/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Annotation of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.25 - (hide annotations) (download) (as text)
Sat Apr 8 01:50:49 2006 UTC (19 years, 3 months ago) by edhill
Branch: MAIN
Changes since 1.24: +44 -42 lines
File MIME type: application/x-tex
LaTeX syntax cleanups:
 - the degree symbols ("\circ") are now properly raised after latex2html
 - don't use $...$ when it should be \textit{...}

1 edhill 1.25 % $Header: /u/gcmpack/manual/part1/manual.tex,v 1.24 2006/04/05 02:27:32 edhill Exp $
2 cnh 1.2 % $Name: $
3 cnh 1.1
4 adcroft 1.4 %tci%\documentclass[12pt]{book}
5     %tci%\usepackage{amsmath}
6     %tci%\usepackage{html}
7     %tci%\usepackage{epsfig}
8     %tci%\usepackage{graphics,subfigure}
9     %tci%\usepackage{array}
10     %tci%\usepackage{multirow}
11     %tci%\usepackage{fancyhdr}
12     %tci%\usepackage{psfrag}
13    
14     %tci%%TCIDATA{OutputFilter=Latex.dll}
15     %tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
16     %tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
17     %tci%%TCIDATA{Language=American English}
18    
19     %tci%\fancyhead{}
20     %tci%\fancyhead[LO]{\slshape \rightmark}
21     %tci%\fancyhead[RE]{\slshape \leftmark}
22     %tci%\fancyhead[RO,LE]{\thepage}
23     %tci%\fancyfoot[CO,CE]{\today}
24     %tci%\fancyfoot[RO,LE]{ }
25     %tci%\renewcommand{\headrulewidth}{0.4pt}
26     %tci%\renewcommand{\footrulewidth}{0.4pt}
27     %tci%\setcounter{secnumdepth}{3}
28     %tci%\input{tcilatex}
29    
30     %tci%\begin{document}
31    
32     %tci%\tableofcontents
33    
34    
35 cnh 1.1 % Section: Overview
36    
37 edhill 1.25 % $Header: /u/gcmpack/manual/part1/manual.tex,v 1.24 2006/04/05 02:27:32 edhill Exp $
38 cnh 1.1 % $Name: $
39    
40 cnh 1.16 This document provides the reader with the information necessary to
41 cnh 1.1 carry out numerical experiments using MITgcm. It gives a comprehensive
42     description of the continuous equations on which the model is based, the
43     numerical algorithms the model employs and a description of the associated
44     program code. Along with the hydrodynamical kernel, physical and
45     biogeochemical parameterizations of key atmospheric and oceanic processes
46     are available. A number of examples illustrating the use of the model in
47     both process and general circulation studies of the atmosphere and ocean are
48     also presented.
49    
50 cnh 1.16 \section{Introduction}
51 afe 1.18 \begin{rawhtml}
52 afe 1.19 <!-- CMIREDIR:innovations: -->
53 afe 1.18 \end{rawhtml}
54    
55 cnh 1.16
56 cnh 1.1 MITgcm has a number of novel aspects:
57    
58     \begin{itemize}
59     \item it can be used to study both atmospheric and oceanic phenomena; one
60     hydrodynamical kernel is used to drive forward both atmospheric and oceanic
61 cnh 1.7 models - see fig \ref{fig:onemodel}
62 cnh 1.1
63 cnh 1.3 %% CNHbegin
64     \input{part1/one_model_figure}
65     %% CNHend
66    
67 cnh 1.1 \item it has a non-hydrostatic capability and so can be used to study both
68 cnh 1.7 small-scale and large scale processes - see fig \ref{fig:all-scales}
69 cnh 1.1
70 cnh 1.3 %% CNHbegin
71     \input{part1/all_scales_figure}
72     %% CNHend
73    
74 cnh 1.1 \item finite volume techniques are employed yielding an intuitive
75     discretization and support for the treatment of irregular geometries using
76 cnh 1.7 orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
77 cnh 1.3
78     %% CNHbegin
79     \input{part1/fvol_figure}
80     %% CNHend
81 cnh 1.1
82     \item tangent linear and adjoint counterparts are automatically maintained
83     along with the forward model, permitting sensitivity and optimization
84     studies.
85    
86     \item the model is developed to perform efficiently on a wide variety of
87     computational platforms.
88     \end{itemize}
89    
90 cnh 1.16 Key publications reporting on and charting the development of the model are
91 jmc 1.23 \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99,adcroft:04a,adcroft:04b,marshall:04}:
92 cnh 1.12
93     \begin{verbatim}
94     Hill, C. and J. Marshall, (1995)
95     Application of a Parallel Navier-Stokes Model to Ocean Circulation in
96     Parallel Computational Fluid Dynamics
97     In Proceedings of Parallel Computational Fluid Dynamics: Implementations
98     and Results Using Parallel Computers, 545-552.
99     Elsevier Science B.V.: New York
100    
101     Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
102 cnh 1.16 Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling
103 cnh 1.12 J. Geophysical Res., 102(C3), 5733-5752.
104    
105     Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
106     A finite-volume, incompressible Navier Stokes model for studies of the ocean
107     on parallel computers,
108     J. Geophysical Res., 102(C3), 5753-5766.
109    
110     Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
111     Representation of topography by shaved cells in a height coordinate ocean
112     model
113     Mon Wea Rev, vol 125, 2293-2315
114    
115     Marshall, J., Jones, H. and C. Hill, (1998)
116     Efficient ocean modeling using non-hydrostatic algorithms
117     Journal of Marine Systems, 18, 115-134
118    
119     Adcroft, A., Hill C. and J. Marshall: (1999)
120     A new treatment of the Coriolis terms in C-grid models at both high and low
121     resolutions,
122     Mon. Wea. Rev. Vol 127, pages 1928-1936
123    
124     Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
125     A Strategy for Terascale Climate Modeling.
126 cnh 1.14 In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
127     in Meteorology, pages 406-425
128     World Scientific Publishing Co: UK
129 cnh 1.12
130     Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
131     Construction of the adjoint MIT ocean general circulation model and
132     application to Atlantic heat transport variability
133     J. Geophysical Res., 104(C12), 29,529-29,547.
134    
135     \end{verbatim}
136 cnh 1.1
137     We begin by briefly showing some of the results of the model in action to
138     give a feel for the wide range of problems that can be addressed using it.
139    
140 edhill 1.25 % $Header: /u/gcmpack/manual/part1/manual.tex,v 1.24 2006/04/05 02:27:32 edhill Exp $
141 cnh 1.1 % $Name: $
142    
143     \section{Illustrations of the model in action}
144    
145 edhill 1.24 MITgcm has been designed and used to model a wide range of phenomena,
146 cnh 1.1 from convection on the scale of meters in the ocean to the global pattern of
147 cnh 1.7 atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
148 cnh 1.1 kinds of problems the model has been used to study, we briefly describe some
149     of them here. A more detailed description of the underlying formulation,
150     numerical algorithm and implementation that lie behind these calculations is
151 cnh 1.2 given later. Indeed many of the illustrative examples shown below can be
152     easily reproduced: simply download the model (the minimum you need is a PC
153 cnh 1.10 running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
154 cnh 1.2 described in detail in the documentation.
155 cnh 1.1
156     \subsection{Global atmosphere: `Held-Suarez' benchmark}
157 afe 1.18 \begin{rawhtml}
158 afe 1.19 <!-- CMIREDIR:atmospheric_example: -->
159 afe 1.18 \end{rawhtml}
160    
161    
162 cnh 1.1
163 cnh 1.7 A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
164     both atmospheric and oceanographic flows at both small and large scales.
