| 1 | 
afe | 
1.18 | 
% $Header: /u/gcmpack/manual/part1/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ | 
| 2 | 
cnh | 
1.2 | 
% $Name:  $ | 
| 3 | 
cnh | 
1.1 | 
 | 
| 4 | 
adcroft | 
1.4 | 
%tci%\documentclass[12pt]{book} | 
| 5 | 
  | 
  | 
%tci%\usepackage{amsmath} | 
| 6 | 
  | 
  | 
%tci%\usepackage{html} | 
| 7 | 
  | 
  | 
%tci%\usepackage{epsfig} | 
| 8 | 
  | 
  | 
%tci%\usepackage{graphics,subfigure} | 
| 9 | 
  | 
  | 
%tci%\usepackage{array} | 
| 10 | 
  | 
  | 
%tci%\usepackage{multirow} | 
| 11 | 
  | 
  | 
%tci%\usepackage{fancyhdr} | 
| 12 | 
  | 
  | 
%tci%\usepackage{psfrag} | 
| 13 | 
  | 
  | 
 | 
| 14 | 
  | 
  | 
%tci%%TCIDATA{OutputFilter=Latex.dll} | 
| 15 | 
  | 
  | 
%tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22} | 
| 16 | 
  | 
  | 
%tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">} | 
| 17 | 
  | 
  | 
%tci%%TCIDATA{Language=American English} | 
| 18 | 
  | 
  | 
 | 
| 19 | 
  | 
  | 
%tci%\fancyhead{} | 
| 20 | 
  | 
  | 
%tci%\fancyhead[LO]{\slshape \rightmark} | 
| 21 | 
  | 
  | 
%tci%\fancyhead[RE]{\slshape \leftmark} | 
| 22 | 
  | 
  | 
%tci%\fancyhead[RO,LE]{\thepage} | 
| 23 | 
  | 
  | 
%tci%\fancyfoot[CO,CE]{\today} | 
| 24 | 
  | 
  | 
%tci%\fancyfoot[RO,LE]{ } | 
| 25 | 
  | 
  | 
%tci%\renewcommand{\headrulewidth}{0.4pt} | 
| 26 | 
  | 
  | 
%tci%\renewcommand{\footrulewidth}{0.4pt} | 
| 27 | 
  | 
  | 
%tci%\setcounter{secnumdepth}{3} | 
| 28 | 
  | 
  | 
%tci%\input{tcilatex} | 
| 29 | 
  | 
  | 
 | 
| 30 | 
  | 
  | 
%tci%\begin{document} | 
| 31 | 
  | 
  | 
 | 
| 32 | 
  | 
  | 
%tci%\tableofcontents | 
| 33 | 
  | 
  | 
 | 
| 34 | 
  | 
  | 
 | 
| 35 | 
cnh | 
1.1 | 
% Section: Overview | 
| 36 | 
  | 
  | 
 | 
| 37 | 
afe | 
1.18 | 
% $Header: /u/gcmpack/manual/part1/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ | 
| 38 | 
cnh | 
1.1 | 
% $Name:  $ | 
| 39 | 
  | 
  | 
 | 
| 40 | 
cnh | 
1.16 | 
This document provides the reader with the information necessary to | 
| 41 | 
cnh | 
1.1 | 
carry out numerical experiments using MITgcm. It gives a comprehensive | 
| 42 | 
  | 
  | 
description of the continuous equations on which the model is based, the | 
| 43 | 
  | 
  | 
numerical algorithms the model employs and a description of the associated | 
| 44 | 
  | 
  | 
program code. Along with the hydrodynamical kernel, physical and | 
| 45 | 
  | 
  | 
biogeochemical parameterizations of key atmospheric and oceanic processes | 
| 46 | 
  | 
  | 
are available. A number of examples illustrating the use of the model in | 
| 47 | 
  | 
  | 
both process and general circulation studies of the atmosphere and ocean are | 
| 48 | 
  | 
  | 
also presented. | 
| 49 | 
  | 
  | 
 | 
| 50 | 
cnh | 
1.16 | 
\section{Introduction} | 
| 51 | 
afe | 
1.18 | 
\begin{rawhtml} | 
| 52 | 
  | 
  | 
<!-- CMIREDIR:innovations --> | 
| 53 | 
  | 
  | 
\end{rawhtml} | 
| 54 | 
  | 
  | 
 | 
| 55 | 
cnh | 
1.16 | 
 | 
| 56 | 
cnh | 
1.1 | 
MITgcm has a number of novel aspects: | 
| 57 | 
  | 
  | 
 | 
| 58 | 
  | 
  | 
\begin{itemize} | 
| 59 | 
  | 
  | 
\item it can be used to study both atmospheric and oceanic phenomena; one | 
| 60 | 
  | 
  | 
hydrodynamical kernel is used to drive forward both atmospheric and oceanic | 
| 61 | 
cnh | 
1.7 | 
models - see fig \ref{fig:onemodel} | 
| 62 | 
cnh | 
1.1 | 
 | 
| 63 | 
cnh | 
1.3 | 
%% CNHbegin | 
| 64 | 
  | 
  | 
\input{part1/one_model_figure} | 
| 65 | 
  | 
  | 
%% CNHend | 
| 66 | 
  | 
  | 
 | 
| 67 | 
cnh | 
1.1 | 
\item it has a non-hydrostatic capability and so can be used to study both | 
| 68 | 
cnh | 
1.7 | 
small-scale and large scale processes - see fig \ref{fig:all-scales} | 
| 69 | 
cnh | 
1.1 | 
 | 
| 70 | 
cnh | 
1.3 | 
%% CNHbegin | 
| 71 | 
  | 
  | 
\input{part1/all_scales_figure} | 
| 72 | 
  | 
  | 
%% CNHend | 
| 73 | 
  | 
  | 
 | 
| 74 | 
cnh | 
1.1 | 
\item finite volume techniques are employed yielding an intuitive | 
| 75 | 
  | 
  | 
discretization and support for the treatment of irregular geometries using | 
| 76 | 
cnh | 
1.7 | 
orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes} | 
| 77 | 
cnh | 
1.3 | 
 | 
| 78 | 
  | 
  | 
%% CNHbegin | 
| 79 | 
  | 
  | 
\input{part1/fvol_figure} | 
| 80 | 
  | 
  | 
%% CNHend | 
| 81 | 
cnh | 
1.1 | 
 | 
| 82 | 
  | 
  | 
\item tangent linear and adjoint counterparts are automatically maintained | 
| 83 | 
  | 
  | 
along with the forward model, permitting sensitivity and optimization | 
| 84 | 
  | 
  | 
studies. | 
| 85 | 
  | 
  | 
 | 
| 86 | 
  | 
  | 
\item the model is developed to perform efficiently on a wide variety of | 
| 87 | 
  | 
  | 
computational platforms. | 
| 88 | 
  | 
  | 
\end{itemize} | 
| 89 | 
  | 
  | 
 | 
| 90 | 
cnh | 
1.16 | 
Key publications reporting on and charting the development of the model are | 
| 91 | 
  | 
  | 
\cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99}: | 
| 92 | 
cnh | 
1.12 | 
 | 
| 93 | 
  | 
  | 
\begin{verbatim} | 
| 94 | 
  | 
  | 
Hill, C. and J. Marshall, (1995) | 
| 95 | 
  | 
  | 
Application of a Parallel Navier-Stokes Model to Ocean Circulation in  | 
| 96 | 
  | 
  | 
Parallel Computational Fluid Dynamics | 
| 97 | 
  | 
  | 
In Proceedings of Parallel Computational Fluid Dynamics: Implementations  | 
| 98 | 
  | 
  | 
and Results Using Parallel Computers, 545-552. | 
| 99 | 
  | 
  | 
Elsevier Science B.V.: New York | 
| 100 | 
  | 
  | 
 | 
| 101 | 
  | 
  | 
Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997) | 
| 102 | 
cnh | 
1.16 | 
Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling | 
| 103 | 
cnh | 
1.12 | 
J. Geophysical Res., 102(C3), 5733-5752. | 
| 104 | 
  | 
  | 
 | 
| 105 | 
  | 
  | 
Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997) | 
| 106 | 
  | 
  | 
A finite-volume, incompressible Navier Stokes model for studies of the ocean | 
| 107 | 
  | 
  | 
on parallel computers, | 
| 108 | 
  | 
  | 
J. Geophysical Res., 102(C3), 5753-5766. | 
| 109 | 
  | 
  | 
 | 
| 110 | 
  | 
  | 
Adcroft, A.J., Hill, C.N. and J. Marshall, (1997) | 
| 111 | 
  | 
  | 
Representation of topography by shaved cells in a height coordinate ocean | 
| 112 | 
  | 
  | 
model | 
| 113 | 
  | 
  | 
Mon Wea Rev, vol 125, 2293-2315 | 
| 114 | 
  | 
  | 
 | 
| 115 | 
  | 
  | 
Marshall, J., Jones, H. and C. Hill, (1998) | 
| 116 | 
  | 
  | 
Efficient ocean modeling using non-hydrostatic algorithms | 
| 117 | 
  | 
  | 
Journal of Marine Systems, 18, 115-134 | 
| 118 | 
  | 
  | 
 | 
| 119 | 
  | 
  | 
Adcroft, A., Hill C. and J. Marshall: (1999) | 
| 120 | 
  | 
  | 
A new treatment of the Coriolis terms in C-grid models at both high and low | 
| 121 | 
  | 
  | 
resolutions, | 
| 122 | 
  | 
  | 
Mon. Wea. Rev. Vol 127, pages 1928-1936 | 
| 123 | 
  | 
  | 
 | 
| 124 | 
  | 
  | 
Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999) | 
| 125 | 
  | 
  | 
A Strategy for Terascale Climate Modeling. | 
| 126 | 
cnh | 
1.14 | 
In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors | 
| 127 | 
  | 
  | 
in Meteorology, pages 406-425 | 
| 128 | 
  | 
  | 
World Scientific Publishing Co: UK | 
| 129 | 
cnh | 
1.12 | 
 | 
| 130 | 
  | 
  | 
Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999) | 
| 131 | 
  | 
  | 
Construction of the adjoint MIT ocean general circulation model and  | 
| 132 | 
  | 
  | 
application to Atlantic heat transport variability | 
| 133 | 
  | 
  | 
J. Geophysical Res., 104(C12), 29,529-29,547. | 
| 134 | 
  | 
  | 
 | 
| 135 | 
  | 
  | 
\end{verbatim} | 
| 136 | 
cnh | 
1.1 | 
 | 
| 137 | 
  | 
  | 
We begin by briefly showing some of the results of the model in action to | 
| 138 | 
  | 
  | 
give a feel for the wide range of problems that can be addressed using it. | 
| 139 | 
  | 
  | 
 | 
| 140 | 
afe | 
1.18 | 
% $Header: /u/gcmpack/manual/part1/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ | 
| 141 | 
cnh | 
1.1 | 
% $Name:  $ | 
| 142 | 
  | 
  | 
 | 
| 143 | 
  | 
  | 
\section{Illustrations of the model in action} | 
| 144 | 
  | 
  | 
 | 
| 145 | 
  | 
  | 
The MITgcm has been designed and used to model a wide range of phenomena, | 
| 146 | 
  | 
  | 
from convection on the scale of meters in the ocean to the global pattern of | 
| 147 | 
cnh | 
1.7 | 
atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the | 
| 148 | 
cnh | 
1.1 | 
kinds of problems the model has been used to study, we briefly describe some | 
| 149 | 
  | 
  | 
of them here. A more detailed description of the underlying formulation, | 
| 150 | 
  | 
  | 
numerical algorithm and implementation that lie behind these calculations is | 
| 151 | 
cnh | 
1.2 | 
