179 cnh 1.3 %% CNHbegin
180 jmc 1.28 \input{s_overview/text/cubic_eddies_figure}
181 cnh 1.3 %% CNHend
182    
183 cnh 1.2 As described in Adcroft (2001), a `cubed sphere' is used to discretize the
184 cnh 1.10 globe permitting a uniform griding and obviated the need to Fourier filter.
185 cnh 1.2 The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
186     grid, of which the cubed sphere is just one of many choices.
187 cnh 1.1
188 cnh 1.7 Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal
189     wind from a 20-level configuration of
190 cnh 1.2 the model. It compares favorable with more conventional spatial
191 cnh 1.7 discretization approaches. The two plots show the field calculated using the
192     cube-sphere grid and the flow calculated using a regular, spherical polar
193     latitude-longitude grid. Both grids are supported within the model.
194 cnh 1.1
195 cnh 1.3 %% CNHbegin
196 jmc 1.28 \input{s_overview/text/hs_zave_u_figure}
197 cnh 1.3 %% CNHend
198    
199 cnh 1.2 \subsection{Ocean gyres}
200 afe 1.18 \begin{rawhtml}
201 afe 1.19 <!-- CMIREDIR:oceanic_example: -->
202 afe 1.18 \end{rawhtml}
203     \begin{rawhtml}
204 afe 1.19 <!-- CMIREDIR:ocean_gyres: -->
205 afe 1.18 \end{rawhtml}
206 cnh 1.1
207 cnh 1.2 Baroclinic instability is a ubiquitous process in the ocean, as well as the
208     atmosphere. Ocean eddies play an important role in modifying the
209     hydrographic structure and current systems of the oceans. Coarse resolution
210     models of the oceans cannot resolve the eddy field and yield rather broad,
211     diffusive patterns of ocean currents. But if the resolution of our models is
212     increased until the baroclinic instability process is resolved, numerical
213     solutions of a different and much more realistic kind, can be obtained.
214    
215 edhill 1.25 Figure \ref{fig:ocean-gyres} shows the surface temperature and
216     velocity field obtained from MITgcm run at $\frac{1}{6}^{\circ }$
217     horizontal resolution on a \textit{lat-lon} grid in which the pole has
218     been rotated by $90^{\circ }$ on to the equator (to avoid the
219     converging of meridian in northern latitudes). 21 vertical levels are
220     used in the vertical with a `lopped cell' representation of
221     topography. The development and propagation of anomalously warm and
222     cold eddies can be clearly seen in the Gulf Stream region. The
223     transport of warm water northward by the mean flow of the Gulf Stream
224     is also clearly visible.
225 cnh 1.1
226 cnh 1.3 %% CNHbegin
227 jmc 1.28 \input{s_overview/text/atl6_figure}
228 cnh 1.3 %% CNHend
229    
230    
231 cnh 1.1 \subsection{Global ocean circulation}
232 afe 1.18 \begin{rawhtml}
233 afe 1.19 <!-- CMIREDIR:global_ocean_circulation: -->
234 afe 1.18 \end{rawhtml}
235 cnh 1.1
236 edhill 1.25 Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean
237     currents at the surface of a $4^{\circ }$ global ocean model run with
238     15 vertical levels. Lopped cells are used to represent topography on a
239     regular \textit{lat-lon} grid extending from $70^{\circ }N$ to
240     $70^{\circ }S$. The model is driven using monthly-mean winds with
241     mixed boundary conditions on temperature and salinity at the surface.
242     The transfer properties of ocean eddies, convection and mixing is
243     parameterized in this model.
244 cnh 1.2
245 cnh 1.7 Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
246     circulation of the global ocean in Sverdrups.
247 cnh 1.2
248 cnh 1.3 %%CNHbegin
249 jmc 1.28 \input{s_overview/text/global_circ_figure}
250 cnh 1.3 %%CNHend
251    
252 cnh 1.2 \subsection{Convection and mixing over topography}
253 afe 1.18 \begin{rawhtml}
254 afe 1.19 <!-- CMIREDIR:mixing_over_topography: -->
255 afe 1.18 \end{rawhtml}
256    
257 cnh 1.2
258     Dense plumes generated by localized cooling on the continental shelf of the
259     ocean may be influenced by rotation when the deformation radius is smaller
260     than the width of the cooling region. Rather than gravity plumes, the
261     mechanism for moving dense fluid down the shelf is then through geostrophic
262 adcroft 1.9 eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
263 cnh 1.7 (blue is cold dense fluid, red is
264 cnh 1.2 warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
265     trigger convection by surface cooling. The cold, dense water falls down the
266     slope but is deflected along the slope by rotation. It is found that
267     entrainment in the vertical plane is reduced when rotational control is
268     strong, and replaced by lateral entrainment due to the baroclinic
269     instability of the along-slope current.
270 cnh 1.1
271 cnh 1.3 %%CNHbegin
272 jmc 1.28 \input{s_overview/text/convect_and_topo}
273 cnh 1.3 %%CNHend
274    
275 cnh 1.1 \subsection{Boundary forced internal waves}
276 afe 1.18 \begin{rawhtml}
277 afe 1.19 <!-- CMIREDIR:boundary_forced_internal_waves: -->
278 afe 1.18 \end{rawhtml}
279 cnh 1.1
280 cnh 1.2 The unique ability of MITgcm to treat non-hydrostatic dynamics in the
281     presence of complex geometry makes it an ideal tool to study internal wave
282     dynamics and mixing in oceanic canyons and ridges driven by large amplitude
283     barotropic tidal currents imposed through open boundary conditions.
284    
285 cnh 1.7 Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope
286     topographic variations on
287 cnh 1.2 internal wave breaking - the cross-slope velocity is in color, the density
288     contoured. The internal waves are excited by application of open boundary
289 cnh 1.7 conditions on the left. They propagate to the sloping boundary (represented
290 cnh 1.2 using MITgcm's finite volume spatial discretization) where they break under
291     nonhydrostatic dynamics.
292    
293 cnh 1.3 %%CNHbegin
294 jmc 1.28 \input{s_overview/text/boundary_forced_waves}
295 cnh 1.3 %%CNHend
296    
297 cnh 1.2 \subsection{Parameter sensitivity using the adjoint of MITgcm}
298 afe 1.18 \begin{rawhtml}
299 afe 1.19 <!-- CMIREDIR:parameter_sensitivity: -->
300 afe 1.18 \end{rawhtml}
301 cnh 1.2
302     Forward and tangent linear counterparts of MITgcm are supported using an
303     `automatic adjoint compiler'. These can be used in parameter sensitivity and
304     data assimilation studies.