165 cnh 1.2
166 cnh 1.7 Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
167 cnh 1.2 temperature field obtained using the atmospheric isomorph of MITgcm run at
168 edhill 1.25 $2.8^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
169 cnh 1.2 (blue) and warm air along an equatorial band (red). Fully developed
170     baroclinic eddies spawned in the northern hemisphere storm track are
171     evident. There are no mountains or land-sea contrast in this calculation,
172     but you can easily put them in. The model is driven by relaxation to a
173     radiative-convective equilibrium profile, following the description set out
174     in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
175     there are no mountains or land-sea contrast.
176    
177 cnh 1.3 %% CNHbegin
178     \input{part1/cubic_eddies_figure}
179     %% CNHend
180    
181 cnh 1.2 As described in Adcroft (2001), a `cubed sphere' is used to discretize the
182 cnh 1.10 globe permitting a uniform griding and obviated the need to Fourier filter.
183 cnh 1.2 The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
184     grid, of which the cubed sphere is just one of many choices.
185 cnh 1.1
186 cnh 1.7 Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal
187     wind from a 20-level configuration of
188 cnh 1.2 the model. It compares favorable with more conventional spatial
189 cnh 1.7 discretization approaches. The two plots show the field calculated using the
190     cube-sphere grid and the flow calculated using a regular, spherical polar
191     latitude-longitude grid. Both grids are supported within the model.
192 cnh 1.1
193 cnh 1.3 %% CNHbegin
194     \input{part1/hs_zave_u_figure}
195     %% CNHend
196    
197 cnh 1.2 \subsection{Ocean gyres}
198 afe 1.18 \begin{rawhtml}
199 afe 1.19 <!-- CMIREDIR:oceanic_example: -->
200 afe 1.18 \end{rawhtml}
201     \begin{rawhtml}
202 afe 1.19 <!-- CMIREDIR:ocean_gyres: -->
203 afe 1.18 \end{rawhtml}
204 cnh 1.1
205 cnh 1.2 Baroclinic instability is a ubiquitous process in the ocean, as well as the
206     atmosphere. Ocean eddies play an important role in modifying the
207     hydrographic structure and current systems of the oceans. Coarse resolution
208     models of the oceans cannot resolve the eddy field and yield rather broad,
209     diffusive patterns of ocean currents. But if the resolution of our models is
210     increased until the baroclinic instability process is resolved, numerical
211     solutions of a different and much more realistic kind, can be obtained.
212    
213 edhill 1.25 Figure \ref{fig:ocean-gyres} shows the surface temperature and
214     velocity field obtained from MITgcm run at $\frac{1}{6}^{\circ }$
215     horizontal resolution on a \textit{lat-lon} grid in which the pole has
216     been rotated by $90^{\circ }$ on to the equator (to avoid the
217     converging of meridian in northern latitudes). 21 vertical levels are
218     used in the vertical with a `lopped cell' representation of
219     topography. The development and propagation of anomalously warm and
220     cold eddies can be clearly seen in the Gulf Stream region. The
221     transport of warm water northward by the mean flow of the Gulf Stream
222     is also clearly visible.
223 cnh 1.1
224 cnh 1.3 %% CNHbegin
225 cnh 1.11 \input{part1/atl6_figure}
226 cnh 1.3 %% CNHend
227    
228    
229 cnh 1.1 \subsection{Global ocean circulation}
230 afe 1.18 \begin{rawhtml}
231 afe 1.19 <!-- CMIREDIR:global_ocean_circulation: -->
232 afe 1.18 \end{rawhtml}
233 cnh 1.1
234 edhill 1.25 Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean
235     currents at the surface of a $4^{\circ }$ global ocean model run with
236     15 vertical levels. Lopped cells are used to represent topography on a
237     regular \textit{lat-lon} grid extending from $70^{\circ }N$ to
238     $70^{\circ }S$. The model is driven using monthly-mean winds with
239     mixed boundary conditions on temperature and salinity at the surface.
240     The transfer properties of ocean eddies, convection and mixing is
241     parameterized in this model.
242 cnh 1.2
243 cnh 1.7 Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
244     circulation of the global ocean in Sverdrups.
245 cnh 1.2
246 cnh 1.3 %%CNHbegin
247     \input{part1/global_circ_figure}
248     %%CNHend
249    
250 cnh 1.2 \subsection{Convection and mixing over topography}
251 afe 1.18 \begin{rawhtml}
252 afe 1.19 <!-- CMIREDIR:mixing_over_topography: -->
253 afe 1.18 \end{rawhtml}
254    
255 cnh 1.2
256     Dense plumes generated by localized cooling on the continental shelf of the
257     ocean may be influenced by rotation when the deformation radius is smaller
258     than the width of the cooling region. Rather than gravity plumes, the
259     mechanism for moving dense fluid down the shelf is then through geostrophic
260 adcroft 1.9 eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
261 cnh 1.7 (blue is cold dense fluid, red is
262 cnh 1.2 warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
263     trigger convection by surface cooling. The cold, dense water falls down the
264     slope but is deflected along the slope by rotation. It is found that
265     entrainment in the vertical plane is reduced when rotational control is
266     strong, and replaced by lateral entrainment due to the baroclinic
267     instability of the along-slope current.
268 cnh 1.1
269 cnh 1.3 %%CNHbegin
270     \input{part1/convect_and_topo}
271     %%CNHend
272    
273 cnh 1.1 \subsection{Boundary forced internal waves}
274 afe 1.18 \begin{rawhtml}
275 afe 1.19 <!-- CMIREDIR:boundary_forced_internal_waves: -->
276 afe 1.18 \end{rawhtml}
277 cnh 1.1
278 cnh 1.2 The unique ability of MITgcm to treat non-hydrostatic dynamics in the
279     presence of complex geometry makes it an ideal tool to study internal wave
280     dynamics and mixing in oceanic canyons and ridges driven by large amplitude
281     barotropic tidal currents imposed through open boundary conditions.
282    
283 cnh 1.7 Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope
284     topographic variations on
285 cnh 1.2 internal wave breaking - the cross-slope velocity is in color, the density
286     contoured. The internal waves are excited by application of open boundary
287 cnh 1.7 conditions on the left. They propagate to the sloping boundary (represented
288 cnh 1.2 using MITgcm's finite volume spatial discretization) where they break under
289     nonhydrostatic dynamics.
290    
291 cnh 1.3 %%CNHbegin
292     \input{part1/boundary_forced_waves}
293     %%CNHend
294    
295 cnh 1.2 \subsection{Parameter sensitivity using the adjoint of MITgcm}
296 afe 1.18 \begin{rawhtml}
297 afe 1.19 <!-- CMIREDIR:parameter_sensitivity: -->
298 afe 1.18 \end{rawhtml}
299 cnh 1.2
300     Forward and tangent linear counterparts of MITgcm are supported using an
301     `automatic adjoint compiler'. These can be used in parameter sensitivity and
302     data assimilation studies.
303    
304 edhill 1.25 As one example of application of the MITgcm adjoint, Figure
305     \ref{fig:hf-sensitivity} maps the gradient $\frac{\partial J}{\partial
306     \mathcal{H}}$where $J$ is the magnitude of the overturning
307     stream-function shown in figure \ref{fig:large-scale-circ} at
308     $60^{\circ }N$ and $ \mathcal{H}(\lambda,\varphi)$ is the mean, local
309     air-sea heat flux over a 100 year period. We see that $J$ is sensitive
310     to heat fluxes over the Labrador Sea, one of the important sources of
311     deep water for the thermohaline circulations. This calculation also
312 cnh 1.2 yields sensitivities to all other model parameters.