given later. Indeed many of the illustrative examples shown below can be | 
| 152 | 
  | 
  | 
easily reproduced: simply download the model (the minimum you need is a PC | 
| 153 | 
cnh | 
1.10 | 
running Linux, together with a FORTRAN\ 77 compiler) and follow the examples | 
| 154 | 
cnh | 
1.2 | 
described in detail in the documentation. | 
| 155 | 
cnh | 
1.1 | 
 | 
| 156 | 
  | 
  | 
\subsection{Global atmosphere: `Held-Suarez' benchmark} | 
| 157 | 
afe | 
1.18 | 
\begin{rawhtml} | 
| 158 | 
  | 
  | 
<!-- CMIREDIR:atmospheric_example --> | 
| 159 | 
  | 
  | 
\end{rawhtml} | 
| 160 | 
  | 
  | 
 | 
| 161 | 
  | 
  | 
 | 
| 162 | 
cnh | 
1.1 | 
 | 
| 163 | 
cnh | 
1.7 | 
A novel feature of MITgcm is its ability to simulate, using one basic algorithm,  | 
| 164 | 
  | 
  | 
both atmospheric and oceanographic flows at both small and large scales. | 
| 165 | 
cnh | 
1.2 | 
 | 
| 166 | 
cnh | 
1.7 | 
Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$ | 
| 167 | 
cnh | 
1.2 | 
temperature field obtained using the atmospheric isomorph of MITgcm run at | 
| 168 | 
  | 
  | 
2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole | 
| 169 | 
  | 
  | 
(blue) and warm air along an equatorial band (red). Fully developed | 
| 170 | 
  | 
  | 
baroclinic eddies spawned in the northern hemisphere storm track are | 
| 171 | 
  | 
  | 
evident. There are no mountains or land-sea contrast in this calculation, | 
| 172 | 
  | 
  | 
but you can easily put them in. The model is driven by relaxation to a | 
| 173 | 
  | 
  | 
radiative-convective equilibrium profile, following the description set out | 
| 174 | 
  | 
  | 
in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores - | 
| 175 | 
  | 
  | 
there are no mountains or land-sea contrast. | 
| 176 | 
  | 
  | 
 | 
| 177 | 
cnh | 
1.3 | 
%% CNHbegin | 
| 178 | 
  | 
  | 
\input{part1/cubic_eddies_figure} | 
| 179 | 
  | 
  | 
%% CNHend | 
| 180 | 
  | 
  | 
 | 
| 181 | 
cnh | 
1.2 | 
As described in Adcroft (2001), a `cubed sphere' is used to discretize the | 
| 182 | 
cnh | 
1.10 | 
globe permitting a uniform griding and obviated the need to Fourier filter. | 
| 183 | 
cnh | 
1.2 | 
The `vector-invariant' form of MITgcm supports any orthogonal curvilinear | 
| 184 | 
  | 
  | 
grid, of which the cubed sphere is just one of many choices. | 
| 185 | 
cnh | 
1.1 | 
 | 
| 186 | 
cnh | 
1.7 | 
Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal | 
| 187 | 
  | 
  | 
wind from a 20-level configuration of | 
| 188 | 
cnh | 
1.2 | 
the model. It compares favorable with more conventional spatial | 
| 189 | 
cnh | 
1.7 | 
discretization approaches. The two plots show the field calculated using the | 
| 190 | 
  | 
  | 
cube-sphere grid and the flow calculated using a regular, spherical polar | 
| 191 | 
  | 
  | 
latitude-longitude grid. Both grids are supported within the model. | 
| 192 | 
cnh | 
1.1 | 
 | 
| 193 | 
cnh | 
1.3 | 
%% CNHbegin | 
| 194 | 
  | 
  | 
\input{part1/hs_zave_u_figure} | 
| 195 | 
  | 
  | 
%% CNHend | 
| 196 | 
  | 
  | 
 | 
| 197 | 
cnh | 
1.2 | 
\subsection{Ocean gyres} | 
| 198 | 
afe | 
1.18 | 
\begin{rawhtml} | 
| 199 | 
  | 
  | 
<!-- CMIREDIR:oceanic_example --> | 
| 200 | 
  | 
  | 
\end{rawhtml} | 
| 201 | 
  | 
  | 
\begin{rawhtml} | 
| 202 | 
  | 
  | 
<!-- CMIREDIR:ocean_gyres --> | 
| 203 | 
  | 
  | 
\end{rawhtml} | 
| 204 | 
cnh | 
1.1 | 
 | 
| 205 | 
cnh | 
1.2 | 
Baroclinic instability is a ubiquitous process in the ocean, as well as the | 
| 206 | 
  | 
  | 
atmosphere. Ocean eddies play an important role in modifying the | 
| 207 | 
  | 
  | 
hydrographic structure and current systems of the oceans. Coarse resolution | 
| 208 | 
  | 
  | 
models of the oceans cannot resolve the eddy field and yield rather broad, | 
| 209 | 
  | 
  | 
diffusive patterns of ocean currents. But if the resolution of our models is | 
| 210 | 
  | 
  | 
increased until the baroclinic instability process is resolved, numerical | 
| 211 | 
  | 
  | 
solutions of a different and much more realistic kind, can be obtained. | 
| 212 | 
  | 
  | 
 | 
| 213 | 
cnh | 
1.7 | 
Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity  | 
| 214 | 
  | 
  | 
field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal  | 
| 215 | 
  | 
  | 
resolution on a $lat-lon$ | 
| 216 | 
cnh | 
1.2 | 
grid in which the pole has been rotated by 90$^{\circ }$ on to the equator | 
| 217 | 
  | 
  | 
(to avoid the converging of meridian in northern latitudes). 21 vertical | 
| 218 | 
  | 
  | 
levels are used in the vertical with a `lopped cell' representation of | 
| 219 | 
  | 
  | 
topography. The development and propagation of anomalously warm and cold | 
| 220 | 
cnh | 
1.7 | 
eddies can be clearly seen in the Gulf Stream region. The transport of | 
| 221 | 
cnh | 
1.2 | 
warm water northward by the mean flow of the Gulf Stream is also clearly | 
| 222 | 
  | 
  | 
visible. | 
| 223 | 
cnh | 
1.1 | 
 | 
| 224 | 
cnh | 
1.3 | 
%% CNHbegin | 
| 225 | 
cnh | 
1.11 | 
\input{part1/atl6_figure} | 
| 226 | 
cnh | 
1.3 | 
%% CNHend | 
| 227 | 
  | 
  | 
 | 
| 228 | 
  | 
  | 
 | 
| 229 | 
cnh | 
1.1 | 
\subsection{Global ocean circulation} | 
| 230 | 
afe | 
1.18 | 
\begin{rawhtml} | 
| 231 | 
  | 
  | 
<!-- CMIREDIR:global_ocean_circulation --> | 
| 232 | 
  | 
  | 
\end{rawhtml} | 
| 233 | 
cnh | 
1.1 | 
 | 
| 234 | 
cnh | 
1.7 | 
Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at  | 
| 235 | 
  | 
  | 
the surface of a 4$^{\circ }$ | 
| 236 | 
cnh | 
1.2 | 
global ocean model run with 15 vertical levels. Lopped cells are used to | 
| 237 | 
  | 
  | 
represent topography on a regular $lat-lon$ grid extending from 70$^{\circ | 
| 238 | 
  | 
  | 
}N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with | 
| 239 | 
  | 
  | 
mixed boundary conditions on temperature and salinity at the surface. The | 
| 240 | 
  | 
  | 
transfer properties of ocean eddies, convection and mixing is parameterized | 
| 241 | 
  | 
  | 
in this model. | 
| 242 | 
  | 
  | 
 | 
| 243 | 
cnh | 
1.7 | 
Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning  | 
| 244 | 
  | 
  | 
circulation of the global ocean in Sverdrups. | 
| 245 | 
cnh | 
1.2 | 
 | 
| 246 | 
cnh | 
1.3 | 
%%CNHbegin | 
| 247 | 
  | 
  | 
\input{part1/global_circ_figure} | 
| 248 | 
  | 
  | 
%%CNHend | 
| 249 | 
  | 
  | 
 | 
| 250 | 
cnh | 
1.2 | 
\subsection{Convection and mixing over topography} | 
| 251 | 
afe | 
1.18 | 
\begin{rawhtml} | 
| 252 | 
  | 
  | 
<!-- CMIREDIR:mixing_over_topography --> | 
| 253 | 
  | 
  | 
\end{rawhtml} | 
| 254 | 
  | 
  | 
 | 
| 255 | 
cnh | 
1.2 | 
 | 
| 256 | 
  | 
  | 
Dense plumes generated by localized cooling on the continental shelf of the | 
| 257 | 
  | 
  | 
ocean may be influenced by rotation when the deformation radius is smaller | 
| 258 | 
  | 
  | 
than the width of the cooling region. Rather than gravity plumes, the | 
| 259 | 
  | 
  | 
mechanism for moving dense fluid down the shelf is then through geostrophic | 
| 260 | 
adcroft | 
1.9 | 
eddies. The simulation shown in the figure \ref{fig:convect-and-topo} | 
| 261 | 
cnh | 
1.7 | 
(blue is cold dense fluid, red is | 
| 262 | 
cnh | 
1.2 | 
warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to | 
| 263 | 
  | 
  | 
trigger convection by surface cooling. The cold, dense water falls down the | 
| 264 | 
  | 
  | 
slope but is deflected along the slope by rotation. It is found that | 
| 265 | 
  | 
  | 
entrainment in the vertical plane is reduced when rotational control is | 
| 266 | 
  | 
  | 
strong, and replaced by lateral entrainment due to the baroclinic | 
| 267 | 
  | 
  | 
instability of the along-slope current. | 
| 268 | 
cnh | 
1.1 | 
 | 
| 269 | 
cnh | 
1.3 | 
%%CNHbegin | 
| 270 | 
  | 
  | 
\input{part1/convect_and_topo} | 
| 271 | 
  | 
  | 
%%CNHend | 
| 272 | 
  | 
  | 
 | 
| 273 | 
cnh | 
1.1 | 
\subsection{Boundary forced internal waves} | 
| 274 | 
afe | 
1.18 | 
\begin{rawhtml} | 
| 275 | 
  | 
  | 
<!-- CMIREDIR:boundary_forced_internal_waves --> | 
| 276 | 
  | 
  | 
\end{rawhtml} | 
| 277 | 
cnh | 
1.1 | 
 | 
| 278 | 
cnh | 
1.2 | 
The unique ability of MITgcm to treat non-hydrostatic dynamics in the | 
| 279 | 
  | 
  | 
presence of complex geometry makes it an ideal tool to study internal wave | 
| 280 | 
  | 
  | 
dynamics and mixing in oceanic canyons and ridges driven by large amplitude | 
| 281 | 
  | 
  | 
barotropic tidal currents imposed through open boundary conditions. | 
| 282 | 
  | 
  | 
 | 
| 283 | 
cnh | 
1.7 | 
Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope  | 
| 284 | 
  | 
  | 
topographic variations on | 
| 285 | 
cnh | 
1.2 | 