305    
306 edhill 1.25 As one example of application of the MITgcm adjoint, Figure
307     \ref{fig:hf-sensitivity} maps the gradient $\frac{\partial J}{\partial
308     \mathcal{H}}$where $J$ is the magnitude of the overturning
309     stream-function shown in figure \ref{fig:large-scale-circ} at
310     $60^{\circ }N$ and $ \mathcal{H}(\lambda,\varphi)$ is the mean, local
311     air-sea heat flux over a 100 year period. We see that $J$ is sensitive
312     to heat fluxes over the Labrador Sea, one of the important sources of
313     deep water for the thermohaline circulations. This calculation also
314 cnh 1.2 yields sensitivities to all other model parameters.
315    
316 cnh 1.3 %%CNHbegin
317 jmc 1.28 \input{s_overview/text/adj_hf_ocean_figure}
318 cnh 1.3 %%CNHend
319    
320 cnh 1.2 \subsection{Global state estimation of the ocean}
321 afe 1.18 \begin{rawhtml}
322 afe 1.19 <!-- CMIREDIR:global_state_estimation: -->
323 afe 1.18 \end{rawhtml}
324    
325 cnh 1.2
326     An important application of MITgcm is in state estimation of the global
327     ocean circulation. An appropriately defined `cost function', which measures
328     the departure of the model from observations (both remotely sensed and
329 cnh 1.10 in-situ) over an interval of time, is minimized by adjusting `control
330 cnh 1.2 parameters' such as air-sea fluxes, the wind field, the initial conditions
331 cnh 1.15 etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary
332     circulation and a Hopf-Muller plot of Equatorial sea-surface height.
333     Both are obtained from assimilation bringing the model in to
334 cnh 1.7 consistency with altimetric and in-situ observations over the period
335 cnh 1.15 1992-1997.
336 cnh 1.2
337 cnh 1.3 %% CNHbegin
338 jmc 1.28 \input{s_overview/text/assim_figure}
339 cnh 1.3 %% CNHend
340    
341 cnh 1.2 \subsection{Ocean biogeochemical cycles}
342 afe 1.18 \begin{rawhtml}
343 afe 1.19 <!-- CMIREDIR:ocean_biogeo_cycles: -->
344 afe 1.18 \end{rawhtml}
345 cnh 1.2
346 edhill 1.25 MITgcm is being used to study global biogeochemical cycles in the
347     ocean. For example one can study the effects of interannual changes in
348     meteorological forcing and upper ocean circulation on the fluxes of
349     carbon dioxide and oxygen between the ocean and atmosphere. Figure
350     \ref{fig:biogeo} shows the annual air-sea flux of oxygen and its
351     relation to density outcrops in the southern oceans from a single year
352     of a global, interannually varying simulation. The simulation is run
353     at $1^{\circ}\times1^{\circ}$ resolution telescoping to
354     $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not
355     shown).
356 cnh 1.2
357 cnh 1.3 %%CNHbegin
358 jmc 1.28 \input{s_overview/text/biogeo_figure}
359 cnh 1.3 %%CNHend
360 cnh 1.2
361     \subsection{Simulations of laboratory experiments}
362 afe 1.18 \begin{rawhtml}
363 afe 1.19 <!-- CMIREDIR:classroom_exp: -->
364 afe 1.18 \end{rawhtml}
365 cnh 1.2
366 cnh 1.7 Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
367 edhill 1.17 laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An
368 cnh 1.2 initially homogeneous tank of water ($1m$ in diameter) is driven from its
369     free surface by a rotating heated disk. The combined action of mechanical
370     and thermal forcing creates a lens of fluid which becomes baroclinically
371     unstable. The stratification and depth of penetration of the lens is
372 cnh 1.7 arrested by its instability in a process analogous to that which sets the
373 cnh 1.2 stratification of the ACC.
374 cnh 1.1
375 cnh 1.3 %%CNHbegin
376 jmc 1.28 \input{s_overview/text/lab_figure}
377 cnh 1.3 %%CNHend
378    
379 jmc 1.29 % $Header: /u/gcmpack/manual/s_overview/text/manual.tex,v 1.28 2010/08/27 13:13:30 jmc Exp $
380 cnh 1.1 % $Name: $
381    
382     \section{Continuous equations in `r' coordinates}
383 afe 1.18 \begin{rawhtml}
384 afe 1.19 <!-- CMIREDIR:z-p_isomorphism: -->
385 afe 1.18 \end{rawhtml}
386 cnh 1.1
387     To render atmosphere and ocean models from one dynamical core we exploit
388     `isomorphisms' between equation sets that govern the evolution of the
389 cnh 1.7 respective fluids - see figure \ref{fig:isomorphic-equations}.
390     One system of hydrodynamical equations is written down
391 cnh 1.1 and encoded. The model variables have different interpretations depending on
392     whether the atmosphere or ocean is being studied. Thus, for example, the
393     vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
394 edhill 1.17 modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations})
395     and height, $z$, if we are modeling the ocean (left hand side of figure
396 cnh 1.7 \ref{fig:isomorphic-equations}).
397 cnh 1.1
398 cnh 1.3 %%CNHbegin
399 jmc 1.28 \input{s_overview/text/zandpcoord_figure.tex}
400 cnh 1.3 %%CNHend
401    
402 cnh 1.1 The state of the fluid at any time is characterized by the distribution of
403     velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
404     `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
405     depend on $\theta $, $S$, and $p$. The equations that govern the evolution
406     of these fields, obtained by applying the laws of classical mechanics and
407     thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
408 cnh 1.7 a generic vertical coordinate, $r$, so that the appropriate
409     kinematic boundary conditions can be applied isomorphically
410     see figure \ref{fig:zandp-vert-coord}.