313    
314 cnh 1.3 %%CNHbegin
315     \input{part1/adj_hf_ocean_figure}
316     %%CNHend
317    
318 cnh 1.2 \subsection{Global state estimation of the ocean}
319 afe 1.18 \begin{rawhtml}
320 afe 1.19 <!-- CMIREDIR:global_state_estimation: -->
321 afe 1.18 \end{rawhtml}
322    
323 cnh 1.2
324     An important application of MITgcm is in state estimation of the global
325     ocean circulation. An appropriately defined `cost function', which measures
326     the departure of the model from observations (both remotely sensed and
327 cnh 1.10 in-situ) over an interval of time, is minimized by adjusting `control
328 cnh 1.2 parameters' such as air-sea fluxes, the wind field, the initial conditions
329 cnh 1.15 etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary
330     circulation and a Hopf-Muller plot of Equatorial sea-surface height.
331     Both are obtained from assimilation bringing the model in to
332 cnh 1.7 consistency with altimetric and in-situ observations over the period
333 cnh 1.15 1992-1997.
334 cnh 1.2
335 cnh 1.3 %% CNHbegin
336 cnh 1.13 \input{part1/assim_figure}
337 cnh 1.3 %% CNHend
338    
339 cnh 1.2 \subsection{Ocean biogeochemical cycles}
340 afe 1.18 \begin{rawhtml}
341 afe 1.19 <!-- CMIREDIR:ocean_biogeo_cycles: -->
342 afe 1.18 \end{rawhtml}
343 cnh 1.2
344 edhill 1.25 MITgcm is being used to study global biogeochemical cycles in the
345     ocean. For example one can study the effects of interannual changes in
346     meteorological forcing and upper ocean circulation on the fluxes of
347     carbon dioxide and oxygen between the ocean and atmosphere. Figure
348     \ref{fig:biogeo} shows the annual air-sea flux of oxygen and its
349     relation to density outcrops in the southern oceans from a single year
350     of a global, interannually varying simulation. The simulation is run
351     at $1^{\circ}\times1^{\circ}$ resolution telescoping to
352     $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not
353     shown).
354 cnh 1.2
355 cnh 1.3 %%CNHbegin
356     \input{part1/biogeo_figure}
357     %%CNHend
358 cnh 1.2
359     \subsection{Simulations of laboratory experiments}
360 afe 1.18 \begin{rawhtml}
361 afe 1.19 <!-- CMIREDIR:classroom_exp: -->
362 afe 1.18 \end{rawhtml}
363 cnh 1.2
364 cnh 1.7 Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
365 edhill 1.17 laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An
366 cnh 1.2 initially homogeneous tank of water ($1m$ in diameter) is driven from its
367     free surface by a rotating heated disk. The combined action of mechanical
368     and thermal forcing creates a lens of fluid which becomes baroclinically
369     unstable. The stratification and depth of penetration of the lens is
370 cnh 1.7 arrested by its instability in a process analogous to that which sets the
371 cnh 1.2 stratification of the ACC.
372 cnh 1.1
373 cnh 1.3 %%CNHbegin
374     \input{part1/lab_figure}
375     %%CNHend
376    
377 edhill 1.25 % $Header: /u/gcmpack/manual/part1/manual.tex,v 1.24 2006/04/05 02:27:32 edhill Exp $
378 cnh 1.1 % $Name: $
379    
380     \section{Continuous equations in `r' coordinates}
381 afe 1.18 \begin{rawhtml}
382 afe 1.19 <!-- CMIREDIR:z-p_isomorphism: -->
383 afe 1.18 \end{rawhtml}
384 cnh 1.1
385     To render atmosphere and ocean models from one dynamical core we exploit
386     `isomorphisms' between equation sets that govern the evolution of the
387 cnh 1.7 respective fluids - see figure \ref{fig:isomorphic-equations}.
388     One system of hydrodynamical equations is written down
389 cnh 1.1 and encoded. The model variables have different interpretations depending on
390     whether the atmosphere or ocean is being studied. Thus, for example, the
391     vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
392 edhill 1.17 modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations})
393     and height, $z$, if we are modeling the ocean (left hand side of figure
394 cnh 1.7 \ref{fig:isomorphic-equations}).
395 cnh 1.1
396 cnh 1.3 %%CNHbegin
397     \input{part1/zandpcoord_figure.tex}
398     %%CNHend
399    
400 cnh 1.1 The state of the fluid at any time is characterized by the distribution of
401     velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
402     `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
403     depend on $\theta $, $S$, and $p$. The equations that govern the evolution
404     of these fields, obtained by applying the laws of classical mechanics and
405     thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
406 cnh 1.7 a generic vertical coordinate, $r$, so that the appropriate
407     kinematic boundary conditions can be applied isomorphically
408     see figure \ref{fig:zandp-vert-coord}.
409 cnh 1.1
410 cnh 1.3 %%CNHbegin
411     \input{part1/vertcoord_figure.tex}
412     %%CNHend
413    
414 jmc 1.20 \begin{equation}
415 adcroft 1.4 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
416     \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
417 cnh 1.8 \text{ horizontal mtm} \label{eq:horizontal_mtm}
418 jmc 1.20 \end{equation}
419 cnh 1.1
420 cnh 1.8 \begin{equation}
421 adcroft 1.4 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
422 cnh 1.1 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
423 cnh 1.8 vertical mtm} \label{eq:vertical_mtm}
424     \end{equation}
425 cnh 1.1
426     \begin{equation}
427 adcroft 1.4 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
428 cnh 1.8 \partial r}=0\text{ continuity} \label{eq:continuity}
429 cnh 1.1 \end{equation}
430    
431 cnh 1.8 \begin{equation}
432     b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
433     \end{equation}
434 cnh 1.1
435 cnh 1.8 \begin{equation}
436 cnh 1.2 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
437 cnh 1.8 \label{eq:potential_temperature}
438     \end{equation}
439 cnh 1.1
440 cnh 1.8 \begin{equation}
441 cnh 1.2 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
442 adcroft 1.9 \label{eq:humidity_salt}
443 cnh 1.8 \end{equation}
444 cnh 1.1
445     Here:
446    
447     \begin{equation*}
448 cnh 1.2 r\text{ is the vertical coordinate}
449 cnh 1.1 \end{equation*}
450    
451     \begin{equation*}
452     \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
453 cnh 1.2 is the total derivative}
454 cnh 1.1 \end{equation*}
455    
456     \begin{equation*}
457 adcroft 1.4 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
458 cnh 1.2 \text{ is the `grad' operator}
459 cnh 1.1 \end{equation*}
460 adcroft 1.4 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
461 cnh 1.1 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
462     is a unit vector in the vertical
463    
464     \begin{equation*}
465 cnh 1.2 t\text{ is time}
466 cnh 1.1 \end{equation*}
467    
468     \begin{equation*}
469     \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
470 cnh 1.2 velocity}
471 cnh 1.1 \end{equation*}
472    
473     \begin{equation*}
474 cnh 1.2 \phi \text{ is the `pressure'/`geopotential'}
475 cnh 1.1 \end{equation*}
476    
477     \begin{equation*}
478 cnh 1.2 \vec{\Omega}\text{ is the Earth's rotation}
479 cnh 1.1 \end{equation*}
480    
481     \begin{equation*}
482 cnh 1.2 b\text{ is the `buoyancy'}
483 cnh 1.1 \end{equation*}
484    
485     \begin{equation*}
486 cnh 1.2 \theta \text{ is potential temperature}
487 cnh 1.1 \end{equation*}
488    
489     \begin{equation*}
490 cnh 1.2 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
491 cnh 1.1 \end{equation*}
492    
493     \begin{equation*}
494 adcroft 1.4 \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
495 cnh 1.1 \mathbf{v}}
496     \end{equation*}
497    
498     \begin{equation*}
499 cnh 1.2 \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta
500 cnh 1.1 \end{equation*}
501    
502     \begin{equation*}
503     \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
504     \end{equation*}
505    
506     The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
507 cnh 1.7 `physics' and forcing packages for atmosphere and ocean. These are described
508     in later chapters.