internal wave breaking - the cross-slope velocity is in color, the density | 
| 286 | 
  | 
  | 
contoured. The internal waves are excited by application of open boundary | 
| 287 | 
cnh | 
1.7 | 
conditions on the left. They propagate to the sloping boundary (represented | 
| 288 | 
cnh | 
1.2 | 
using MITgcm's finite volume spatial discretization) where they break under | 
| 289 | 
  | 
  | 
nonhydrostatic dynamics. | 
| 290 | 
  | 
  | 
 | 
| 291 | 
cnh | 
1.3 | 
%%CNHbegin | 
| 292 | 
  | 
  | 
\input{part1/boundary_forced_waves} | 
| 293 | 
  | 
  | 
%%CNHend | 
| 294 | 
  | 
  | 
 | 
| 295 | 
cnh | 
1.2 | 
\subsection{Parameter sensitivity using the adjoint of MITgcm} | 
| 296 | 
afe | 
1.18 | 
\begin{rawhtml} | 
| 297 | 
  | 
  | 
<!-- CMIREDIR:parameter_sensitivity --> | 
| 298 | 
  | 
  | 
\end{rawhtml} | 
| 299 | 
cnh | 
1.2 | 
 | 
| 300 | 
  | 
  | 
Forward and tangent linear counterparts of MITgcm are supported using an | 
| 301 | 
  | 
  | 
`automatic adjoint compiler'. These can be used in parameter sensitivity and | 
| 302 | 
  | 
  | 
data assimilation studies. | 
| 303 | 
  | 
  | 
 | 
| 304 | 
cnh | 
1.7 | 
As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity} | 
| 305 | 
  | 
  | 
maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude | 
| 306 | 
cnh | 
1.10 | 
of the overturning stream-function shown in figure \ref{fig:large-scale-circ} | 
| 307 | 
cnh | 
1.7 | 
at 60$^{\circ }$N and $ | 
| 308 | 
  | 
  | 
\mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over | 
| 309 | 
  | 
  | 
a 100 year period. We see that $J$ is | 
| 310 | 
cnh | 
1.2 | 
sensitive to heat fluxes over the Labrador Sea, one of the important sources | 
| 311 | 
  | 
  | 
of deep water for the thermohaline circulations. This calculation also | 
| 312 | 
  | 
  | 
yields sensitivities to all other model parameters. | 
| 313 | 
  | 
  | 
 | 
| 314 | 
cnh | 
1.3 | 
%%CNHbegin | 
| 315 | 
  | 
  | 
\input{part1/adj_hf_ocean_figure} | 
| 316 | 
  | 
  | 
%%CNHend | 
| 317 | 
  | 
  | 
 | 
| 318 | 
cnh | 
1.2 | 
\subsection{Global state estimation of the ocean} | 
| 319 | 
afe | 
1.18 | 
\begin{rawhtml} | 
| 320 | 
  | 
  | 
<!-- CMIREDIR:global_state_estimation --> | 
| 321 | 
  | 
  | 
\end{rawhtml} | 
| 322 | 
  | 
  | 
 | 
| 323 | 
cnh | 
1.2 | 
 | 
| 324 | 
  | 
  | 
An important application of MITgcm is in state estimation of the global | 
| 325 | 
  | 
  | 
ocean circulation. An appropriately defined `cost function', which measures | 
| 326 | 
  | 
  | 
the departure of the model from observations (both remotely sensed and | 
| 327 | 
cnh | 
1.10 | 
in-situ) over an interval of time, is minimized by adjusting `control | 
| 328 | 
cnh | 
1.2 | 
parameters' such as air-sea fluxes, the wind field, the initial conditions | 
| 329 | 
cnh | 
1.15 | 
etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary | 
| 330 | 
  | 
  | 
circulation and a Hopf-Muller plot of Equatorial sea-surface height. | 
| 331 | 
  | 
  | 
Both are obtained from assimilation bringing the model in to | 
| 332 | 
cnh | 
1.7 | 
consistency with altimetric and in-situ observations over the period | 
| 333 | 
cnh | 
1.15 | 
1992-1997. | 
| 334 | 
cnh | 
1.2 | 
 | 
| 335 | 
cnh | 
1.3 | 
%% CNHbegin | 
| 336 | 
cnh | 
1.13 | 
\input{part1/assim_figure} | 
| 337 | 
cnh | 
1.3 | 
%% CNHend | 
| 338 | 
  | 
  | 
 | 
| 339 | 
cnh | 
1.2 | 
\subsection{Ocean biogeochemical cycles} | 
| 340 | 
afe | 
1.18 | 
\begin{rawhtml} | 
| 341 | 
  | 
  | 
<!-- CMIREDIR:ocean_biogeo_cycles --> | 
| 342 | 
  | 
  | 
\end{rawhtml} | 
| 343 | 
cnh | 
1.2 | 
 | 
| 344 | 
  | 
  | 
MITgcm is being used to study global biogeochemical cycles in the ocean. For | 
| 345 | 
  | 
  | 
example one can study the effects of interannual changes in meteorological | 
| 346 | 
  | 
  | 
forcing and upper ocean circulation on the fluxes of carbon dioxide and | 
| 347 | 
cnh | 
1.7 | 
oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows  | 
| 348 | 
  | 
  | 
the annual air-sea flux of oxygen and its relation to density outcrops in  | 
| 349 | 
  | 
  | 
the southern oceans from a single year of a global, interannually varying  | 
| 350 | 
  | 
  | 
simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution | 
| 351 | 
  | 
  | 
telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown). | 
| 352 | 
cnh | 
1.2 | 
 | 
| 353 | 
cnh | 
1.3 | 
%%CNHbegin | 
| 354 | 
  | 
  | 
\input{part1/biogeo_figure} | 
| 355 | 
  | 
  | 
%%CNHend | 
| 356 | 
cnh | 
1.2 | 
 | 
| 357 | 
  | 
  | 
\subsection{Simulations of laboratory experiments} | 
| 358 | 
afe | 
1.18 | 
\begin{rawhtml} | 
| 359 | 
  | 
  | 
<!-- CMIREDIR:classroom_exp --> | 
| 360 | 
  | 
  | 
\end{rawhtml} | 
| 361 | 
cnh | 
1.2 | 
 | 
| 362 | 
cnh | 
1.7 | 
Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a  | 
| 363 | 
edhill | 
1.17 | 
laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An | 
| 364 | 
cnh | 
1.2 | 
initially homogeneous tank of water ($1m$ in diameter) is driven from its | 
| 365 | 
  | 
  | 
free surface by a rotating heated disk. The combined action of mechanical | 
| 366 | 
  | 
  | 
and thermal forcing creates a lens of fluid which becomes baroclinically | 
| 367 | 
  | 
  | 
unstable. The stratification and depth of penetration of the lens is | 
| 368 | 
cnh | 
1.7 | 
arrested by its instability in a process analogous to that which sets the | 
| 369 | 
cnh | 
1.2 | 
stratification of the ACC. | 
| 370 | 
cnh | 
1.1 | 
 | 
| 371 | 
cnh | 
1.3 | 
%%CNHbegin | 
| 372 | 
  | 
  | 
\input{part1/lab_figure} | 
| 373 | 
  | 
  | 
%%CNHend | 
| 374 | 
  | 
  | 
 | 
| 375 | 
afe | 
1.18 | 
% $Header: /u/gcmpack/manual/part1/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ | 
| 376 | 
cnh | 
1.1 | 
% $Name:  $ | 
| 377 | 
  | 
  | 
 | 
| 378 | 
  | 
  | 
\section{Continuous equations in `r' coordinates} | 
| 379 | 
afe | 
1.18 | 
\begin{rawhtml} | 
| 380 | 
  | 
  | 
<!-- CMIREDIR:z-p_isomorphism --> | 
| 381 | 
  | 
  | 
\end{rawhtml} | 
| 382 | 
cnh | 
1.1 | 
 | 
| 383 | 
  | 
  | 
To render atmosphere and ocean models from one dynamical core we exploit | 
| 384 | 
  | 
  | 
`isomorphisms' between equation sets that govern the evolution of the | 
| 385 | 
cnh | 
1.7 | 
respective fluids - see figure \ref{fig:isomorphic-equations}.  | 
| 386 | 
  | 
  | 
One system of hydrodynamical equations is written down | 
| 387 | 
cnh | 
1.1 | 
and encoded. The model variables have different interpretations depending on | 
| 388 | 
  | 
  | 
whether the atmosphere or ocean is being studied. Thus, for example, the | 
| 389 | 
  | 
  | 
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are | 
| 390 | 
edhill | 
1.17 | 
modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations}) | 
| 391 | 
  | 
  | 
and height, $z$, if we are modeling the ocean (left hand side of figure | 
| 392 | 
cnh | 
1.7 | 
\ref{fig:isomorphic-equations}). | 
| 393 | 
cnh | 
1.1 | 
 | 
| 394 | 
cnh | 
1.3 | 
%%CNHbegin | 
| 395 | 
  | 
  | 
\input{part1/zandpcoord_figure.tex} | 
| 396 | 
  | 
  | 
%%CNHend | 
| 397 | 
  | 
  | 
 | 
| 398 | 
cnh | 
1.1 | 
The state of the fluid at any time is characterized by the distribution of | 
| 399 | 
  | 
  | 
velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a | 
| 400 | 
  | 
  | 
`geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may | 
| 401 | 
  | 
  | 
depend on $\theta $, $S$, and $p$. The equations that govern the evolution | 
| 402 | 
  | 
  | 
of these fields, obtained by applying the laws of classical mechanics and | 
| 403 | 
  | 
  | 
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of | 
| 404 | 
cnh | 
1.7 | 
a generic vertical coordinate, $r$, so that the appropriate | 
| 405 | 
  | 
  | 
kinematic boundary conditions can be applied isomorphically | 
| 406 | 
  | 
  | 
see figure \ref{fig:zandp-vert-coord}. | 
| 407 | 
cnh | 
1.1 | 
 | 
| 408 | 
cnh | 
1.3 | 
%%CNHbegin | 
| 409 | 
  | 
  | 
\input{part1/vertcoord_figure.tex} | 
| 410 | 
  | 
  | 
%%CNHend | 
| 411 | 
  | 
  | 
 | 
| 412 | 
cnh | 
1.1 | 
\begin{equation*} | 
| 413 | 
adcroft | 
1.4 | 
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} | 
| 414 | 
  | 
  | 
\right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}} | 
| 415 | 
cnh | 
1.8 | 
\text{ horizontal mtm} \label{eq:horizontal_mtm} | 
| 416 | 
cnh | 
1.1 | 
\end{equation*} | 
| 417 | 
  | 
  | 
 | 
| 418 | 
cnh | 
1.8 | 
\begin{equation} | 
| 419 | 
adcroft | 
1.4 | 
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ | 
| 420 | 
cnh | 
1.1 | 
v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{ | 
| 421 | 
cnh | 
1.8 | 
vertical mtm} \label{eq:vertical_mtm} | 
| 422 | 
  | 
  | 
\end{equation} | 
| 423 | 