411 cnh 1.1
412 cnh 1.3 %%CNHbegin
413 jmc 1.28 \input{s_overview/text/vertcoord_figure.tex}
414 cnh 1.3 %%CNHend
415    
416 jmc 1.20 \begin{equation}
417 adcroft 1.4 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
418     \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
419 cnh 1.8 \text{ horizontal mtm} \label{eq:horizontal_mtm}
420 jmc 1.20 \end{equation}
421 cnh 1.1
422 cnh 1.8 \begin{equation}
423 adcroft 1.4 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
424 cnh 1.1 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
425 cnh 1.8 vertical mtm} \label{eq:vertical_mtm}
426     \end{equation}
427 cnh 1.1
428     \begin{equation}
429 adcroft 1.4 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
430 cnh 1.8 \partial r}=0\text{ continuity} \label{eq:continuity}
431 cnh 1.1 \end{equation}
432    
433 cnh 1.8 \begin{equation}
434     b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
435     \end{equation}
436 cnh 1.1
437 cnh 1.8 \begin{equation}
438 cnh 1.2 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
439 cnh 1.8 \label{eq:potential_temperature}
440     \end{equation}
441 cnh 1.1
442 cnh 1.8 \begin{equation}
443 cnh 1.2 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
444 adcroft 1.9 \label{eq:humidity_salt}
445 cnh 1.8 \end{equation}
446 cnh 1.1
447     Here:
448    
449     \begin{equation*}
450 cnh 1.2 r\text{ is the vertical coordinate}
451 cnh 1.1 \end{equation*}
452    
453     \begin{equation*}
454     \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
455 cnh 1.2 is the total derivative}
456 cnh 1.1 \end{equation*}
457    
458     \begin{equation*}
459 adcroft 1.4 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
460 cnh 1.2 \text{ is the `grad' operator}
461 cnh 1.1 \end{equation*}
462 adcroft 1.4 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
463 cnh 1.1 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
464     is a unit vector in the vertical
465    
466     \begin{equation*}
467 cnh 1.2 t\text{ is time}
468 cnh 1.1 \end{equation*}
469    
470     \begin{equation*}
471     \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
472 cnh 1.2 velocity}
473 cnh 1.1 \end{equation*}
474    
475     \begin{equation*}
476 cnh 1.2 \phi \text{ is the `pressure'/`geopotential'}
477 cnh 1.1 \end{equation*}
478    
479     \begin{equation*}
480 cnh 1.2 \vec{\Omega}\text{ is the Earth's rotation}
481 cnh 1.1 \end{equation*}
482    
483     \begin{equation*}
484 cnh 1.2 b\text{ is the `buoyancy'}
485 cnh 1.1 \end{equation*}
486    
487     \begin{equation*}
488 cnh 1.2 \theta \text{ is potential temperature}
489 cnh 1.1 \end{equation*}
490    
491     \begin{equation*}
492 cnh 1.2 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
493 cnh 1.1 \end{equation*}
494    
495     \begin{equation*}
496 adcroft 1.4 \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
497 cnh 1.1 \mathbf{v}}
498     \end{equation*}
499    
500     \begin{equation*}
501 cnh 1.2 \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta
502 cnh 1.1 \end{equation*}
503    
504     \begin{equation*}
505     \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
506     \end{equation*}
507    
508     The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
509 cnh 1.7 `physics' and forcing packages for atmosphere and ocean. These are described
510     in later chapters.
511 cnh 1.1
512     \subsection{Kinematic Boundary conditions}
513    
514     \subsubsection{vertical}
515    
516 cnh 1.7 at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
517 cnh 1.1
518     \begin{equation}
519 edhill 1.17 \dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
520 cnh 1.1 \label{eq:fixedbc}
521     \end{equation}
522    
523     \begin{equation}
524 edhill 1.17 \dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \
525 cnh 1.10 (ocean surface,bottom of the atmosphere)} \label{eq:movingbc}
526 cnh 1.1 \end{equation}
527    
528     Here
529    
530     \begin{equation*}
531 cnh 1.2 R_{moving}=R_{o}+\eta
532 cnh 1.1 \end{equation*}
533     where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
534     whether we are in the atmosphere or ocean) of the `moving surface' in the
535     resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
536     of motion.
537    
538     \subsubsection{horizontal}
539    
540     \begin{equation}
541     \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
542 adcroft 1.4 \end{equation}
543 cnh 1.1 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
544    
545     \subsection{Atmosphere}
546    
547 cnh 1.7 In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret:
548 cnh 1.1
549     \begin{equation}
550     r=p\text{ is the pressure} \label{eq:atmos-r}
551     \end{equation}
552    
553     \begin{equation}
554     \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
555     coordinates} \label{eq:atmos-omega}
556     \end{equation}
557    
558     \begin{equation}
559     \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
560     \end{equation}
561    
562     \begin{equation}
563     b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
564     \label{eq:atmos-b}
565     \end{equation}
566    
567     \begin{equation}
568     \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
569     \label{eq:atmos-theta}
570     \end{equation}
571    
572     \begin{equation}
573     S=q,\text{ is the specific humidity} \label{eq:atmos-s}
574     \end{equation}
575     where
576    
577     \begin{equation*}
578     T\text{ is absolute temperature}
579 adcroft 1.4 \end{equation*}
580 cnh 1.1 \begin{equation*}
581     p\text{ is the pressure}
582 adcroft 1.4 \end{equation*}
583 cnh 1.1 \begin{eqnarray*}
584     &&z\text{ is the height of the pressure surface} \\
585     &&g\text{ is the acceleration due to gravity}
586     \end{eqnarray*}
587    
588     In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
589     the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
590     \begin{equation}
591     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
592 adcroft 1.4 \end{equation}
593 cnh 1.1 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
594     constant and $c_{p}$ the specific heat of air at constant pressure.
595    
596     At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
597    
598     \begin{equation*}
599 cnh 1.2 R_{fixed}=p_{top}=0
600 cnh 1.1 \end{equation*}
601     In a resting atmosphere the elevation of the mountains at the bottom is
602     given by
603     \begin{equation*}
604 cnh 1.2 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
605 cnh 1.1 \end{equation*}
606     i.e. the (hydrostatic) pressure at the top of the mountains in a resting
607     atmosphere.
608    
609     The boundary conditions at top and bottom are given by:
610    
611     \begin{eqnarray}
612     &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
613     \label{eq:fixed-bc-atmos} \\
614     \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
615     atmosphere)} \label{eq:moving-bc-atmos}
616     \end{eqnarray}
617    
618 edhill 1.21 Then the (hydrostatic form of) equations
619     (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yields a consistent
620     set of atmospheric equations which, for convenience, are written out
621     in $p$ coordinates in Appendix Atmosphere - see
622     eqs(\ref{eq:atmos-prime}).
623 cnh 1.1
624     \subsection{Ocean}
625    
626     In the ocean we interpret:
627     \begin{eqnarray}
628     r &=&z\text{ is the height} \label{eq:ocean-z} \\
629     \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
630     \label{eq:ocean-w} \\
631     \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
632     b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
633     _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
634     \end{eqnarray}
635     where $\rho _{c}$ is a fixed reference density of water and $g$ is the
636     acceleration due to gravity.\noindent
637    
638     In the above
639    
640     At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
641    
642     The surface of the ocean is given by: $R_{moving}=\eta $
643    
644 adcroft 1.4 The position of the resting free surface of the ocean is given by $
645 cnh 1.1 R_{o}=Z_{o}=0$.