509 cnh 1.1
510     \subsection{Kinematic Boundary conditions}
511    
512     \subsubsection{vertical}
513    
514 cnh 1.7 at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
515 cnh 1.1
516     \begin{equation}
517 edhill 1.17 \dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
518 cnh 1.1 \label{eq:fixedbc}
519     \end{equation}
520    
521     \begin{equation}
522 edhill 1.17 \dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \
523 cnh 1.10 (ocean surface,bottom of the atmosphere)} \label{eq:movingbc}
524 cnh 1.1 \end{equation}
525    
526     Here
527    
528     \begin{equation*}
529 cnh 1.2 R_{moving}=R_{o}+\eta
530 cnh 1.1 \end{equation*}
531     where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
532     whether we are in the atmosphere or ocean) of the `moving surface' in the
533     resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
534     of motion.
535    
536     \subsubsection{horizontal}
537    
538     \begin{equation}
539     \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
540 adcroft 1.4 \end{equation}
541 cnh 1.1 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
542    
543     \subsection{Atmosphere}
544    
545 cnh 1.7 In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret:
546 cnh 1.1
547     \begin{equation}
548     r=p\text{ is the pressure} \label{eq:atmos-r}
549     \end{equation}
550    
551     \begin{equation}
552     \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
553     coordinates} \label{eq:atmos-omega}
554     \end{equation}
555    
556     \begin{equation}
557     \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
558     \end{equation}
559    
560     \begin{equation}
561     b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
562     \label{eq:atmos-b}
563     \end{equation}
564    
565     \begin{equation}
566     \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
567     \label{eq:atmos-theta}
568     \end{equation}
569    
570     \begin{equation}
571     S=q,\text{ is the specific humidity} \label{eq:atmos-s}
572     \end{equation}
573     where
574    
575     \begin{equation*}
576     T\text{ is absolute temperature}
577 adcroft 1.4 \end{equation*}
578 cnh 1.1 \begin{equation*}
579     p\text{ is the pressure}
580 adcroft 1.4 \end{equation*}
581 cnh 1.1 \begin{eqnarray*}
582     &&z\text{ is the height of the pressure surface} \\
583     &&g\text{ is the acceleration due to gravity}
584     \end{eqnarray*}
585    
586     In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
587     the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
588     \begin{equation}
589     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
590 adcroft 1.4 \end{equation}
591 cnh 1.1 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
592     constant and $c_{p}$ the specific heat of air at constant pressure.
593    
594     At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
595    
596     \begin{equation*}
597 cnh 1.2 R_{fixed}=p_{top}=0
598 cnh 1.1 \end{equation*}
599     In a resting atmosphere the elevation of the mountains at the bottom is
600     given by
601     \begin{equation*}
602 cnh 1.2 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
603 cnh 1.1 \end{equation*}
604     i.e. the (hydrostatic) pressure at the top of the mountains in a resting
605     atmosphere.
606    
607     The boundary conditions at top and bottom are given by:
608    
609     \begin{eqnarray}
610     &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
611     \label{eq:fixed-bc-atmos} \\
612     \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
613     atmosphere)} \label{eq:moving-bc-atmos}
614     \end{eqnarray}
615    
616 edhill 1.21 Then the (hydrostatic form of) equations
617     (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yields a consistent
618     set of atmospheric equations which, for convenience, are written out
619     in $p$ coordinates in Appendix Atmosphere - see
620     eqs(\ref{eq:atmos-prime}).
621 cnh 1.1
622     \subsection{Ocean}
623    
624     In the ocean we interpret:
625     \begin{eqnarray}
626     r &=&z\text{ is the height} \label{eq:ocean-z} \\
627     \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
628     \label{eq:ocean-w} \\
629     \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
630     b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
631     _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
632     \end{eqnarray}
633     where $\rho _{c}$ is a fixed reference density of water and $g$ is the
634     acceleration due to gravity.\noindent
635    
636     In the above
637    
638     At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
639    
640     The surface of the ocean is given by: $R_{moving}=\eta $
641    
642 adcroft 1.4 The position of the resting free surface of the ocean is given by $
643 cnh 1.1 R_{o}=Z_{o}=0$.
644    
645     Boundary conditions are:
646    
647     \begin{eqnarray}
648     w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
649     \\
650 adcroft 1.4 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
651 cnh 1.1 \label{eq:moving-bc-ocean}}
652     \end{eqnarray}
653     where $\eta $ is the elevation of the free surface.
654    
655 adcroft 1.9 Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
656 cnh 1.8 of oceanic equations
657 cnh 1.1 which, for convenience, are written out in $z$ coordinates in Appendix Ocean
658     - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
659    
660     \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
661     Non-hydrostatic forms}
662 afe 1.18 \begin{rawhtml}
663 afe 1.19 <!-- CMIREDIR:non_hydrostatic: -->
664 afe 1.18 \end{rawhtml}
665    
666 cnh 1.1
667     Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
668    
669     \begin{equation}
670     \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
671     \label{eq:phi-split}
672 adcroft 1.4 \end{equation}
673 jmc 1.20 %and write eq(\ref{eq:incompressible}) in the form:
674     % ^- this eq is missing (jmc) ; replaced with:
675     and write eq( \ref{eq:horizontal_mtm}) in the form:
676 cnh 1.1
677     \begin{equation}
678     \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
679     _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
680     _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
681     \end{equation}
682    
683     \begin{equation}
684     \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
685     \end{equation}
686    
687     \begin{equation}
688 adcroft 1.4 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
689 cnh 1.1 \partial r}=G_{\dot{r}} \label{eq:mom-w}
690     \end{equation}
691     Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
692    
693 adcroft 1.4 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
694 cnh 1.1 {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
695 adcroft 1.4 terms in the momentum equations. In spherical coordinates they take the form
696     \footnote{
697 cnh 1.1 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
698 adcroft 1.4 in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref
699 cnh 1.1 {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
700 adcroft 1.4 the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (
701 cnh 1.1 \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
702     discussion:
703    
704     \begin{equation}
705     \left.
706     \begin{tabular}{l}
707     $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
708 cnh 1.6 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $
709 cnh 1.1 \\
710 cnh 1.6 $-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $
711 cnh 1.1 \\
712 adcroft 1.4 $+\mathcal{F}_{u}$
713     \end{tabular}
714 cnh 1.1 \ \right\} \left\{
715     \begin{tabular}{l}
716     \textit{advection} \\
717     \textit{metric} \\
718     \textit{Coriolis} \\
719 adcroft 1.4 \textit{\ Forcing/Dissipation}
720     \end{tabular}
721 cnh 1.2 \ \right. \qquad \label{eq:gu-speherical}
722 cnh 1.1 \end{equation}
723    
724     \begin{equation}
725     \left.