cnh | 
1.1 | 
 | 
| 424 | 
  | 
  | 
\begin{equation} | 
| 425 | 
adcroft | 
1.4 | 
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ | 
| 426 | 
cnh | 
1.8 | 
\partial r}=0\text{ continuity}  \label{eq:continuity} | 
| 427 | 
cnh | 
1.1 | 
\end{equation} | 
| 428 | 
  | 
  | 
 | 
| 429 | 
cnh | 
1.8 | 
\begin{equation} | 
| 430 | 
  | 
  | 
b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state} | 
| 431 | 
  | 
  | 
\end{equation} | 
| 432 | 
cnh | 
1.1 | 
 | 
| 433 | 
cnh | 
1.8 | 
\begin{equation} | 
| 434 | 
cnh | 
1.2 | 
\frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature} | 
| 435 | 
cnh | 
1.8 | 
\label{eq:potential_temperature} | 
| 436 | 
  | 
  | 
\end{equation} | 
| 437 | 
cnh | 
1.1 | 
 | 
| 438 | 
cnh | 
1.8 | 
\begin{equation} | 
| 439 | 
cnh | 
1.2 | 
\frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity} | 
| 440 | 
adcroft | 
1.9 | 
\label{eq:humidity_salt} | 
| 441 | 
cnh | 
1.8 | 
\end{equation} | 
| 442 | 
cnh | 
1.1 | 
 | 
| 443 | 
  | 
  | 
Here: | 
| 444 | 
  | 
  | 
 | 
| 445 | 
  | 
  | 
\begin{equation*} | 
| 446 | 
cnh | 
1.2 | 
r\text{ is the vertical coordinate} | 
| 447 | 
cnh | 
1.1 | 
\end{equation*} | 
| 448 | 
  | 
  | 
 | 
| 449 | 
  | 
  | 
\begin{equation*} | 
| 450 | 
  | 
  | 
\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ | 
| 451 | 
cnh | 
1.2 | 
is the total derivative} | 
| 452 | 
cnh | 
1.1 | 
\end{equation*} | 
| 453 | 
  | 
  | 
 | 
| 454 | 
  | 
  | 
\begin{equation*} | 
| 455 | 
adcroft | 
1.4 | 
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r} | 
| 456 | 
cnh | 
1.2 | 
\text{ is the `grad' operator} | 
| 457 | 
cnh | 
1.1 | 
\end{equation*} | 
| 458 | 
adcroft | 
1.4 | 
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k} | 
| 459 | 
cnh | 
1.1 | 
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ | 
| 460 | 
  | 
  | 
is a unit vector in the vertical | 
| 461 | 
  | 
  | 
 | 
| 462 | 
  | 
  | 
\begin{equation*} | 
| 463 | 
cnh | 
1.2 | 
t\text{ is time} | 
| 464 | 
cnh | 
1.1 | 
\end{equation*} | 
| 465 | 
  | 
  | 
 | 
| 466 | 
  | 
  | 
\begin{equation*} | 
| 467 | 
  | 
  | 
\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the | 
| 468 | 
cnh | 
1.2 | 
velocity} | 
| 469 | 
cnh | 
1.1 | 
\end{equation*} | 
| 470 | 
  | 
  | 
 | 
| 471 | 
  | 
  | 
\begin{equation*} | 
| 472 | 
cnh | 
1.2 | 
\phi \text{ is the `pressure'/`geopotential'} | 
| 473 | 
cnh | 
1.1 | 
\end{equation*} | 
| 474 | 
  | 
  | 
 | 
| 475 | 
  | 
  | 
\begin{equation*} | 
| 476 | 
cnh | 
1.2 | 
\vec{\Omega}\text{ is the Earth's rotation} | 
| 477 | 
cnh | 
1.1 | 
\end{equation*} | 
| 478 | 
  | 
  | 
 | 
| 479 | 
  | 
  | 
\begin{equation*} | 
| 480 | 
cnh | 
1.2 | 
b\text{ is the `buoyancy'} | 
| 481 | 
cnh | 
1.1 | 
\end{equation*} | 
| 482 | 
  | 
  | 
 | 
| 483 | 
  | 
  | 
\begin{equation*} | 
| 484 | 
cnh | 
1.2 | 
\theta \text{ is potential temperature} | 
| 485 | 
cnh | 
1.1 | 
\end{equation*} | 
| 486 | 
  | 
  | 
 | 
| 487 | 
  | 
  | 
\begin{equation*} | 
| 488 | 
cnh | 
1.2 | 
S\text{ is specific humidity in the atmosphere; salinity in the ocean} | 
| 489 | 
cnh | 
1.1 | 
\end{equation*} | 
| 490 | 
  | 
  | 
 | 
| 491 | 
  | 
  | 
\begin{equation*} | 
| 492 | 
adcroft | 
1.4 | 
\mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{ | 
| 493 | 
cnh | 
1.1 | 
\mathbf{v}} | 
| 494 | 
  | 
  | 
\end{equation*} | 
| 495 | 
  | 
  | 
 | 
| 496 | 
  | 
  | 
\begin{equation*} | 
| 497 | 
cnh | 
1.2 | 
\mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta | 
| 498 | 
cnh | 
1.1 | 
\end{equation*} | 
| 499 | 
  | 
  | 
 | 
| 500 | 
  | 
  | 
\begin{equation*} | 
| 501 | 
  | 
  | 
\mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S | 
| 502 | 
  | 
  | 
\end{equation*} | 
| 503 | 
  | 
  | 
 | 
| 504 | 
  | 
  | 
The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by | 
| 505 | 
cnh | 
1.7 | 
`physics' and forcing packages for atmosphere and ocean. These are described | 
| 506 | 
  | 
  | 
in later chapters. | 
| 507 | 
cnh | 
1.1 | 
 | 
| 508 | 
  | 
  | 
\subsection{Kinematic Boundary conditions} | 
| 509 | 
  | 
  | 
 | 
| 510 | 
  | 
  | 
\subsubsection{vertical} | 
| 511 | 
  | 
  | 
 | 
| 512 | 
cnh | 
1.7 | 
at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}): | 
| 513 | 
cnh | 
1.1 | 
 | 
| 514 | 
  | 
  | 
\begin{equation} | 
| 515 | 
edhill | 
1.17 | 
\dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)} | 
| 516 | 
cnh | 
1.1 | 
\label{eq:fixedbc} | 
| 517 | 
  | 
  | 
\end{equation} | 
| 518 | 
  | 
  | 
 | 
| 519 | 
  | 
  | 
\begin{equation} | 
| 520 | 
edhill | 
1.17 | 
\dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \ | 
| 521 | 
cnh | 
1.10 | 
(ocean surface,bottom of the atmosphere)}  \label{eq:movingbc} | 
| 522 | 
cnh | 
1.1 | 
\end{equation} | 
| 523 | 
  | 
  | 
 | 
| 524 | 
  | 
  | 
Here | 
| 525 | 
  | 
  | 
 | 
| 526 | 
  | 
  | 
\begin{equation*} | 
| 527 | 
cnh | 
1.2 | 
R_{moving}=R_{o}+\eta | 
| 528 | 
cnh | 
1.1 | 
\end{equation*} | 
| 529 | 
  | 
  | 
where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on | 
| 530 | 
  | 
  | 
whether we are in the atmosphere or ocean) of the `moving surface' in the | 
| 531 | 
  | 
  | 
resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence | 
| 532 | 
  | 
  | 
of motion. | 
| 533 | 
  | 
  | 
 | 
| 534 | 
  | 
  | 
\subsubsection{horizontal} | 
| 535 | 
  | 
  | 
 | 
| 536 | 
  | 
  | 
\begin{equation} | 
| 537 | 
  | 
  | 
\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0  \label{eq:noflow} | 
| 538 | 
adcroft | 
1.4 | 
\end{equation} | 
| 539 | 
cnh | 
1.1 | 
where $\vec{\mathbf{n}}$ is the normal to a solid boundary. | 
| 540 | 
  | 
  | 
 | 
| 541 | 
  | 
  | 
\subsection{Atmosphere} | 
| 542 | 
  | 
  | 
 | 
| 543 | 
cnh | 
1.7 | 
In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret: | 
| 544 | 
cnh | 
1.1 | 
 | 
| 545 | 
  | 
  | 
\begin{equation} | 
| 546 | 
  | 
  | 
r=p\text{ is the pressure}  \label{eq:atmos-r} | 
| 547 | 
  | 
  | 
\end{equation} | 
| 548 | 
  | 
  | 
 | 
| 549 | 
  | 
  | 
\begin{equation} | 
| 550 | 
  | 
  | 
\dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{ | 
| 551 | 
  | 
  | 
coordinates}  \label{eq:atmos-omega} | 
| 552 | 
  | 
  | 
\end{equation} | 
| 553 | 
  | 
  | 
 | 
| 554 | 
  | 
  | 
\begin{equation} | 
| 555 | 
  | 
  | 
\phi =g\,z\text{ is the geopotential height}  \label{eq:atmos-phi} | 
| 556 | 
  | 
  | 
\end{equation} | 
| 557 | 
  | 
  | 
 | 
| 558 | 
  | 
  | 
\begin{equation} | 
| 559 | 
  | 
  | 
b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy} | 
| 560 | 
  | 
  | 
\label{eq:atmos-b} | 
| 561 | 
  | 
  | 
\end{equation} | 
| 562 | 
  | 
  | 
 | 
| 563 | 
  | 
  | 
\begin{equation} | 
| 564 | 
  | 
  | 
\theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature} | 
| 565 | 
  | 
  | 
\label{eq:atmos-theta} | 
| 566 | 
  | 
  | 
\end{equation} | 
| 567 | 
  | 
  | 
 | 
| 568 | 
  | 
  | 
\begin{equation} | 
| 569 | 
  | 
  | 
S=q,\text{ is the specific humidity}  \label{eq:atmos-s} | 
| 570 | 
  | 
  | 
\end{equation} | 
| 571 | 
  | 
  | 
where | 
| 572 | 
  | 
  | 
 | 
| 573 | 
  | 
  | 
\begin{equation*} | 
| 574 | 
  | 
  | 
T\text{ is absolute temperature} | 
| 575 | 
adcroft | 
1.4 | 
\end{equation*} | 
| 576 | 
cnh | 
1.1 | 
\begin{equation*} | 
| 577 | 
  | 
  | 
p\text{ is the pressure} | 
| 578 | 
adcroft | 
1.4 | 
\end{equation*} | 
| 579 | 
cnh | 
1.1 | 
\begin{eqnarray*} | 
| 580 | 
  | 
  | 
&&z\text{ is the height of the pressure surface} \\ | 
| 581 | 
  | 
  | 
&&g\text{ is the acceleration due to gravity} | 
| 582 | 
  | 
  | 
\end{eqnarray*} | 
| 583 | 
  | 
  | 
 | 
| 584 | 
  | 
  | 
In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of | 
| 585 | 
  | 
  | 
the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)  | 
| 586 | 
  | 
  | 
\begin{equation} | 
| 587 | 
  | 
  | 
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{eq:exner} | 
| 588 | 
adcroft | 
1.4 | 
\end{equation} | 
| 589 | 
cnh | 
1.1 | 
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas | 
| 590 | 
  | 
  | 
constant and $c_{p}$ the specific heat of air at constant pressure. | 
| 591 | 
  | 
  | 
 | 
| 592 | 
  | 
  | 
At the top of the atmosphere (which is `fixed' in our $r$ coordinate): | 
| 593 | 
  | 
  | 
 | 
| 594 | 
  | 
  | 
\begin{equation*} | 
| 595 | 
cnh | 
1.2 | 
R_{fixed}=p_{top}=0 | 
| 596 | 
cnh | 
1.1 | 
\end{equation*} | 
| 597 | 
  | 
  | 
In a resting atmosphere the elevation of the mountains at the bottom is | 
| 598 | 
  | 
  | 
given by  | 
| 599 | 
  | 
  | 
\begin{equation*} | 
| 600 | 
cnh | 
1.2 | 
R_{moving}=R_{o}(x,y)=p_{o}(x,y) | 
| 601 | 
cnh | 
1.1 | 
\end{equation*} | 