646    
647     Boundary conditions are:
648    
649     \begin{eqnarray}
650     w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
651     \\
652 adcroft 1.4 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
653 cnh 1.1 \label{eq:moving-bc-ocean}}
654     \end{eqnarray}
655     where $\eta $ is the elevation of the free surface.
656    
657 adcroft 1.9 Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
658 cnh 1.8 of oceanic equations
659 cnh 1.1 which, for convenience, are written out in $z$ coordinates in Appendix Ocean
660     - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
661    
662     \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
663     Non-hydrostatic forms}
664 jmc 1.29 \label{sec:all_hydrostatic_forms}
665 afe 1.18 \begin{rawhtml}
666 afe 1.19 <!-- CMIREDIR:non_hydrostatic: -->
667 afe 1.18 \end{rawhtml}
668    
669 cnh 1.1
670     Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
671    
672     \begin{equation}
673     \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
674     \label{eq:phi-split}
675 adcroft 1.4 \end{equation}
676 jmc 1.20 %and write eq(\ref{eq:incompressible}) in the form:
677     % ^- this eq is missing (jmc) ; replaced with:
678     and write eq( \ref{eq:horizontal_mtm}) in the form:
679 cnh 1.1
680     \begin{equation}
681     \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
682     _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
683     _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
684     \end{equation}
685    
686     \begin{equation}
687     \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
688     \end{equation}
689    
690     \begin{equation}
691 adcroft 1.4 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
692 cnh 1.1 \partial r}=G_{\dot{r}} \label{eq:mom-w}
693     \end{equation}
694     Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
695    
696 adcroft 1.4 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
697 cnh 1.1 {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
698 adcroft 1.4 terms in the momentum equations. In spherical coordinates they take the form
699     \footnote{
700 cnh 1.1 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
701 adcroft 1.4 in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref
702 cnh 1.1 {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
703 adcroft 1.4 the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (
704 cnh 1.1 \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
705     discussion:
706    
707     \begin{equation}
708     \left.
709     \begin{tabular}{l}
710     $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
711 cnh 1.6 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $
712 cnh 1.1 \\
713 cnh 1.6 $-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $
714 cnh 1.1 \\
715 adcroft 1.4 $+\mathcal{F}_{u}$
716     \end{tabular}
717 cnh 1.1 \ \right\} \left\{
718     \begin{tabular}{l}
719     \textit{advection} \\
720     \textit{metric} \\
721     \textit{Coriolis} \\
722 adcroft 1.4 \textit{\ Forcing/Dissipation}
723     \end{tabular}
724 cnh 1.2 \ \right. \qquad \label{eq:gu-speherical}
725 cnh 1.1 \end{equation}
726    
727     \begin{equation}
728     \left.
729     \begin{tabular}{l}
730     $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
731 cnh 1.6 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}
732 cnh 1.1 $ \\
733 cnh 1.6 $-\left\{ -2\Omega u\sin \varphi \right\} $ \\
734 adcroft 1.4 $+\mathcal{F}_{v}$
735     \end{tabular}
736 cnh 1.1 \ \right\} \left\{
737     \begin{tabular}{l}
738     \textit{advection} \\
739     \textit{metric} \\
740     \textit{Coriolis} \\
741 adcroft 1.4 \textit{\ Forcing/Dissipation}
742     \end{tabular}
743 cnh 1.2 \ \right. \qquad \label{eq:gv-spherical}
744 adcroft 1.4 \end{equation}
745 cnh 1.2 \qquad \qquad \qquad \qquad \qquad
746 cnh 1.1
747     \begin{equation}
748     \left.
749     \begin{tabular}{l}
750     $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
751     $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
752 cnh 1.6 ${+}\underline{{2\Omega u\cos \varphi}}$ \\
753 adcroft 1.4 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
754     \end{tabular}
755 cnh 1.1 \ \right\} \left\{
756     \begin{tabular}{l}
757     \textit{advection} \\
758     \textit{metric} \\
759     \textit{Coriolis} \\
760 adcroft 1.4 \textit{\ Forcing/Dissipation}
761     \end{tabular}
762 cnh 1.2 \ \right. \label{eq:gw-spherical}
763 adcroft 1.4 \end{equation}
764 cnh 1.2 \qquad \qquad \qquad \qquad \qquad
765 cnh 1.1
766 cnh 1.6 In the above `${r}$' is the distance from the center of the earth and `$\varphi$
767 cnh 1.1 ' is latitude.
768    
769     Grad and div operators in spherical coordinates are defined in appendix
770 adcroft 1.4 OPERATORS.
771 cnh 1.1
772 cnh 1.3 %%CNHbegin
773 jmc 1.28 \input{s_overview/text/sphere_coord_figure.tex}
774 cnh 1.3 %%CNHend
775    
776 cnh 1.1 \subsubsection{Shallow atmosphere approximation}
777    
778 edhill 1.24 Most models are based on the `hydrostatic primitive equations' (HPE's)
779     in which the vertical momentum equation is reduced to a statement of
780     hydrostatic balance and the `traditional approximation' is made in
781     which the Coriolis force is treated approximately and the shallow
782     atmosphere approximation is made. MITgcm need not make the
783     `traditional approximation'. To be able to support consistent
784     non-hydrostatic forms the shallow atmosphere approximation can be
785     relaxed - when dividing through by $ r $ in, for example,
786     (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, the radius of
787     the earth.
788 cnh 1.1
789     \subsubsection{Hydrostatic and quasi-hydrostatic forms}
790 cnh 1.7 \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
791 cnh 1.1
792     These are discussed at length in Marshall et al (1997a).
793    
794     In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
795     terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
796     are neglected and `${r}$' is replaced by `$a$', the mean radius of the
797     earth. Once the pressure is found at one level - e.g. by inverting a 2-d
798     Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
799 adcroft 1.4 computed at all other levels by integration of the hydrostatic relation, eq(
800 cnh 1.1 \ref{eq:hydrostatic}).
801    
802     In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
803     gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
804 cnh 1.6 \varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
805 adcroft 1.4 contribution to the pressure field: only the terms underlined twice in Eqs. (
806 cnh 1.1 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
807     and, simultaneously, the shallow atmosphere approximation is relaxed. In
808     \textbf{QH}\ \textit{all} the metric terms are retained and the full
809     variation of the radial position of a particle monitored. The \textbf{QH}\
810     vertical momentum equation (\ref{eq:mom-w}) becomes:
811    
812     \begin{equation*}
813 cnh 1.6 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi
814 cnh 1.1 \end{equation*}
815     making a small correction to the hydrostatic pressure.