726     \begin{tabular}{l}
727     $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
728 cnh 1.6 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}
729 cnh 1.1 $ \\
730 cnh 1.6 $-\left\{ -2\Omega u\sin \varphi \right\} $ \\
731 adcroft 1.4 $+\mathcal{F}_{v}$
732     \end{tabular}
733 cnh 1.1 \ \right\} \left\{
734     \begin{tabular}{l}
735     \textit{advection} \\
736     \textit{metric} \\
737     \textit{Coriolis} \\
738 adcroft 1.4 \textit{\ Forcing/Dissipation}
739     \end{tabular}
740 cnh 1.2 \ \right. \qquad \label{eq:gv-spherical}
741 adcroft 1.4 \end{equation}
742 cnh 1.2 \qquad \qquad \qquad \qquad \qquad
743 cnh 1.1
744     \begin{equation}
745     \left.
746     \begin{tabular}{l}
747     $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
748     $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
749 cnh 1.6 ${+}\underline{{2\Omega u\cos \varphi}}$ \\
750 adcroft 1.4 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
751     \end{tabular}
752 cnh 1.1 \ \right\} \left\{
753     \begin{tabular}{l}
754     \textit{advection} \\
755     \textit{metric} \\
756     \textit{Coriolis} \\
757 adcroft 1.4 \textit{\ Forcing/Dissipation}
758     \end{tabular}
759 cnh 1.2 \ \right. \label{eq:gw-spherical}
760 adcroft 1.4 \end{equation}
761 cnh 1.2 \qquad \qquad \qquad \qquad \qquad
762 cnh 1.1
763 cnh 1.6 In the above `${r}$' is the distance from the center of the earth and `$\varphi$
764 cnh 1.1 ' is latitude.
765    
766     Grad and div operators in spherical coordinates are defined in appendix
767 adcroft 1.4 OPERATORS.
768 cnh 1.1
769 cnh 1.3 %%CNHbegin
770     \input{part1/sphere_coord_figure.tex}
771     %%CNHend
772    
773 cnh 1.1 \subsubsection{Shallow atmosphere approximation}
774    
775 edhill 1.24 Most models are based on the `hydrostatic primitive equations' (HPE's)
776     in which the vertical momentum equation is reduced to a statement of
777     hydrostatic balance and the `traditional approximation' is made in
778     which the Coriolis force is treated approximately and the shallow
779     atmosphere approximation is made. MITgcm need not make the
780     `traditional approximation'. To be able to support consistent
781     non-hydrostatic forms the shallow atmosphere approximation can be
782     relaxed - when dividing through by $ r $ in, for example,
783     (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, the radius of
784     the earth.
785 cnh 1.1
786     \subsubsection{Hydrostatic and quasi-hydrostatic forms}
787 cnh 1.7 \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
788 cnh 1.1
789     These are discussed at length in Marshall et al (1997a).
790    
791     In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
792     terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
793     are neglected and `${r}$' is replaced by `$a$', the mean radius of the
794     earth. Once the pressure is found at one level - e.g. by inverting a 2-d
795     Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
796 adcroft 1.4 computed at all other levels by integration of the hydrostatic relation, eq(
797 cnh 1.1 \ref{eq:hydrostatic}).
798    
799     In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
800     gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
801 cnh 1.6 \varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
802 adcroft 1.4 contribution to the pressure field: only the terms underlined twice in Eqs. (
803 cnh 1.1 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
804     and, simultaneously, the shallow atmosphere approximation is relaxed. In
805     \textbf{QH}\ \textit{all} the metric terms are retained and the full
806     variation of the radial position of a particle monitored. The \textbf{QH}\
807     vertical momentum equation (\ref{eq:mom-w}) becomes:
808    
809     \begin{equation*}
810 cnh 1.6 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi
811 cnh 1.1 \end{equation*}
812     making a small correction to the hydrostatic pressure.
813    
814     \textbf{QH} has good energetic credentials - they are the same as for
815     \textbf{HPE}. Importantly, however, it has the same angular momentum
816     principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
817     et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
818    
819     \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
820    
821 edhill 1.24 MITgcm presently supports a full non-hydrostatic ocean isomorph, but
822 cnh 1.1 only a quasi-non-hydrostatic atmospheric isomorph.
823    
824     \paragraph{Non-hydrostatic Ocean}
825    
826 adcroft 1.4 In the non-hydrostatic ocean model all terms in equations Eqs.(\ref
827 cnh 1.1 {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
828     three dimensional elliptic equation must be solved subject to Neumann
829     boundary conditions (see below). It is important to note that use of the
830     full \textbf{NH} does not admit any new `fast' waves in to the system - the
831 cnh 1.8 incompressible condition eq(\ref{eq:continuity}) has already filtered out
832 cnh 1.1 acoustic modes. It does, however, ensure that the gravity waves are treated
833     accurately with an exact dispersion relation. The \textbf{NH} set has a
834     complete angular momentum principle and consistent energetics - see White
835     and Bromley, 1995; Marshall et.al.\ 1997a.
836    
837     \paragraph{Quasi-nonhydrostatic Atmosphere}
838    
839 adcroft 1.4 In the non-hydrostatic version of our atmospheric model we approximate $\dot{
840 cnh 1.1 r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
841     (but only here) by:
842    
843     \begin{equation}
844     \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
845 adcroft 1.4 \end{equation}
846 cnh 1.1 where $p_{hy}$ is the hydrostatic pressure.
847    
848     \subsubsection{Summary of equation sets supported by model}
849    
850     \paragraph{Atmosphere}
851    
852     Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
853     compressible non-Boussinesq equations in $p-$coordinates are supported.
854    
855     \subparagraph{Hydrostatic and quasi-hydrostatic}
856    
857     The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
858     - see eq(\ref{eq:atmos-prime}).
859    
860     \subparagraph{Quasi-nonhydrostatic}
861    
862     A quasi-nonhydrostatic form is also supported.
863    
864     \paragraph{Ocean}
865    
866     \subparagraph{Hydrostatic and quasi-hydrostatic}
867    
868     Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
869     equations in $z-$coordinates are supported.
870    
871     \subparagraph{Non-hydrostatic}
872    
873 adcroft 1.4 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
874     coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref
875 cnh 1.1 {eq:ocean-salt}).
876    
877     \subsection{Solution strategy}
878    
879 adcroft 1.4 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
880 cnh 1.8 NH} models is summarized in Figure \ref{fig:solution-strategy}.
881     Under all dynamics, a 2-d elliptic equation is
882 cnh 1.1 first solved to find the surface pressure and the hydrostatic pressure at
883     any level computed from the weight of fluid above. Under \textbf{HPE} and
884     \textbf{QH} dynamics, the horizontal momentum equations are then stepped
885     forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
886     3-d elliptic equation must be solved for the non-hydrostatic pressure before
887     stepping forward the horizontal momentum equations; $\dot{r}$ is found by
888     stepping forward the vertical momentum equation.
889    
890 cnh 1.3 %%CNHbegin
891     \input{part1/solution_strategy_figure.tex}
892     %%CNHend
893    
894 cnh 1.1 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
895 cnh 1.6 course, some complication that goes with the inclusion of $\cos \varphi \ $
896 cnh 1.1 Coriolis terms and the relaxation of the shallow atmosphere approximation.