| 602 | 
  | 
  | 
i.e. the (hydrostatic) pressure at the top of the mountains in a resting | 
| 603 | 
  | 
  | 
atmosphere. | 
| 604 | 
  | 
  | 
 | 
| 605 | 
  | 
  | 
The boundary conditions at top and bottom are given by: | 
| 606 | 
  | 
  | 
 | 
| 607 | 
  | 
  | 
\begin{eqnarray} | 
| 608 | 
  | 
  | 
&&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)} | 
| 609 | 
  | 
  | 
\label{eq:fixed-bc-atmos} \\ | 
| 610 | 
  | 
  | 
\omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the | 
| 611 | 
  | 
  | 
atmosphere)}  \label{eq:moving-bc-atmos} | 
| 612 | 
  | 
  | 
\end{eqnarray} | 
| 613 | 
  | 
  | 
 | 
| 614 | 
adcroft | 
1.9 | 
Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt})  | 
| 615 | 
cnh | 
1.8 | 
yields a consistent set of atmospheric equations which, for convenience, are written out in $p$ | 
| 616 | 
cnh | 
1.1 | 
coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}). | 
| 617 | 
  | 
  | 
 | 
| 618 | 
  | 
  | 
\subsection{Ocean} | 
| 619 | 
  | 
  | 
 | 
| 620 | 
  | 
  | 
In the ocean we interpret:  | 
| 621 | 
  | 
  | 
\begin{eqnarray} | 
| 622 | 
  | 
  | 
r &=&z\text{ is the height}  \label{eq:ocean-z} \\ | 
| 623 | 
  | 
  | 
\dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} | 
| 624 | 
  | 
  | 
\label{eq:ocean-w} \\ | 
| 625 | 
  | 
  | 
\phi &=&\frac{p}{\rho _{c}}\text{ is the pressure}  \label{eq:ocean-p} \\ | 
| 626 | 
  | 
  | 
b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho | 
| 627 | 
  | 
  | 
_{c}\right) \text{ is the buoyancy}  \label{eq:ocean-b} | 
| 628 | 
  | 
  | 
\end{eqnarray} | 
| 629 | 
  | 
  | 
where $\rho _{c}$ is a fixed reference density of water and $g$ is the | 
| 630 | 
  | 
  | 
acceleration due to gravity.\noindent | 
| 631 | 
  | 
  | 
 | 
| 632 | 
  | 
  | 
In the above | 
| 633 | 
  | 
  | 
 | 
| 634 | 
  | 
  | 
At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$. | 
| 635 | 
  | 
  | 
 | 
| 636 | 
  | 
  | 
The surface of the ocean is given by: $R_{moving}=\eta $ | 
| 637 | 
  | 
  | 
 | 
| 638 | 
adcroft | 
1.4 | 
The position of the resting free surface of the ocean is given by $ | 
| 639 | 
cnh | 
1.1 | 
R_{o}=Z_{o}=0$. | 
| 640 | 
  | 
  | 
 | 
| 641 | 
  | 
  | 
Boundary conditions are: | 
| 642 | 
  | 
  | 
 | 
| 643 | 
  | 
  | 
\begin{eqnarray} | 
| 644 | 
  | 
  | 
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)}  \label{eq:fixed-bc-ocean} | 
| 645 | 
  | 
  | 
\\ | 
| 646 | 
adcroft | 
1.4 | 
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)  | 
| 647 | 
cnh | 
1.1 | 
\label{eq:moving-bc-ocean}} | 
| 648 | 
  | 
  | 
\end{eqnarray} | 
| 649 | 
  | 
  | 
where $\eta $ is the elevation of the free surface. | 
| 650 | 
  | 
  | 
 | 
| 651 | 
adcroft | 
1.9 | 
Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set  | 
| 652 | 
cnh | 
1.8 | 
of oceanic equations | 
| 653 | 
cnh | 
1.1 | 
which, for convenience, are written out in $z$ coordinates in Appendix Ocean | 
| 654 | 
  | 
  | 
- see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}). | 
| 655 | 
  | 
  | 
 | 
| 656 | 
  | 
  | 
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and | 
| 657 | 
  | 
  | 
Non-hydrostatic forms} | 
| 658 | 
afe | 
1.18 | 
\begin{rawhtml} | 
| 659 | 
  | 
  | 
<!-- CMIREDIR:non_hydrostatic --> | 
| 660 | 
  | 
  | 
\end{rawhtml} | 
| 661 | 
  | 
  | 
 | 
| 662 | 
cnh | 
1.1 | 
 | 
| 663 | 
  | 
  | 
Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms: | 
| 664 | 
  | 
  | 
 | 
| 665 | 
  | 
  | 
\begin{equation} | 
| 666 | 
  | 
  | 
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) | 
| 667 | 
  | 
  | 
\label{eq:phi-split} | 
| 668 | 
adcroft | 
1.4 | 
\end{equation} | 
| 669 | 
cnh | 
1.8 | 
and write eq(\ref{eq:incompressible}) in the form: | 
| 670 | 
cnh | 
1.1 | 
 | 
| 671 | 
  | 
  | 
\begin{equation} | 
| 672 | 
  | 
  | 
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi | 
| 673 | 
  | 
  | 
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi | 
| 674 | 
  | 
  | 
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}  \label{eq:mom-h} | 
| 675 | 
  | 
  | 
\end{equation} | 
| 676 | 
  | 
  | 
 | 
| 677 | 
  | 
  | 
\begin{equation} | 
| 678 | 
  | 
  | 
\frac{\partial \phi _{hyd}}{\partial r}=-b  \label{eq:hydrostatic} | 
| 679 | 
  | 
  | 
\end{equation} | 
| 680 | 
  | 
  | 
 | 
| 681 | 
  | 
  | 
\begin{equation} | 
| 682 | 
adcroft | 
1.4 | 
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{ | 
| 683 | 
cnh | 
1.1 | 
\partial r}=G_{\dot{r}}  \label{eq:mom-w} | 
| 684 | 
  | 
  | 
\end{equation} | 
| 685 | 
  | 
  | 
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. | 
| 686 | 
  | 
  | 
 | 
| 687 | 
adcroft | 
1.4 | 
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref | 
| 688 | 
cnh | 
1.1 | 
{eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis | 
| 689 | 
adcroft | 
1.4 | 
terms in the momentum equations. In spherical coordinates they take the form | 
| 690 | 
  | 
  | 
\footnote{ | 
| 691 | 
cnh | 
1.1 | 
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms | 
| 692 | 
adcroft | 
1.4 | 
in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref | 
| 693 | 
cnh | 
1.1 | 
{eq:gw-spherical}) are omitted; the singly-underlined terms are included in | 
| 694 | 
adcroft | 
1.4 | 
the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model ( | 
| 695 | 
cnh | 
1.1 | 
\textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full | 
| 696 | 
  | 
  | 
discussion: | 
| 697 | 
  | 
  | 
 | 
| 698 | 
  | 
  | 
\begin{equation} | 
| 699 | 
  | 
  | 
\left.  | 
| 700 | 
  | 
  | 
\begin{tabular}{l} | 
| 701 | 
  | 
  | 
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\  | 
| 702 | 
cnh | 
1.6 | 
$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $ | 
| 703 | 
cnh | 
1.1 | 
\\  | 
| 704 | 
cnh | 
1.6 | 
$-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $ | 
| 705 | 
cnh | 
1.1 | 
\\  | 
| 706 | 
adcroft | 
1.4 | 
$+\mathcal{F}_{u}$ | 
| 707 | 
  | 
  | 
\end{tabular} | 
| 708 | 
cnh | 
1.1 | 
\ \right\} \left\{  | 
| 709 | 
  | 
  | 
\begin{tabular}{l} | 
| 710 | 
  | 
  | 
\textit{advection} \\  | 
| 711 | 
  | 
  | 
\textit{metric} \\  | 
| 712 | 
  | 
  | 
\textit{Coriolis} \\  | 
| 713 | 
adcroft | 
1.4 | 
\textit{\ Forcing/Dissipation} | 
| 714 | 
  | 
  | 
\end{tabular} | 
| 715 | 
cnh | 
1.2 | 
\ \right. \qquad  \label{eq:gu-speherical} | 
| 716 | 
cnh | 
1.1 | 
\end{equation} | 
| 717 | 
  | 
  | 
 | 
| 718 | 
  | 
  | 
\begin{equation} | 
| 719 | 
  | 
  | 
\left.  | 
| 720 | 
  | 
  | 
\begin{tabular}{l} | 
| 721 | 
  | 
  | 
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\  | 
| 722 | 
cnh | 
1.6 | 
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}  | 
| 723 | 
cnh | 
1.1 | 
$ \\  | 
| 724 | 
cnh | 
1.6 | 
$-\left\{ -2\Omega u\sin \varphi \right\} $ \\  | 
| 725 | 
adcroft | 
1.4 | 
$+\mathcal{F}_{v}$ | 
| 726 | 
  | 
  | 
\end{tabular} | 
| 727 | 
cnh | 
1.1 | 
\ \right\} \left\{  | 
| 728 | 
  | 
  | 
\begin{tabular}{l} | 
| 729 | 
  | 
  | 
\textit{advection} \\  | 
| 730 | 
  | 
  | 
\textit{metric} \\  | 
| 731 | 
  | 
  | 
\textit{Coriolis} \\  | 
| 732 | 
adcroft | 
1.4 | 
\textit{\ Forcing/Dissipation} | 
| 733 | 
  | 
  | 
\end{tabular} | 
| 734 | 
cnh | 
1.2 | 
\ \right. \qquad  \label{eq:gv-spherical} | 
| 735 | 
adcroft | 
1.4 | 
\end{equation} | 
| 736 | 
cnh | 
1.2 | 
\qquad \qquad \qquad \qquad \qquad | 
| 737 | 
cnh | 
1.1 | 
 | 
| 738 | 
  | 
  | 
\begin{equation} | 
| 739 | 
  | 
  | 
\left.  | 
| 740 | 
  | 
  | 
\begin{tabular}{l} | 
| 741 | 
  | 
  | 
$G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\  | 
| 742 | 
  | 
  | 
$+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\  | 
| 743 | 
cnh | 
1.6 | 
${+}\underline{{2\Omega u\cos \varphi}}$ \\  | 
| 744 | 
adcroft | 
1.4 | 
$\underline{\underline{\mathcal{F}_{\dot{r}}}}$ | 
| 745 | 
  | 
  | 
\end{tabular} | 
| 746 | 
cnh | 
1.1 | 
\ \right\} \left\{  | 
| 747 | 
  | 
  | 
\begin{tabular}{l} | 
| 748 | 
  | 
  | 
\textit{advection} \\  | 
| 749 | 
  | 
  | 
\textit{metric} \\  | 
| 750 | 
  | 
  | 
\textit{Coriolis} \\  | 
| 751 | 
adcroft | 
1.4 | 
\textit{\ Forcing/Dissipation} | 
| 752 | 
  | 
  | 
\end{tabular} | 
| 753 | 
cnh | 
1.2 | 
\ \right.  \label{eq:gw-spherical} | 
| 754 | 
adcroft | 
1.4 | 
\end{equation} | 
| 755 | 
cnh | 
1.2 | 
\qquad \qquad \qquad \qquad \qquad | 
| 756 | 
cnh | 
1.1 | 
 | 
| 757 | 
cnh | 
1.6 | 
In the above `${r}$' is the distance from the center of the earth and `$\varphi$ | 
| 758 | 
cnh | 
1.1 | 
' is latitude. | 
| 759 | 
  | 
  | 
 | 
| 760 | 
  | 
  | 
Grad and div operators in spherical coordinates are defined in appendix | 
| 761 | 
adcroft | 
1.4 | 
OPERATORS. | 