816    
817     \textbf{QH} has good energetic credentials - they are the same as for
818     \textbf{HPE}. Importantly, however, it has the same angular momentum
819     principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
820     et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
821    
822     \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
823    
824 edhill 1.24 MITgcm presently supports a full non-hydrostatic ocean isomorph, but
825 cnh 1.1 only a quasi-non-hydrostatic atmospheric isomorph.
826    
827     \paragraph{Non-hydrostatic Ocean}
828    
829 adcroft 1.4 In the non-hydrostatic ocean model all terms in equations Eqs.(\ref
830 cnh 1.1 {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
831     three dimensional elliptic equation must be solved subject to Neumann
832     boundary conditions (see below). It is important to note that use of the
833     full \textbf{NH} does not admit any new `fast' waves in to the system - the
834 cnh 1.8 incompressible condition eq(\ref{eq:continuity}) has already filtered out
835 cnh 1.1 acoustic modes. It does, however, ensure that the gravity waves are treated
836     accurately with an exact dispersion relation. The \textbf{NH} set has a
837     complete angular momentum principle and consistent energetics - see White
838     and Bromley, 1995; Marshall et.al.\ 1997a.
839    
840     \paragraph{Quasi-nonhydrostatic Atmosphere}
841    
842 adcroft 1.4 In the non-hydrostatic version of our atmospheric model we approximate $\dot{
843 cnh 1.1 r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
844     (but only here) by:
845    
846     \begin{equation}
847     \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
848 adcroft 1.4 \end{equation}
849 cnh 1.1 where $p_{hy}$ is the hydrostatic pressure.
850    
851     \subsubsection{Summary of equation sets supported by model}
852    
853     \paragraph{Atmosphere}
854    
855     Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
856     compressible non-Boussinesq equations in $p-$coordinates are supported.
857    
858     \subparagraph{Hydrostatic and quasi-hydrostatic}
859    
860     The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
861     - see eq(\ref{eq:atmos-prime}).
862    
863     \subparagraph{Quasi-nonhydrostatic}
864    
865     A quasi-nonhydrostatic form is also supported.
866    
867     \paragraph{Ocean}
868    
869     \subparagraph{Hydrostatic and quasi-hydrostatic}
870    
871     Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
872     equations in $z-$coordinates are supported.
873    
874     \subparagraph{Non-hydrostatic}
875    
876 adcroft 1.4 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
877     coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref
878 cnh 1.1 {eq:ocean-salt}).
879    
880     \subsection{Solution strategy}
881    
882 adcroft 1.4 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
883 cnh 1.8 NH} models is summarized in Figure \ref{fig:solution-strategy}.
884     Under all dynamics, a 2-d elliptic equation is
885 cnh 1.1 first solved to find the surface pressure and the hydrostatic pressure at
886     any level computed from the weight of fluid above. Under \textbf{HPE} and
887     \textbf{QH} dynamics, the horizontal momentum equations are then stepped
888     forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
889     3-d elliptic equation must be solved for the non-hydrostatic pressure before
890     stepping forward the horizontal momentum equations; $\dot{r}$ is found by
891     stepping forward the vertical momentum equation.
892    
893 cnh 1.3 %%CNHbegin
894 jmc 1.28 \input{s_overview/text/solution_strategy_figure.tex}
895 cnh 1.3 %%CNHend
896    
897 cnh 1.1 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
898 cnh 1.6 course, some complication that goes with the inclusion of $\cos \varphi \ $
899 cnh 1.1 Coriolis terms and the relaxation of the shallow atmosphere approximation.
900     But this leads to negligible increase in computation. In \textbf{NH}, in
901     contrast, one additional elliptic equation - a three-dimensional one - must
902     be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
903     essentially negligible in the hydrostatic limit (see detailed discussion in
904     Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
905     hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
906    
907     \subsection{Finding the pressure field}
908 cnh 1.7 \label{sec:finding_the_pressure_field}
909 cnh 1.1
910     Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
911     pressure field must be obtained diagnostically. We proceed, as before, by
912     dividing the total (pressure/geo) potential in to three parts, a surface
913     part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
914     non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
915     writing the momentum equation as in (\ref{eq:mom-h}).
916    
917     \subsubsection{Hydrostatic pressure}
918    
919     Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
920     vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
921    
922     \begin{equation*}
923 adcroft 1.4 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
924 cnh 1.2 \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
925 cnh 1.1 \end{equation*}
926     and so
927    
928     \begin{equation}
929     \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
930     \end{equation}
931    
932     The model can be easily modified to accommodate a loading term (e.g
933     atmospheric pressure pushing down on the ocean's surface) by setting:
934    
935     \begin{equation}
936     \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
937     \end{equation}
938    
939     \subsubsection{Surface pressure}
940    
941 cnh 1.8 The surface pressure equation can be obtained by integrating continuity,
942     (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
943 cnh 1.1
944     \begin{equation*}
945 adcroft 1.4 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
946 cnh 1.2 }_{h}+\partial _{r}\dot{r}\right) dr=0
947 cnh 1.1 \end{equation*}
948    
949     Thus:
950    
951     \begin{equation*}
952     \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
953 adcroft 1.4 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
954 cnh 1.2 _{h}dr=0
955 cnh 1.1 \end{equation*}
956 adcroft 1.4 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
957 cnh 1.1 r $. The above can be rearranged to yield, using Leibnitz's theorem:
958    
959     \begin{equation}
960     \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
961     \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
962     \label{eq:free-surface}
963 adcroft 1.4 \end{equation}
964 cnh 1.1 where we have incorporated a source term.
965    
966     Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
967 cnh 1.8 (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
968 cnh 1.1 be written
969     \begin{equation}
970 cnh 1.2 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
971 cnh 1.1 \label{eq:phi-surf}
972 adcroft 1.4 \end{equation}
973 cnh 1.1 where $b_{s}$ is the buoyancy at the surface.
974    
975 cnh 1.8 In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
976 cnh 1.1 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
977     elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
978     surface' and `rigid lid' approaches are available.
979    
980     \subsubsection{Non-hydrostatic pressure}
981    
982 cnh 1.8 Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
983     $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
984     (\ref{eq:continuity}), we deduce that:
985 cnh 1.1
986     \begin{equation}
987 adcroft 1.4 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
988     \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
989 cnh 1.1 \vec{\mathbf{F}} \label{eq:3d-invert}
990     \end{equation}
991    
992     For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
993     subject to appropriate choice of boundary conditions. This method is usually
994     called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
995     Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
996     the 3-d problem does not need to be solved.