897     But this leads to negligible increase in computation. In \textbf{NH}, in
898     contrast, one additional elliptic equation - a three-dimensional one - must
899     be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
900     essentially negligible in the hydrostatic limit (see detailed discussion in
901     Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
902     hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
903    
904     \subsection{Finding the pressure field}
905 cnh 1.7 \label{sec:finding_the_pressure_field}
906 cnh 1.1
907     Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
908     pressure field must be obtained diagnostically. We proceed, as before, by
909     dividing the total (pressure/geo) potential in to three parts, a surface
910     part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
911     non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
912     writing the momentum equation as in (\ref{eq:mom-h}).
913    
914     \subsubsection{Hydrostatic pressure}
915    
916     Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
917     vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
918    
919     \begin{equation*}
920 adcroft 1.4 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
921 cnh 1.2 \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
922 cnh 1.1 \end{equation*}
923     and so
924    
925     \begin{equation}
926     \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
927     \end{equation}
928    
929     The model can be easily modified to accommodate a loading term (e.g
930     atmospheric pressure pushing down on the ocean's surface) by setting:
931    
932     \begin{equation}
933     \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
934     \end{equation}
935    
936     \subsubsection{Surface pressure}
937    
938 cnh 1.8 The surface pressure equation can be obtained by integrating continuity,
939     (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
940 cnh 1.1
941     \begin{equation*}
942 adcroft 1.4 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
943 cnh 1.2 }_{h}+\partial _{r}\dot{r}\right) dr=0
944 cnh 1.1 \end{equation*}
945    
946     Thus:
947    
948     \begin{equation*}
949     \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
950 adcroft 1.4 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
951 cnh 1.2 _{h}dr=0
952 cnh 1.1 \end{equation*}
953 adcroft 1.4 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
954 cnh 1.1 r $. The above can be rearranged to yield, using Leibnitz's theorem:
955    
956     \begin{equation}
957     \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
958     \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
959     \label{eq:free-surface}
960 adcroft 1.4 \end{equation}
961 cnh 1.1 where we have incorporated a source term.
962    
963     Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
964 cnh 1.8 (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
965 cnh 1.1 be written
966     \begin{equation}
967 cnh 1.2 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
968 cnh 1.1 \label{eq:phi-surf}
969 adcroft 1.4 \end{equation}
970 cnh 1.1 where $b_{s}$ is the buoyancy at the surface.
971    
972 cnh 1.8 In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
973 cnh 1.1 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
974     elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
975     surface' and `rigid lid' approaches are available.
976    
977     \subsubsection{Non-hydrostatic pressure}
978    
979 cnh 1.8 Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
980     $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
981     (\ref{eq:continuity}), we deduce that:
982 cnh 1.1
983     \begin{equation}
984 adcroft 1.4 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
985     \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
986 cnh 1.1 \vec{\mathbf{F}} \label{eq:3d-invert}
987     \end{equation}
988    
989     For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
990     subject to appropriate choice of boundary conditions. This method is usually
991     called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
992     Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
993     the 3-d problem does not need to be solved.
994    
995     \paragraph{Boundary Conditions}
996    
997     We apply the condition of no normal flow through all solid boundaries - the
998     coasts (in the ocean) and the bottom:
999    
1000     \begin{equation}
1001     \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
1002     \end{equation}
1003     where $\widehat{n}$ is a vector of unit length normal to the boundary. The
1004     kinematic condition (\ref{nonormalflow}) is also applied to the vertical
1005 adcroft 1.4 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
1006 cnh 1.1 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
1007     tangential component of velocity, $v_{T}$, at all solid boundaries,
1008     depending on the form chosen for the dissipative terms in the momentum
1009     equations - see below.
1010    
1011 cnh 1.8 Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
1012 cnh 1.1
1013     \begin{equation}
1014     \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
1015     \label{eq:inhom-neumann-nh}
1016     \end{equation}
1017     where
1018    
1019     \begin{equation*}
1020     \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
1021     _{s}+\mathbf{\nabla }\phi _{hyd}\right)
1022 adcroft 1.4 \end{equation*}
1023 cnh 1.1 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
1024     (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
1025     exploit classical 3D potential theory and, by introducing an appropriately
1026 cnh 1.2 chosen $\delta $-function sheet of `source-charge', replace the
1027     inhomogeneous boundary condition on pressure by a homogeneous one. The
1028 adcroft 1.4 source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $
1029     \vec{\mathbf{F}}.$ By simultaneously setting $
1030 cnh 1.1 \begin{array}{l}
1031 adcroft 1.4 \widehat{n}.\vec{\mathbf{F}}
1032     \end{array}
1033 cnh 1.1 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
1034 cnh 1.2 self-consistent but simpler homogenized Elliptic problem is obtained:
1035 cnh 1.1
1036     \begin{equation*}
1037 cnh 1.2 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
1038 adcroft 1.4 \end{equation*}
1039 cnh 1.1 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
1040 adcroft 1.4 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
1041 cnh 1.1 {eq:inhom-neumann-nh}) the modified boundary condition becomes:
1042    
1043     \begin{equation}
1044     \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
1045     \end{equation}
1046    
1047     If the flow is `close' to hydrostatic balance then the 3-d inversion
1048     converges rapidly because $\phi _{nh}\ $is then only a small correction to
1049     the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
1050    
1051 cnh 1.8 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
1052 cnh 1.1 does not vanish at $r=R_{moving}$, and so refines the pressure there.
1053    
1054     \subsection{Forcing/dissipation}
1055    
1056     \subsubsection{Forcing}
1057    
1058     The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
1059 cnh 1.8 `physics packages' and forcing packages. These are described later on.
1060 cnh 1.1
1061     \subsubsection{Dissipation}
1062    
1063     \paragraph{Momentum}
1064    
1065     Many forms of momentum dissipation are available in the model. Laplacian and
1066     biharmonic frictions are commonly used:
1067    
1068     \begin{equation}
1069 adcroft 1.4 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
1070 cnh 1.1 +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
1071     \end{equation}
1072     where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
1073     coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
1074     friction. These coefficients are the same for all velocity components.
1075    
1076     \paragraph{Tracers}
1077    
1078     The mixing terms for the temperature and salinity equations have a similar
1079     form to that of momentum except that the diffusion tensor can be
1080 adcroft 1.4 non-diagonal and have varying coefficients. $\qquad $
1081 cnh 1.1 \begin{equation}
1082     D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
1083     _{h}^{4}(T,S) \label{eq:diffusion}
1084     \end{equation}
1085 adcroft 1.4 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
1086 cnh 1.1 horizontal coefficient for biharmonic diffusion. In the simplest case where
1087     the subgrid-scale fluxes of heat and salt are parameterized with constant
1088     horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
1089     reduces to a diagonal matrix with constant coefficients:
1090    
1091     \begin{equation}
1092     \qquad \qquad \qquad \qquad K=\left(
1093     \begin{array}{ccc}
1094     K_{h} & 0 & 0 \\
1095     0 & K_{h} & 0 \\
1096 adcroft 1.4 0 & 0 & K_{v}
1097 cnh 1.1 \end{array}
1098     \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
1099     \end{equation}
1100     where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
1101     coefficients. These coefficients are the same for all tracers (temperature,
1102     salinity ... ).