| 762 | 
cnh | 
1.1 | 
 | 
| 763 | 
cnh | 
1.3 | 
%%CNHbegin | 
| 764 | 
  | 
  | 
\input{part1/sphere_coord_figure.tex} | 
| 765 | 
  | 
  | 
%%CNHend | 
| 766 | 
  | 
  | 
 | 
| 767 | 
cnh | 
1.1 | 
\subsubsection{Shallow atmosphere approximation} | 
| 768 | 
  | 
  | 
 | 
| 769 | 
  | 
  | 
Most models are based on the `hydrostatic primitive equations' (HPE's) in | 
| 770 | 
  | 
  | 
which the vertical momentum equation is reduced to a statement of | 
| 771 | 
  | 
  | 
hydrostatic balance and the `traditional approximation' is made in which the | 
| 772 | 
  | 
  | 
Coriolis force is treated approximately and the shallow atmosphere | 
| 773 | 
  | 
  | 
approximation is made.\ The MITgcm need not make the `traditional | 
| 774 | 
  | 
  | 
approximation'. To be able to support consistent non-hydrostatic forms the | 
| 775 | 
adcroft | 
1.4 | 
shallow atmosphere approximation can be relaxed - when dividing through by $ | 
| 776 | 
cnh | 
1.2 | 
r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$, | 
| 777 | 
cnh | 
1.1 | 
the radius of the earth. | 
| 778 | 
  | 
  | 
 | 
| 779 | 
  | 
  | 
\subsubsection{Hydrostatic and quasi-hydrostatic forms} | 
| 780 | 
cnh | 
1.7 | 
\label{sec:hydrostatic_and_quasi-hydrostatic_forms} | 
| 781 | 
cnh | 
1.1 | 
 | 
| 782 | 
  | 
  | 
These are discussed at length in Marshall et al (1997a). | 
| 783 | 
  | 
  | 
 | 
| 784 | 
  | 
  | 
In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined | 
| 785 | 
  | 
  | 
terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) | 
| 786 | 
  | 
  | 
are neglected and `${r}$' is replaced by `$a$', the mean radius of the | 
| 787 | 
  | 
  | 
earth. Once the pressure is found at one level - e.g. by inverting a 2-d | 
| 788 | 
  | 
  | 
Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be | 
| 789 | 
adcroft | 
1.4 | 
computed at all other levels by integration of the hydrostatic relation, eq( | 
| 790 | 
cnh | 
1.1 | 
\ref{eq:hydrostatic}). | 
| 791 | 
  | 
  | 
 | 
| 792 | 
  | 
  | 
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between | 
| 793 | 
  | 
  | 
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos | 
| 794 | 
cnh | 
1.6 | 
\varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic | 
| 795 | 
adcroft | 
1.4 | 
contribution to the pressure field: only the terms underlined twice in Eqs. ( | 
| 796 | 
cnh | 
1.1 | 
\ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero | 
| 797 | 
  | 
  | 
and, simultaneously, the shallow atmosphere approximation is relaxed. In  | 
| 798 | 
  | 
  | 
\textbf{QH}\ \textit{all} the metric terms are retained and the full | 
| 799 | 
  | 
  | 
variation of the radial position of a particle monitored. The \textbf{QH}\ | 
| 800 | 
  | 
  | 
vertical momentum equation (\ref{eq:mom-w}) becomes: | 
| 801 | 
  | 
  | 
 | 
| 802 | 
  | 
  | 
\begin{equation*} | 
| 803 | 
cnh | 
1.6 | 
\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi | 
| 804 | 
cnh | 
1.1 | 
\end{equation*} | 
| 805 | 
  | 
  | 
making a small correction to the hydrostatic pressure. | 
| 806 | 
  | 
  | 
 | 
| 807 | 
  | 
  | 
\textbf{QH} has good energetic credentials - they are the same as for  | 
| 808 | 
  | 
  | 
\textbf{HPE}. Importantly, however, it has the same angular momentum | 
| 809 | 
  | 
  | 
principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall | 
| 810 | 
  | 
  | 
et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved. | 
| 811 | 
  | 
  | 
 | 
| 812 | 
  | 
  | 
\subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms} | 
| 813 | 
  | 
  | 
 | 
| 814 | 
  | 
  | 
The MIT model presently supports a full non-hydrostatic ocean isomorph, but | 
| 815 | 
  | 
  | 
only a quasi-non-hydrostatic atmospheric isomorph. | 
| 816 | 
  | 
  | 
 | 
| 817 | 
  | 
  | 
\paragraph{Non-hydrostatic Ocean} | 
| 818 | 
  | 
  | 
 | 
| 819 | 
adcroft | 
1.4 | 
In the non-hydrostatic ocean model all terms in equations Eqs.(\ref | 
| 820 | 
cnh | 
1.1 | 
{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A | 
| 821 | 
  | 
  | 
three dimensional elliptic equation must be solved subject to Neumann | 
| 822 | 
  | 
  | 
boundary conditions (see below). It is important to note that use of the | 
| 823 | 
  | 
  | 
full \textbf{NH} does not admit any new `fast' waves in to the system - the | 
| 824 | 
cnh | 
1.8 | 
incompressible condition eq(\ref{eq:continuity}) has already filtered out | 
| 825 | 
cnh | 
1.1 | 
acoustic modes. It does, however, ensure that the gravity waves are treated | 
| 826 | 
  | 
  | 
accurately with an exact dispersion relation. The \textbf{NH} set has a | 
| 827 | 
  | 
  | 
complete angular momentum principle and consistent energetics - see White | 
| 828 | 
  | 
  | 
and Bromley, 1995; Marshall et.al.\ 1997a. | 
| 829 | 
  | 
  | 
 | 
| 830 | 
  | 
  | 
\paragraph{Quasi-nonhydrostatic Atmosphere} | 
| 831 | 
  | 
  | 
 | 
| 832 | 
adcroft | 
1.4 | 
In the non-hydrostatic version of our atmospheric model we approximate $\dot{ | 
| 833 | 
cnh | 
1.1 | 
r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical}) | 
| 834 | 
  | 
  | 
(but only here) by: | 
| 835 | 
  | 
  | 
 | 
| 836 | 
  | 
  | 
\begin{equation} | 
| 837 | 
  | 
  | 
\dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt}  \label{eq:quasi-nh-w} | 
| 838 | 
adcroft | 
1.4 | 
\end{equation} | 
| 839 | 
cnh | 
1.1 | 
where $p_{hy}$ is the hydrostatic pressure. | 
| 840 | 
  | 
  | 
 | 
| 841 | 
  | 
  | 
\subsubsection{Summary of equation sets supported by model} | 
| 842 | 
  | 
  | 
 | 
| 843 | 
  | 
  | 
\paragraph{Atmosphere} | 
| 844 | 
  | 
  | 
 | 
| 845 | 
  | 
  | 
Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the | 
| 846 | 
  | 
  | 
compressible non-Boussinesq equations in $p-$coordinates are supported. | 
| 847 | 
  | 
  | 
 | 
| 848 | 
  | 
  | 
\subparagraph{Hydrostatic and quasi-hydrostatic} | 
| 849 | 
  | 
  | 
 | 
| 850 | 
  | 
  | 
The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere | 
| 851 | 
  | 
  | 
- see eq(\ref{eq:atmos-prime}). | 
| 852 | 
  | 
  | 
 | 
| 853 | 
  | 
  | 
\subparagraph{Quasi-nonhydrostatic} | 
| 854 | 
  | 
  | 
 | 
| 855 | 
  | 
  | 
A quasi-nonhydrostatic form is also supported. | 
| 856 | 
  | 
  | 
 | 
| 857 | 
  | 
  | 
\paragraph{Ocean} | 
| 858 | 
  | 
  | 
 | 
| 859 | 
  | 
  | 
\subparagraph{Hydrostatic and quasi-hydrostatic} | 
| 860 | 
  | 
  | 
 | 
| 861 | 
  | 
  | 
Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq | 
| 862 | 
  | 
  | 
equations in $z-$coordinates are supported. | 
| 863 | 
  | 
  | 
 | 
| 864 | 
  | 
  | 
\subparagraph{Non-hydrostatic} | 
| 865 | 
  | 
  | 
 | 
| 866 | 
adcroft | 
1.4 | 
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$ | 
| 867 | 
  | 
  | 
coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref | 
| 868 | 
cnh | 
1.1 | 
{eq:ocean-salt}). | 
| 869 | 
  | 
  | 
 | 
| 870 | 
  | 
  | 
\subsection{Solution strategy} | 
| 871 | 
  | 
  | 
 | 
| 872 | 
adcroft | 
1.4 | 
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ | 
| 873 | 
cnh | 
1.8 | 
NH} models is summarized in Figure \ref{fig:solution-strategy}. | 
| 874 | 
  | 
  | 
Under all dynamics, a 2-d elliptic equation is | 
| 875 | 
cnh | 
1.1 | 
first solved to find the surface pressure and the hydrostatic pressure at | 
| 876 | 
  | 
  | 
any level computed from the weight of fluid above. Under \textbf{HPE} and  | 
| 877 | 
  | 
  | 
\textbf{QH} dynamics, the horizontal momentum equations are then stepped | 
| 878 | 
  | 
  | 
forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a | 
| 879 | 
  | 
  | 
3-d elliptic equation must be solved for the non-hydrostatic pressure before | 
| 880 | 
  | 
  | 
stepping forward the horizontal momentum equations; $\dot{r}$ is found by | 
| 881 | 
  | 
  | 
stepping forward the vertical momentum equation. | 
| 882 | 
  | 
  | 
 | 
| 883 | 
cnh | 
1.3 | 
%%CNHbegin | 
| 884 | 
  | 
  | 
\input{part1/solution_strategy_figure.tex} | 
| 885 | 
  | 
  | 
%%CNHend | 
| 886 | 
  | 
  | 
 | 
| 887 | 
cnh | 
1.1 | 
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of | 
| 888 | 
cnh | 
1.6 | 
course, some complication that goes with the inclusion of $\cos \varphi \ $ | 
| 889 | 
cnh | 
1.1 | 
Coriolis terms and the relaxation of the shallow atmosphere approximation. | 
| 890 | 
  | 
  | 
But this leads to negligible increase in computation. In \textbf{NH}, in | 
| 891 | 
  | 
  | 
contrast, one additional elliptic equation - a three-dimensional one - must | 
| 892 | 
  | 
  | 
be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is | 
| 893 | 
  | 
  | 
essentially negligible in the hydrostatic limit (see detailed discussion in | 
| 894 | 
  | 