997    
998     \paragraph{Boundary Conditions}
999    
1000     We apply the condition of no normal flow through all solid boundaries - the
1001     coasts (in the ocean) and the bottom:
1002    
1003     \begin{equation}
1004     \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
1005     \end{equation}
1006     where $\widehat{n}$ is a vector of unit length normal to the boundary. The
1007     kinematic condition (\ref{nonormalflow}) is also applied to the vertical
1008 adcroft 1.4 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
1009 cnh 1.1 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
1010     tangential component of velocity, $v_{T}$, at all solid boundaries,
1011     depending on the form chosen for the dissipative terms in the momentum
1012     equations - see below.
1013    
1014 cnh 1.8 Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
1015 cnh 1.1
1016     \begin{equation}
1017     \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
1018     \label{eq:inhom-neumann-nh}
1019     \end{equation}
1020     where
1021    
1022     \begin{equation*}
1023     \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
1024     _{s}+\mathbf{\nabla }\phi _{hyd}\right)
1025 adcroft 1.4 \end{equation*}
1026 cnh 1.1 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
1027     (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
1028     exploit classical 3D potential theory and, by introducing an appropriately
1029 cnh 1.2 chosen $\delta $-function sheet of `source-charge', replace the
1030     inhomogeneous boundary condition on pressure by a homogeneous one. The
1031 adcroft 1.4 source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $
1032     \vec{\mathbf{F}}.$ By simultaneously setting $
1033 cnh 1.1 \begin{array}{l}
1034 adcroft 1.4 \widehat{n}.\vec{\mathbf{F}}
1035     \end{array}
1036 cnh 1.1 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
1037 cnh 1.2 self-consistent but simpler homogenized Elliptic problem is obtained:
1038 cnh 1.1
1039     \begin{equation*}
1040 cnh 1.2 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
1041 adcroft 1.4 \end{equation*}
1042 cnh 1.1 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
1043 adcroft 1.4 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
1044 cnh 1.1 {eq:inhom-neumann-nh}) the modified boundary condition becomes:
1045    
1046     \begin{equation}
1047     \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
1048     \end{equation}
1049    
1050     If the flow is `close' to hydrostatic balance then the 3-d inversion
1051     converges rapidly because $\phi _{nh}\ $is then only a small correction to
1052     the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
1053    
1054 cnh 1.8 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
1055 cnh 1.1 does not vanish at $r=R_{moving}$, and so refines the pressure there.
1056    
1057     \subsection{Forcing/dissipation}
1058    
1059     \subsubsection{Forcing}
1060    
1061     The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
1062 cnh 1.8 `physics packages' and forcing packages. These are described later on.
1063 cnh 1.1
1064     \subsubsection{Dissipation}
1065    
1066     \paragraph{Momentum}
1067    
1068     Many forms of momentum dissipation are available in the model. Laplacian and
1069     biharmonic frictions are commonly used:
1070    
1071     \begin{equation}
1072 adcroft 1.4 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
1073 cnh 1.1 +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
1074     \end{equation}
1075     where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
1076     coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
1077     friction. These coefficients are the same for all velocity components.
1078    
1079     \paragraph{Tracers}
1080    
1081     The mixing terms for the temperature and salinity equations have a similar
1082     form to that of momentum except that the diffusion tensor can be
1083 edhill 1.26 non-diagonal and have varying coefficients.
1084 cnh 1.1 \begin{equation}
1085     D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
1086     _{h}^{4}(T,S) \label{eq:diffusion}
1087     \end{equation}
1088 adcroft 1.4 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
1089 cnh 1.1 horizontal coefficient for biharmonic diffusion. In the simplest case where
1090     the subgrid-scale fluxes of heat and salt are parameterized with constant
1091     horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
1092     reduces to a diagonal matrix with constant coefficients:
1093    
1094     \begin{equation}
1095     \qquad \qquad \qquad \qquad K=\left(
1096     \begin{array}{ccc}
1097     K_{h} & 0 & 0 \\
1098     0 & K_{h} & 0 \\
1099 adcroft 1.4 0 & 0 & K_{v}
1100 cnh 1.1 \end{array}
1101     \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
1102     \end{equation}
1103     where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
1104     coefficients. These coefficients are the same for all tracers (temperature,
1105     salinity ... ).
1106    
1107     \subsection{Vector invariant form}
1108    
1109 edhill 1.21 For some purposes it is advantageous to write momentum advection in
1110     eq(\ref {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the
1111     (so-called) `vector invariant' form:
1112 cnh 1.1
1113     \begin{equation}
1114 adcroft 1.4 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
1115     +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
1116 cnh 1.2 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1117 cnh 1.1 \label{eq:vi-identity}
1118 adcroft 1.4 \end{equation}
1119 cnh 1.1 This permits alternative numerical treatments of the non-linear terms based
1120     on their representation as a vorticity flux. Because gradients of coordinate
1121     vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1122 adcroft 1.4 representation of the metric terms in (\ref{eq:gu-speherical}), (\ref
1123 cnh 1.1 {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1124     about the geometry is contained in the areas and lengths of the volumes used
1125     to discretize the model.
1126    
1127     \subsection{Adjoint}
1128    
1129 cnh 1.8 Tangent linear and adjoint counterparts of the forward model are described
1130 cnh 1.2 in Chapter 5.
1131 cnh 1.1
1132 jmc 1.29 % $Header: /u/gcmpack/manual/s_overview/text/manual.tex,v 1.28 2010/08/27 13:13:30 jmc Exp $
1133 cnh 1.1 % $Name: $
1134    
1135     \section{Appendix ATMOSPHERE}
1136    
1137     \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
1138     coordinates}
1139    
1140     \label{sect-hpe-p}
1141    
1142     The hydrostatic primitive equations (HPEs) in p-coordinates are:
1143     \begin{eqnarray}
1144 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1145 cnh 1.2 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1146 cnh 1.1 \label{eq:atmos-mom} \\
1147 cnh 1.2 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
1148 adcroft 1.4 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1149 cnh 1.1 \partial p} &=&0 \label{eq:atmos-cont} \\
1150 cnh 1.2 p\alpha &=&RT \label{eq:atmos-eos} \\
1151 cnh 1.1 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1152 adcroft 1.4 \end{eqnarray}
1153 cnh 1.1 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1154     surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1155     \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1156 cnh 1.6 derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is
1157 adcroft 1.4 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
1158     }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
1159     {eq:atmos-heat}) is the first law of thermodynamics where internal energy $
1160     e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $
1161 cnh 1.1 p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1162    
1163     It is convenient to cast the heat equation in terms of potential temperature
1164     $\theta $ so that it looks more like a generic conservation law.