1103    
1104     \subsection{Vector invariant form}
1105    
1106 edhill 1.21 For some purposes it is advantageous to write momentum advection in
1107     eq(\ref {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the
1108     (so-called) `vector invariant' form:
1109 cnh 1.1
1110     \begin{equation}
1111 adcroft 1.4 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
1112     +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
1113 cnh 1.2 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1114 cnh 1.1 \label{eq:vi-identity}
1115 adcroft 1.4 \end{equation}
1116 cnh 1.1 This permits alternative numerical treatments of the non-linear terms based
1117     on their representation as a vorticity flux. Because gradients of coordinate
1118     vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1119 adcroft 1.4 representation of the metric terms in (\ref{eq:gu-speherical}), (\ref
1120 cnh 1.1 {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1121     about the geometry is contained in the areas and lengths of the volumes used
1122     to discretize the model.
1123    
1124     \subsection{Adjoint}
1125    
1126 cnh 1.8 Tangent linear and adjoint counterparts of the forward model are described
1127 cnh 1.2 in Chapter 5.
1128 cnh 1.1
1129 edhill 1.25 % $Header: /u/gcmpack/manual/part1/manual.tex,v 1.24 2006/04/05 02:27:32 edhill Exp $
1130 cnh 1.1 % $Name: $
1131    
1132     \section{Appendix ATMOSPHERE}
1133    
1134     \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
1135     coordinates}
1136    
1137     \label{sect-hpe-p}
1138    
1139     The hydrostatic primitive equations (HPEs) in p-coordinates are:
1140     \begin{eqnarray}
1141 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1142 cnh 1.2 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1143 cnh 1.1 \label{eq:atmos-mom} \\
1144 cnh 1.2 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
1145 adcroft 1.4 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1146 cnh 1.1 \partial p} &=&0 \label{eq:atmos-cont} \\
1147 cnh 1.2 p\alpha &=&RT \label{eq:atmos-eos} \\
1148 cnh 1.1 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1149 adcroft 1.4 \end{eqnarray}
1150 cnh 1.1 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1151     surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1152     \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1153 cnh 1.6 derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is
1154 adcroft 1.4 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
1155     }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
1156     {eq:atmos-heat}) is the first law of thermodynamics where internal energy $
1157     e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $
1158 cnh 1.1 p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1159    
1160     It is convenient to cast the heat equation in terms of potential temperature
1161     $\theta $ so that it looks more like a generic conservation law.
1162     Differentiating (\ref{eq:atmos-eos}) we get:
1163     \begin{equation*}
1164     p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1165 adcroft 1.4 \end{equation*}
1166     which, when added to the heat equation (\ref{eq:atmos-heat}) and using $
1167 cnh 1.1 c_{p}=c_{v}+R$, gives:
1168     \begin{equation}
1169     c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1170     \label{eq-p-heat-interim}
1171 adcroft 1.4 \end{equation}
1172 cnh 1.1 Potential temperature is defined:
1173     \begin{equation}
1174     \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1175 adcroft 1.4 \end{equation}
1176 cnh 1.1 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1177     we will make use of the Exner function $\Pi (p)$ which defined by:
1178     \begin{equation}
1179     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1180 adcroft 1.4 \end{equation}
1181 cnh 1.1 The following relations will be useful and are easily expressed in terms of
1182     the Exner function:
1183     \begin{equation*}
1184     c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1185 adcroft 1.4 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
1186     \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
1187 cnh 1.1 \frac{Dp}{Dt}
1188 adcroft 1.4 \end{equation*}
1189 cnh 1.1 where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1190    
1191     The heat equation is obtained by noting that
1192     \begin{equation*}
1193     c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1194 cnh 1.2 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1195 cnh 1.1 \end{equation*}
1196     and on substituting into (\ref{eq-p-heat-interim}) gives:
1197     \begin{equation}
1198     \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1199     \label{eq:potential-temperature-equation}
1200     \end{equation}
1201     which is in conservative form.
1202    
1203 adcroft 1.4 For convenience in the model we prefer to step forward (\ref
1204 cnh 1.1 {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1205    
1206     \subsubsection{Boundary conditions}
1207    
1208     The upper and lower boundary conditions are :
1209     \begin{eqnarray}
1210     \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1211     \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1212     \label{eq:boundary-condition-atmosphere}
1213     \end{eqnarray}
1214     In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1215     =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1216     surface ($\phi $ is imposed and $\omega \neq 0$).
1217    
1218     \subsubsection{Splitting the geo-potential}
1219 jmc 1.22 \label{sec:hpe-p-geo-potential-split}
1220 cnh 1.1
1221     For the purposes of initialization and reducing round-off errors, the model
1222     deals with perturbations from reference (or ``standard'') profiles. For
1223     example, the hydrostatic geopotential associated with the resting atmosphere
1224     is not dynamically relevant and can therefore be subtracted from the
1225     equations. The equations written in terms of perturbations are obtained by
1226     substituting the following definitions into the previous model equations:
1227     \begin{eqnarray}
1228     \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1229     \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1230     \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1231     \end{eqnarray}
1232     The reference state (indicated by subscript ``0'') corresponds to
1233     horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1234     _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1235     _{o}(p_{o})=g~Z_{topo}$, defined:
1236     \begin{eqnarray*}
1237     \theta _{o}(p) &=&f^{n}(p) \\
1238     \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1239     \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1240     \end{eqnarray*}
1241     %\begin{eqnarray*}
1242     %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1243     %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1244     %\end{eqnarray*}
1245    
1246     The final form of the HPE's in p coordinates is then:
1247     \begin{eqnarray}
1248 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1249 edhill 1.21 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}}
1250     \label{eq:atmos-prime} \\
1251 cnh 1.1 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1252 adcroft 1.4 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1253 cnh 1.1 \partial p} &=&0 \\
1254     \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1255 cnh 1.8 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1256 cnh 1.1 \end{eqnarray}
1257    
1258 edhill 1.25 % $Header: /u/gcmpack/manual/part1/manual.tex,v 1.24 2006/04/05 02:27:32 edhill Exp $
1259 cnh 1.1 % $Name: $
1260    
1261     \section{Appendix OCEAN}
1262    
1263     \subsection{Equations of motion for the ocean}
1264    
1265     We review here the method by which the standard (Boussinesq, incompressible)
1266     HPE's for the ocean written in z-coordinates are obtained. The
1267     non-Boussinesq equations for oceanic motion are:
1268     \begin{eqnarray}
1269 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1270 cnh 1.1 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1271     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1272     &=&\epsilon _{nh}\mathcal{F}_{w} \\
1273 adcroft 1.4 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1274 cnh 1.8 _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1275     \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1276     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1277     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt}
1278     \label{eq:non-boussinesq}
1279 adcroft 1.4 \end{eqnarray}
1280 cnh 1.1 These equations permit acoustics modes, inertia-gravity waves,
1281 cnh 1.10 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1282 cnh 1.1 mode. As written, they cannot be integrated forward consistently - if we
1283     step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1284 adcroft 1.4 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
1285 cnh 1.1 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1286     therefore necessary to manipulate the system as follows. Differentiating the
1287     EOS (equation of state) gives:
1288    
1289     \begin{equation}
1290     \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1291     _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1292     _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1293     _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1294     \end{equation}
1295    
1296 edhill 1.21 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is
1297     the reciprocal of the sound speed ($c_{s}$) squared. Substituting into
1298     \ref{eq-zns-cont} gives:
1299 cnh 1.1 \begin{equation}
1300 adcroft 1.4 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1301 cnh 1.1 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1302     \end{equation}
1303     where we have used an approximation sign to indicate that we have assumed
1304     adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1305     Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1306     can be explicitly integrated forward:
1307     \begin{eqnarray}
1308 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1309 cnh 1.1 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1310     \label{eq-cns-hmom} \\
1311     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1312     &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1313 adcroft 1.4 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1314 cnh 1.1 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1315     \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1316     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1317     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1318     \end{eqnarray}
1319    
1320     \subsubsection{Compressible z-coordinate equations}
1321    
1322     Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1323     wherever it appears in a product (ie. non-linear term) - this is the
1324     `Boussinesq assumption'. The only term that then retains the full variation
1325     in $\rho $ is the gravitational acceleration:
1326     \begin{eqnarray}
1327 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1328 cnh 1.1 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1329     \label{eq-zcb-hmom} \\
1330 adcroft 1.4 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1331 cnh 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1332     \label{eq-zcb-hydro} \\
1333 adcroft 1.4 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
1334 cnh 1.1 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1335     \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1336     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1337     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1338     \end{eqnarray}
1339     These equations still retain acoustic modes. But, because the
1340 adcroft 1.4 ``compressible'' terms are linearized, the pressure equation \ref
1341 cnh 1.1 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1342     term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1343     These are the \emph{truly} compressible Boussinesq equations. Note that the
1344     EOS must have the same pressure dependency as the linearized pressure term,
1345 adcroft 1.4 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
1346 cnh 1.1 c_{s}^{2}}$, for consistency.