  | 
Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the | 
| 895 | 
  | 
  | 
hydrostatic limit, is as computationally economic as the \textbf{HPEs}. | 
| 896 | 
  | 
  | 
 | 
| 897 | 
  | 
  | 
\subsection{Finding the pressure field} | 
| 898 | 
cnh | 
1.7 | 
\label{sec:finding_the_pressure_field} | 
| 899 | 
cnh | 
1.1 | 
 | 
| 900 | 
  | 
  | 
Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the | 
| 901 | 
  | 
  | 
pressure field must be obtained diagnostically. We proceed, as before, by | 
| 902 | 
  | 
  | 
dividing the total (pressure/geo) potential in to three parts, a surface | 
| 903 | 
  | 
  | 
part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a | 
| 904 | 
  | 
  | 
non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and | 
| 905 | 
  | 
  | 
writing the momentum equation as in (\ref{eq:mom-h}). | 
| 906 | 
  | 
  | 
 | 
| 907 | 
  | 
  | 
\subsubsection{Hydrostatic pressure} | 
| 908 | 
  | 
  | 
 | 
| 909 | 
  | 
  | 
Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic}) | 
| 910 | 
  | 
  | 
vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield: | 
| 911 | 
  | 
  | 
 | 
| 912 | 
  | 
  | 
\begin{equation*} | 
| 913 | 
adcroft | 
1.4 | 
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd} | 
| 914 | 
cnh | 
1.2 | 
\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr | 
| 915 | 
cnh | 
1.1 | 
\end{equation*} | 
| 916 | 
  | 
  | 
and so | 
| 917 | 
  | 
  | 
 | 
| 918 | 
  | 
  | 
\begin{equation} | 
| 919 | 
  | 
  | 
\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr  \label{eq:hydro-phi} | 
| 920 | 
  | 
  | 
\end{equation} | 
| 921 | 
  | 
  | 
 | 
| 922 | 
  | 
  | 
The model can be easily modified to accommodate a loading term (e.g | 
| 923 | 
  | 
  | 
atmospheric pressure pushing down on the ocean's surface) by setting: | 
| 924 | 
  | 
  | 
 | 
| 925 | 
  | 
  | 
\begin{equation} | 
| 926 | 
  | 
  | 
\phi _{hyd}(r=R_{o})=loading  \label{eq:loading} | 
| 927 | 
  | 
  | 
\end{equation} | 
| 928 | 
  | 
  | 
 | 
| 929 | 
  | 
  | 
\subsubsection{Surface pressure} | 
| 930 | 
  | 
  | 
 | 
| 931 | 
cnh | 
1.8 | 
The surface pressure equation can be obtained by integrating continuity, | 
| 932 | 
  | 
  | 
(\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$ | 
| 933 | 
cnh | 
1.1 | 
 | 
| 934 | 
  | 
  | 
\begin{equation*} | 
| 935 | 
adcroft | 
1.4 | 
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} | 
| 936 | 
cnh | 
1.2 | 
}_{h}+\partial _{r}\dot{r}\right) dr=0 | 
| 937 | 
cnh | 
1.1 | 
\end{equation*} | 
| 938 | 
  | 
  | 
 | 
| 939 | 
  | 
  | 
Thus: | 
| 940 | 
  | 
  | 
 | 
| 941 | 
  | 
  | 
\begin{equation*} | 
| 942 | 
  | 
  | 
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta | 
| 943 | 
adcroft | 
1.4 | 
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}} | 
| 944 | 
cnh | 
1.2 | 
_{h}dr=0 | 
| 945 | 
cnh | 
1.1 | 
\end{equation*} | 
| 946 | 
adcroft | 
1.4 | 
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $ | 
| 947 | 
cnh | 
1.1 | 
r $. The above can be rearranged to yield, using Leibnitz's theorem: | 
| 948 | 
  | 
  | 
 | 
| 949 | 
  | 
  | 
\begin{equation} | 
| 950 | 
  | 
  | 
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot | 
| 951 | 
  | 
  | 
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source} | 
| 952 | 
  | 
  | 
\label{eq:free-surface} | 
| 953 | 
adcroft | 
1.4 | 
\end{equation} | 
| 954 | 
cnh | 
1.1 | 
where we have incorporated a source term. | 
| 955 | 
  | 
  | 
 | 
| 956 | 
  | 
  | 
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential | 
| 957 | 
cnh | 
1.8 | 
(atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can | 
| 958 | 
cnh | 
1.1 | 
be written  | 
| 959 | 
  | 
  | 
\begin{equation} | 
| 960 | 
cnh | 
1.2 | 
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right) | 
| 961 | 
cnh | 
1.1 | 
\label{eq:phi-surf} | 
| 962 | 
adcroft | 
1.4 | 
\end{equation} | 
| 963 | 
cnh | 
1.1 | 
where $b_{s}$ is the buoyancy at the surface. | 
| 964 | 
  | 
  | 
 | 
| 965 | 
cnh | 
1.8 | 
In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref | 
| 966 | 
cnh | 
1.1 | 
{eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d | 
| 967 | 
  | 
  | 
elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free | 
| 968 | 
  | 
  | 
surface' and `rigid lid' approaches are available. | 
| 969 | 
  | 
  | 
 | 
| 970 | 
  | 
  | 
\subsubsection{Non-hydrostatic pressure} | 
| 971 | 
  | 
  | 
 | 
| 972 | 
cnh | 
1.8 | 
Taking the horizontal divergence of (\ref{eq:mom-h}) and adding  | 
| 973 | 
  | 
  | 
$\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation | 
| 974 | 
  | 
  | 
(\ref{eq:continuity}), we deduce that: | 
| 975 | 
cnh | 
1.1 | 
 | 
| 976 | 
  | 
  | 
\begin{equation} | 
| 977 | 
adcroft | 
1.4 | 
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ | 
| 978 | 
  | 
  | 
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla . | 
| 979 | 
cnh | 
1.1 | 
\vec{\mathbf{F}}  \label{eq:3d-invert} | 
| 980 | 
  | 
  | 
\end{equation} | 
| 981 | 
  | 
  | 
 | 
| 982 | 
  | 
  | 
For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$ | 
| 983 | 
  | 
  | 
subject to appropriate choice of boundary conditions. This method is usually | 
| 984 | 
  | 
  | 
called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969; | 
| 985 | 
  | 
  | 
Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}), | 
| 986 | 
  | 
  | 
the 3-d problem does not need to be solved. | 
| 987 | 
  | 
  | 
 | 
| 988 | 
  | 
  | 
\paragraph{Boundary Conditions} | 
| 989 | 
  | 
  | 
 | 
| 990 | 
  | 
  | 
We apply the condition of no normal flow through all solid boundaries - the | 
| 991 | 
  | 
  | 
coasts (in the ocean) and the bottom: | 
| 992 | 
  | 
  | 
 | 
| 993 | 
  | 
  | 
\begin{equation} | 
| 994 | 
  | 
  | 
\vec{\mathbf{v}}.\widehat{n}=0  \label{nonormalflow} | 
| 995 | 
  | 
  | 
\end{equation} | 
| 996 | 
  | 
  | 
where $\widehat{n}$ is a vector of unit length normal to the boundary. The | 
| 997 | 
  | 
  | 
kinematic condition (\ref{nonormalflow}) is also applied to the vertical | 
| 998 | 
adcroft | 
1.4 | 
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $ | 
| 999 | 
cnh | 
1.1 | 
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the | 
| 1000 | 
  | 
  | 
tangential component of velocity, $v_{T}$, at all solid boundaries, | 
| 1001 | 
  | 
  | 
depending on the form chosen for the dissipative terms in the momentum | 
| 1002 | 
  | 
  | 
equations - see below. | 
| 1003 | 
  | 
  | 
 | 
| 1004 | 
cnh | 
1.8 | 
Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that: | 
| 1005 | 
cnh | 
1.1 | 
 | 
| 1006 | 
  | 
  | 
\begin{equation} | 
| 1007 | 
  | 
  | 
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} | 
| 1008 | 
  | 
  | 
\label{eq:inhom-neumann-nh} | 
| 1009 | 
  | 
  | 
\end{equation} | 
| 1010 | 
  | 
  | 
where | 
| 1011 | 
  | 
  | 
 | 
| 1012 | 
  | 
  | 
\begin{equation*} | 
| 1013 | 
  | 
  | 
\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi | 
| 1014 | 
  | 
  | 
_{s}+\mathbf{\nabla }\phi _{hyd}\right)  | 
| 1015 | 
adcroft | 
1.4 | 
\end{equation*} | 
| 1016 | 
cnh | 
1.1 | 
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem | 
| 1017 | 
  | 
  | 
(\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can | 
| 1018 | 
  | 
  | 
exploit classical 3D potential theory and, by introducing an appropriately | 
| 1019 | 
cnh | 
1.2 | 
chosen $\delta $-function sheet of `source-charge', replace the | 
| 1020 | 
  | 
  | 
inhomogeneous boundary condition on pressure by a homogeneous one. The | 
| 1021 | 
adcroft | 
1.4 | 
source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $ | 
| 1022 | 
  | 
  | 
\vec{\mathbf{F}}.$ By simultaneously setting $ | 
| 1023 | 
cnh | 
1.1 | 
\begin{array}{l} | 
| 1024 | 
adcroft | 
1.4 | 
\widehat{n}.\vec{\mathbf{F}} | 
| 1025 | 
  | 
  | 
\end{array} | 
| 1026 | 
cnh | 
1.1 | 
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following | 
| 1027 | 
cnh | 
1.2 | 
self-consistent but simpler homogenized Elliptic problem is obtained: | 
| 1028 | 
cnh | 
1.1 | 
 | 
| 1029 | 
  | 
  | 
\begin{equation*} | 
| 1030 | 
cnh | 
1.2 | 
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad | 
| 1031 | 
adcroft | 
1.4 | 
\end{equation*} | 
| 1032 | 
cnh | 
1.1 | 
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such | 
| 1033 | 
adcroft | 
1.4 | 
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref | 
| 1034 | 
cnh | 
1.1 | 
{eq:inhom-neumann-nh}) the modified boundary condition becomes: | 
| 1035 | 
  | 
  | 
 | 
| 1036 | 
  | 
  | 
\begin{equation} | 
| 1037 | 
  | 
  | 
\widehat{n}.\nabla \phi _{nh}=0  \label{eq:hom-neumann-nh} | 
| 1038 | 
  | 
  | 