1165     Differentiating (\ref{eq:atmos-eos}) we get:
1166     \begin{equation*}
1167     p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1168 adcroft 1.4 \end{equation*}
1169     which, when added to the heat equation (\ref{eq:atmos-heat}) and using $
1170 cnh 1.1 c_{p}=c_{v}+R$, gives:
1171     \begin{equation}
1172     c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1173     \label{eq-p-heat-interim}
1174 adcroft 1.4 \end{equation}
1175 cnh 1.1 Potential temperature is defined:
1176     \begin{equation}
1177     \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1178 adcroft 1.4 \end{equation}
1179 cnh 1.1 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1180     we will make use of the Exner function $\Pi (p)$ which defined by:
1181     \begin{equation}
1182     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1183 adcroft 1.4 \end{equation}
1184 cnh 1.1 The following relations will be useful and are easily expressed in terms of
1185     the Exner function:
1186     \begin{equation*}
1187     c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1188 adcroft 1.4 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
1189     \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
1190 cnh 1.1 \frac{Dp}{Dt}
1191 adcroft 1.4 \end{equation*}
1192 cnh 1.1 where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1193    
1194     The heat equation is obtained by noting that
1195     \begin{equation*}
1196     c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1197 cnh 1.2 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1198 cnh 1.1 \end{equation*}
1199     and on substituting into (\ref{eq-p-heat-interim}) gives:
1200     \begin{equation}
1201     \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1202     \label{eq:potential-temperature-equation}
1203     \end{equation}
1204     which is in conservative form.
1205    
1206 adcroft 1.4 For convenience in the model we prefer to step forward (\ref
1207 cnh 1.1 {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1208    
1209     \subsubsection{Boundary conditions}
1210    
1211     The upper and lower boundary conditions are :
1212     \begin{eqnarray}
1213     \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1214     \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1215     \label{eq:boundary-condition-atmosphere}
1216     \end{eqnarray}
1217     In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1218     =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1219     surface ($\phi $ is imposed and $\omega \neq 0$).
1220    
1221     \subsubsection{Splitting the geo-potential}
1222 jmc 1.22 \label{sec:hpe-p-geo-potential-split}
1223 cnh 1.1
1224     For the purposes of initialization and reducing round-off errors, the model
1225     deals with perturbations from reference (or ``standard'') profiles. For
1226     example, the hydrostatic geopotential associated with the resting atmosphere
1227     is not dynamically relevant and can therefore be subtracted from the
1228     equations. The equations written in terms of perturbations are obtained by
1229     substituting the following definitions into the previous model equations:
1230     \begin{eqnarray}
1231     \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1232     \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1233     \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1234     \end{eqnarray}
1235     The reference state (indicated by subscript ``0'') corresponds to
1236     horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1237     _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1238     _{o}(p_{o})=g~Z_{topo}$, defined:
1239     \begin{eqnarray*}
1240     \theta _{o}(p) &=&f^{n}(p) \\
1241     \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1242     \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1243     \end{eqnarray*}
1244     %\begin{eqnarray*}
1245     %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1246     %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1247     %\end{eqnarray*}
1248    
1249     The final form of the HPE's in p coordinates is then:
1250     \begin{eqnarray}
1251 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1252 edhill 1.21 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}}
1253     \label{eq:atmos-prime} \\
1254 cnh 1.1 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1255 adcroft 1.4 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1256 cnh 1.1 \partial p} &=&0 \\
1257     \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1258 cnh 1.8 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1259 cnh 1.1 \end{eqnarray}
1260    
1261 jmc 1.29 % $Header: /u/gcmpack/manual/s_overview/text/manual.tex,v 1.28 2010/08/27 13:13:30 jmc Exp $
1262 cnh 1.1 % $Name: $
1263    
1264     \section{Appendix OCEAN}
1265    
1266     \subsection{Equations of motion for the ocean}
1267    
1268     We review here the method by which the standard (Boussinesq, incompressible)
1269     HPE's for the ocean written in z-coordinates are obtained. The
1270     non-Boussinesq equations for oceanic motion are:
1271     \begin{eqnarray}
1272 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1273 cnh 1.1 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1274     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1275     &=&\epsilon _{nh}\mathcal{F}_{w} \\
1276 adcroft 1.4 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1277 cnh 1.8 _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1278     \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1279     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1280     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt}
1281     \label{eq:non-boussinesq}
1282 adcroft 1.4 \end{eqnarray}
1283 cnh 1.1 These equations permit acoustics modes, inertia-gravity waves,
1284 cnh 1.10 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1285 cnh 1.1 mode. As written, they cannot be integrated forward consistently - if we
1286     step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1287 adcroft 1.4 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
1288 cnh 1.1 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1289     therefore necessary to manipulate the system as follows. Differentiating the
1290     EOS (equation of state) gives:
1291    
1292     \begin{equation}
1293     \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1294     _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1295     _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1296     _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1297     \end{equation}
1298    
1299 edhill 1.21 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is
1300     the reciprocal of the sound speed ($c_{s}$) squared. Substituting into
1301     \ref{eq-zns-cont} gives:
1302 cnh 1.1 \begin{equation}
1303 adcroft 1.4 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1304 cnh 1.1 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1305     \end{equation}
1306     where we have used an approximation sign to indicate that we have assumed
1307     adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1308     Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1309     can be explicitly integrated forward:
1310     \begin{eqnarray}
1311 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1312 cnh 1.1 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1313     \label{eq-cns-hmom} \\
1314     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1315     &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1316 adcroft 1.4 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1317 cnh 1.1 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1318     \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1319     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1320     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1321     \end{eqnarray}
1322    
1323     \subsubsection{Compressible z-coordinate equations}
1324    
1325     Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1326     wherever it appears in a product (ie. non-linear term) - this is the
1327     `Boussinesq assumption'. The only term that then retains the full variation
1328     in $\rho $ is the gravitational acceleration:
1329     \begin{eqnarray}
1330 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1331 cnh 1.1 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1332     \label{eq-zcb-hmom} \\
1333 adcroft 1.4 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1334 cnh 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1335     \label{eq-zcb-hydro} \\
1336 adcroft 1.4 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
1337 cnh 1.1 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1338     \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1339     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1340     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1341     \end{eqnarray}
1342     These equations still retain acoustic modes. But, because the
1343 adcroft 1.4 ``compressible'' terms are linearized, the pressure equation \ref
1344 cnh 1.1 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1345     term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1346     These are the \emph{truly} compressible Boussinesq equations. Note that the
1347     EOS must have the same pressure dependency as the linearized pressure term,
1348 adcroft 1.4 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
1349 cnh 1.1 c_{s}^{2}}$, for consistency.