1347    
1348     \subsubsection{`Anelastic' z-coordinate equations}
1349    
1350     The anelastic approximation filters the acoustic mode by removing the
1351 adcroft 1.4 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
1352     ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
1353 cnh 1.1 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1354     continuity and EOS. A better solution is to change the dependency on
1355     pressure in the EOS by splitting the pressure into a reference function of
1356     height and a perturbation:
1357     \begin{equation*}
1358 cnh 1.2 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1359 cnh 1.1 \end{equation*}
1360     Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1361     differentiating the EOS, the continuity equation then becomes:
1362     \begin{equation*}
1363 adcroft 1.4 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
1364     Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
1365 cnh 1.2 \frac{\partial w}{\partial z}=0
1366 cnh 1.1 \end{equation*}
1367     If the time- and space-scales of the motions of interest are longer than
1368 adcroft 1.4 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
1369 cnh 1.1 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1370 adcroft 1.4 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
1371 cnh 1.1 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1372     ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1373     _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1374     and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1375     anelastic continuity equation:
1376     \begin{equation}
1377 adcroft 1.4 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
1378 cnh 1.1 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1379     \end{equation}
1380     A slightly different route leads to the quasi-Boussinesq continuity equation
1381 adcroft 1.4 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
1382     \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
1383 cnh 1.1 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1384     \begin{equation}
1385 adcroft 1.4 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1386 cnh 1.1 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1387     \end{equation}
1388     Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1389     equation if:
1390     \begin{equation}
1391     \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1392     \end{equation}
1393     Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1394 adcroft 1.4 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
1395 cnh 1.1 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1396     full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1397     then:
1398     \begin{eqnarray}
1399 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1400 cnh 1.1 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1401     \label{eq-zab-hmom} \\
1402 adcroft 1.4 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1403 cnh 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1404     \label{eq-zab-hydro} \\
1405 adcroft 1.4 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1406 cnh 1.1 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1407     \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1408     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1409     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1410     \end{eqnarray}
1411    
1412     \subsubsection{Incompressible z-coordinate equations}
1413    
1414     Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1415     technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1416     yield the ``truly'' incompressible Boussinesq equations:
1417     \begin{eqnarray}
1418 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1419 cnh 1.1 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1420     \label{eq-ztb-hmom} \\
1421 adcroft 1.4 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
1422 cnh 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1423     \label{eq-ztb-hydro} \\
1424     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1425     &=&0 \label{eq-ztb-cont} \\
1426     \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1427     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1428     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1429     \end{eqnarray}
1430     where $\rho _{c}$ is a constant reference density of water.
1431    
1432     \subsubsection{Compressible non-divergent equations}
1433    
1434     The above ``incompressible'' equations are incompressible in both the flow
1435     and the density. In many oceanic applications, however, it is important to
1436     retain compressibility effects in the density. To do this we must split the
1437     density thus:
1438     \begin{equation*}
1439     \rho =\rho _{o}+\rho ^{\prime }
1440 adcroft 1.4 \end{equation*}
1441 cnh 1.1 We then assert that variations with depth of $\rho _{o}$ are unimportant
1442     while the compressible effects in $\rho ^{\prime }$ are:
1443     \begin{equation*}
1444     \rho _{o}=\rho _{c}
1445 adcroft 1.4 \end{equation*}
1446 cnh 1.1 \begin{equation*}
1447     \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1448 adcroft 1.4 \end{equation*}
1449 cnh 1.1 This then yields what we can call the semi-compressible Boussinesq
1450     equations:
1451     \begin{eqnarray}
1452 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1453     _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
1454 cnh 1.1 \mathcal{F}}} \label{eq:ocean-mom} \\
1455     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1456     _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1457     \label{eq:ocean-wmom} \\
1458     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1459     &=&0 \label{eq:ocean-cont} \\
1460     \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1461     \\
1462     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1463     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1464 adcroft 1.4 \end{eqnarray}
1465 cnh 1.1 Note that the hydrostatic pressure of the resting fluid, including that
1466     associated with $\rho _{c}$, is subtracted out since it has no effect on the
1467     dynamics.
1468    
1469     Though necessary, the assumptions that go into these equations are messy
1470     since we essentially assume a different EOS for the reference density and
1471     the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1472     _{nh}=0$ form of these equations that are used throughout the ocean modeling
1473     community and referred to as the primitive equations (HPE).
1474    
1475 edhill 1.25 % $Header: /u/gcmpack/manual/part1/manual.tex,v 1.24 2006/04/05 02:27:32 edhill Exp $
1476 cnh 1.1 % $Name: $
1477    
1478     \section{Appendix:OPERATORS}
1479    
1480     \subsection{Coordinate systems}
1481    
1482     \subsubsection{Spherical coordinates}
1483    
1484     In spherical coordinates, the velocity components in the zonal, meridional
1485     and vertical direction respectively, are given by (see Fig.2) :
1486    
1487     \begin{equation*}
1488 cnh 1.6 u=r\cos \varphi \frac{D\lambda }{Dt}
1489 cnh 1.1 \end{equation*}
1490    
1491     \begin{equation*}
1492 cnh 1.6 v=r\frac{D\varphi }{Dt}\qquad
1493 cnh 1.1 \end{equation*}
1494     $\qquad \qquad \qquad \qquad $
1495    
1496     \begin{equation*}
1497 cnh 1.2 \dot{r}=\frac{Dr}{Dt}
1498 cnh 1.1 \end{equation*}
1499    
1500 cnh 1.6 Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1501 cnh 1.1 distance of the particle from the center of the earth, $\Omega $ is the
1502     angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1503    
1504     The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in
1505     spherical coordinates:
1506    
1507     \begin{equation*}
1508 cnh 1.6 \nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
1509     ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
1510 cnh 1.2 \right)
1511 cnh 1.1 \end{equation*}
1512    
1513     \begin{equation*}
1514 cnh 1.6 \nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
1515     \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
1516 cnh 1.2 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1517 cnh 1.1 \end{equation*}
1518    
1519 adcroft 1.4 %tci%\end{document}

  ViewVC Help
Powered by ViewVC 1.1.22