1350    
1351     \subsubsection{`Anelastic' z-coordinate equations}
1352    
1353     The anelastic approximation filters the acoustic mode by removing the
1354 adcroft 1.4 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
1355     ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
1356 cnh 1.1 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1357     continuity and EOS. A better solution is to change the dependency on
1358     pressure in the EOS by splitting the pressure into a reference function of
1359     height and a perturbation:
1360     \begin{equation*}
1361 cnh 1.2 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1362 cnh 1.1 \end{equation*}
1363     Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1364     differentiating the EOS, the continuity equation then becomes:
1365     \begin{equation*}
1366 adcroft 1.4 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
1367     Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
1368 cnh 1.2 \frac{\partial w}{\partial z}=0
1369 cnh 1.1 \end{equation*}
1370     If the time- and space-scales of the motions of interest are longer than
1371 adcroft 1.4 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
1372 cnh 1.1 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1373 adcroft 1.4 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
1374 cnh 1.1 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1375     ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1376     _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1377     and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1378     anelastic continuity equation:
1379     \begin{equation}
1380 adcroft 1.4 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
1381 cnh 1.1 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1382     \end{equation}
1383     A slightly different route leads to the quasi-Boussinesq continuity equation
1384 adcroft 1.4 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
1385     \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
1386 cnh 1.1 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1387     \begin{equation}
1388 adcroft 1.4 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1389 cnh 1.1 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1390     \end{equation}
1391     Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1392     equation if:
1393     \begin{equation}
1394     \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1395     \end{equation}
1396     Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1397 adcroft 1.4 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
1398 cnh 1.1 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1399     full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1400     then:
1401     \begin{eqnarray}
1402 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1403 cnh 1.1 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1404     \label{eq-zab-hmom} \\
1405 adcroft 1.4 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1406 cnh 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1407     \label{eq-zab-hydro} \\
1408 adcroft 1.4 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1409 cnh 1.1 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1410     \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1411     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1412     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1413     \end{eqnarray}
1414    
1415     \subsubsection{Incompressible z-coordinate equations}
1416    
1417     Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1418     technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1419     yield the ``truly'' incompressible Boussinesq equations:
1420     \begin{eqnarray}
1421 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1422 cnh 1.1 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1423     \label{eq-ztb-hmom} \\
1424 adcroft 1.4 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
1425 cnh 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1426     \label{eq-ztb-hydro} \\
1427     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1428     &=&0 \label{eq-ztb-cont} \\
1429     \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1430     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1431     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1432     \end{eqnarray}
1433     where $\rho _{c}$ is a constant reference density of water.
1434    
1435     \subsubsection{Compressible non-divergent equations}
1436    
1437     The above ``incompressible'' equations are incompressible in both the flow
1438     and the density. In many oceanic applications, however, it is important to
1439     retain compressibility effects in the density. To do this we must split the
1440     density thus:
1441     \begin{equation*}
1442     \rho =\rho _{o}+\rho ^{\prime }
1443 adcroft 1.4 \end{equation*}
1444 cnh 1.1 We then assert that variations with depth of $\rho _{o}$ are unimportant
1445     while the compressible effects in $\rho ^{\prime }$ are:
1446     \begin{equation*}
1447     \rho _{o}=\rho _{c}
1448 adcroft 1.4 \end{equation*}
1449 cnh 1.1 \begin{equation*}
1450     \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1451 adcroft 1.4 \end{equation*}
1452 cnh 1.1 This then yields what we can call the semi-compressible Boussinesq
1453     equations:
1454     \begin{eqnarray}
1455 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1456     _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
1457 cnh 1.1 \mathcal{F}}} \label{eq:ocean-mom} \\
1458     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1459     _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1460     \label{eq:ocean-wmom} \\
1461     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1462     &=&0 \label{eq:ocean-cont} \\
1463     \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1464     \\
1465     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1466     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1467 adcroft 1.4 \end{eqnarray}
1468 cnh 1.1 Note that the hydrostatic pressure of the resting fluid, including that
1469     associated with $\rho _{c}$, is subtracted out since it has no effect on the
1470     dynamics.
1471    
1472     Though necessary, the assumptions that go into these equations are messy
1473     since we essentially assume a different EOS for the reference density and
1474     the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1475     _{nh}=0$ form of these equations that are used throughout the ocean modeling
1476     community and referred to as the primitive equations (HPE).
1477    
1478 jmc 1.29 % $Header: /u/gcmpack/manual/s_overview/text/manual.tex,v 1.28 2010/08/27 13:13:30 jmc Exp $
1479 cnh 1.1 % $Name: $
1480    
1481     \section{Appendix:OPERATORS}
1482    
1483     \subsection{Coordinate systems}
1484    
1485     \subsubsection{Spherical coordinates}
1486    
1487     In spherical coordinates, the velocity components in the zonal, meridional
1488     and vertical direction respectively, are given by (see Fig.2) :
1489    
1490     \begin{equation*}
1491 cnh 1.6 u=r\cos \varphi \frac{D\lambda }{Dt}
1492 cnh 1.1 \end{equation*}
1493    
1494     \begin{equation*}
1495 edhill 1.26 v=r\frac{D\varphi }{Dt}
1496 cnh 1.1 \end{equation*}
1497    
1498     \begin{equation*}
1499 cnh 1.2 \dot{r}=\frac{Dr}{Dt}
1500 cnh 1.1 \end{equation*}
1501    
1502 cnh 1.6 Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1503 cnh 1.1 distance of the particle from the center of the earth, $\Omega $ is the
1504     angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1505    
1506 edhill 1.26 The `grad' ($\nabla $) and `div' ($\nabla\cdot$) operators are defined by, in
1507 cnh 1.1 spherical coordinates:
1508    
1509     \begin{equation*}
1510 cnh 1.6 \nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
1511     ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
1512 cnh 1.2 \right)
1513 cnh 1.1 \end{equation*}
1514    
1515     \begin{equation*}
1516 edhill 1.26 \nabla\cdot v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
1517 cnh 1.6 \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
1518 cnh 1.2 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1519 cnh 1.1 \end{equation*}
1520    
1521 adcroft 1.4 %tci%\end{document}

  ViewVC Help
Powered by ViewVC 1.1.22