\end{equation} | 
| 1039 | 
  | 
  | 
 | 
| 1040 | 
  | 
  | 
If the flow is `close' to hydrostatic balance then the 3-d inversion | 
| 1041 | 
  | 
  | 
converges rapidly because $\phi _{nh}\ $is then only a small correction to | 
| 1042 | 
  | 
  | 
the hydrostatic pressure field (see the discussion in Marshall et al, a,b). | 
| 1043 | 
  | 
  | 
 | 
| 1044 | 
cnh | 
1.8 | 
The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh}) | 
| 1045 | 
cnh | 
1.1 | 
does not vanish at $r=R_{moving}$, and so refines the pressure there. | 
| 1046 | 
  | 
  | 
 | 
| 1047 | 
  | 
  | 
\subsection{Forcing/dissipation} | 
| 1048 | 
  | 
  | 
 | 
| 1049 | 
  | 
  | 
\subsubsection{Forcing} | 
| 1050 | 
  | 
  | 
 | 
| 1051 | 
  | 
  | 
The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by | 
| 1052 | 
cnh | 
1.8 | 
`physics packages' and forcing packages. These are described later on. | 
| 1053 | 
cnh | 
1.1 | 
 | 
| 1054 | 
  | 
  | 
\subsubsection{Dissipation} | 
| 1055 | 
  | 
  | 
 | 
| 1056 | 
  | 
  | 
\paragraph{Momentum} | 
| 1057 | 
  | 
  | 
 | 
| 1058 | 
  | 
  | 
Many forms of momentum dissipation are available in the model. Laplacian and | 
| 1059 | 
  | 
  | 
biharmonic frictions are commonly used: | 
| 1060 | 
  | 
  | 
 | 
| 1061 | 
  | 
  | 
\begin{equation} | 
| 1062 | 
adcroft | 
1.4 | 
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}} | 
| 1063 | 
cnh | 
1.1 | 
+A_{4}\nabla _{h}^{4}v  \label{eq:dissipation} | 
| 1064 | 
  | 
  | 
\end{equation} | 
| 1065 | 
  | 
  | 
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity | 
| 1066 | 
  | 
  | 
coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic | 
| 1067 | 
  | 
  | 
friction. These coefficients are the same for all velocity components. | 
| 1068 | 
  | 
  | 
 | 
| 1069 | 
  | 
  | 
\paragraph{Tracers} | 
| 1070 | 
  | 
  | 
 | 
| 1071 | 
  | 
  | 
The mixing terms for the temperature and salinity equations have a similar | 
| 1072 | 
  | 
  | 
form to that of momentum except that the diffusion tensor can be | 
| 1073 | 
adcroft | 
1.4 | 
non-diagonal and have varying coefficients. $\qquad $ | 
| 1074 | 
cnh | 
1.1 | 
\begin{equation} | 
| 1075 | 
  | 
  | 
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla | 
| 1076 | 
  | 
  | 
_{h}^{4}(T,S)  \label{eq:diffusion} | 
| 1077 | 
  | 
  | 
\end{equation} | 
| 1078 | 
adcroft | 
1.4 | 
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $ | 
| 1079 | 
cnh | 
1.1 | 
horizontal coefficient for biharmonic diffusion. In the simplest case where | 
| 1080 | 
  | 
  | 
the subgrid-scale fluxes of heat and salt are parameterized with constant | 
| 1081 | 
  | 
  | 
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, | 
| 1082 | 
  | 
  | 
reduces to a diagonal matrix with constant coefficients: | 
| 1083 | 
  | 
  | 
 | 
| 1084 | 
  | 
  | 
\begin{equation} | 
| 1085 | 
  | 
  | 
\qquad \qquad \qquad \qquad K=\left(  | 
| 1086 | 
  | 
  | 
\begin{array}{ccc} | 
| 1087 | 
  | 
  | 
K_{h} & 0 & 0 \\  | 
| 1088 | 
  | 
  | 
0 & K_{h} & 0 \\  | 
| 1089 | 
adcroft | 
1.4 | 
0 & 0 & K_{v} | 
| 1090 | 
cnh | 
1.1 | 
\end{array} | 
| 1091 | 
  | 
  | 
\right) \qquad \qquad \qquad  \label{eq:diagonal-diffusion-tensor} | 
| 1092 | 
  | 
  | 
\end{equation} | 
| 1093 | 
  | 
  | 
where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion | 
| 1094 | 
  | 
  | 
coefficients. These coefficients are the same for all tracers (temperature, | 
| 1095 | 
  | 
  | 
salinity ... ). | 
| 1096 | 
  | 
  | 
 | 
| 1097 | 
  | 
  | 
\subsection{Vector invariant form} | 
| 1098 | 
  | 
  | 
 | 
| 1099 | 
adcroft | 
1.4 | 
For some purposes it is advantageous to write momentum advection in eq(\ref | 
| 1100 | 
cnh | 
1.8 | 
{eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form: | 
| 1101 | 
cnh | 
1.1 | 
 | 
| 1102 | 
  | 
  | 
\begin{equation} | 
| 1103 | 
adcroft | 
1.4 | 
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} | 
| 1104 | 
  | 
  | 
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla  | 
| 1105 | 
cnh | 
1.2 | 
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] | 
| 1106 | 
cnh | 
1.1 | 
\label{eq:vi-identity} | 
| 1107 | 
adcroft | 
1.4 | 
\end{equation} | 
| 1108 | 
cnh | 
1.1 | 
This permits alternative numerical treatments of the non-linear terms based | 
| 1109 | 
  | 
  | 
on their representation as a vorticity flux. Because gradients of coordinate | 
| 1110 | 
  | 
  | 
vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit | 
| 1111 | 
adcroft | 
1.4 | 
representation of the metric terms in (\ref{eq:gu-speherical}), (\ref | 
| 1112 | 
cnh | 
1.1 | 
{eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information | 
| 1113 | 
  | 
  | 
about the geometry is contained in the areas and lengths of the volumes used | 
| 1114 | 
  | 
  | 
to discretize the model. | 
| 1115 | 
  | 
  | 
 | 
| 1116 | 
  | 
  | 
\subsection{Adjoint} | 
| 1117 | 
  | 
  | 
 | 
| 1118 | 
cnh | 
1.8 | 
Tangent linear and adjoint counterparts of the forward model are described | 
| 1119 | 
cnh | 
1.2 | 
in Chapter 5. | 
| 1120 | 
cnh | 
1.1 | 
 | 
| 1121 | 
afe | 
1.18 | 
% $Header: /u/gcmpack/manual/part1/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ | 
| 1122 | 
cnh | 
1.1 | 
% $Name:  $ | 
| 1123 | 
  | 
  | 
 | 
| 1124 | 
  | 
  | 
\section{Appendix ATMOSPHERE} | 
| 1125 | 
  | 
  | 
 | 
| 1126 | 
  | 
  | 
\subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure | 
| 1127 | 
  | 
  | 
coordinates} | 
| 1128 | 
  | 
  | 
 | 
| 1129 | 
  | 
  | 
\label{sect-hpe-p} | 
| 1130 | 
  | 
  | 
 | 
| 1131 | 
  | 
  | 
The hydrostatic primitive equations (HPEs) in p-coordinates are:  | 
| 1132 | 
  | 
  | 
\begin{eqnarray} | 
| 1133 | 
adcroft | 
1.4 | 
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1134 | 
cnh | 
1.2 | 
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} | 
| 1135 | 
cnh | 
1.1 | 
\label{eq:atmos-mom} \\ | 
| 1136 | 
cnh | 
1.2 | 
\frac{\partial \phi }{\partial p}+\alpha &=&0  \label{eq-p-hydro-start} \\ | 
| 1137 | 
adcroft | 
1.4 | 
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ | 
| 1138 | 
cnh | 
1.1 | 
\partial p} &=&0  \label{eq:atmos-cont} \\ | 
| 1139 | 
cnh | 
1.2 | 
p\alpha &=&RT  \label{eq:atmos-eos} \\ | 
| 1140 | 
cnh | 
1.1 | 
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q}  \label{eq:atmos-heat} | 
| 1141 | 
adcroft | 
1.4 | 
\end{eqnarray} | 
| 1142 | 
cnh | 
1.1 | 
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure | 
| 1143 | 
  | 
  | 
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot  | 
| 1144 | 
  | 
  | 
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total | 
| 1145 | 
cnh | 
1.6 | 
derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is | 
| 1146 | 
adcroft | 
1.4 | 
the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp | 
| 1147 | 
  | 
  | 
}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref | 
| 1148 | 
  | 
  | 
{eq:atmos-heat}) is the first law of thermodynamics where internal energy $ | 
| 1149 | 
  | 
  | 
e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $ | 
| 1150 | 
cnh | 
1.1 | 
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. | 
| 1151 | 
  | 
  | 
 | 
| 1152 | 
  | 
  | 
It is convenient to cast the heat equation in terms of potential temperature  | 
| 1153 | 
  | 
  | 
$\theta $ so that it looks more like a generic conservation law. | 
| 1154 | 
  | 
  | 
Differentiating (\ref{eq:atmos-eos}) we get:  | 
| 1155 | 
  | 
  | 
\begin{equation*} | 
| 1156 | 
  | 
  | 
p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} | 
| 1157 | 
adcroft | 
1.4 | 
\end{equation*} | 
| 1158 | 
  | 
  | 
which, when added to the heat equation (\ref{eq:atmos-heat}) and using $ | 
| 1159 | 
cnh | 
1.1 | 
c_{p}=c_{v}+R$, gives:  | 
| 1160 | 
  | 
  | 
\begin{equation} | 
| 1161 | 
  | 
  | 
c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} | 
| 1162 | 
  | 
  | 
\label{eq-p-heat-interim} | 
| 1163 | 
adcroft | 
1.4 | 
\end{equation} | 
| 1164 | 
cnh | 
1.1 | 
Potential temperature is defined:  | 
| 1165 | 
  | 
  | 
\begin{equation} | 
| 1166 | 
  | 
  | 
\theta =T(\frac{p_{c}}{p})^{\kappa }  \label{eq:potential-temp} | 
| 1167 | 
adcroft | 
1.4 | 
\end{equation} | 
| 1168 | 
cnh | 
1.1 | 
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience | 
| 1169 | 
  | 
  | 
we will make use of the Exner function $\Pi (p)$ which defined by:  | 
| 1170 | 
  | 
  | 
\begin{equation} | 
| 1171 | 
  | 
  | 
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{Exner} | 
| 1172 | 
adcroft | 
1.4 | 
\end{equation} | 
| 1173 | 
cnh | 
1.1 | 
The following relations will be useful and are easily expressed in terms of | 
| 1174 | 
  | 
  | 
the Exner function:  | 
| 1175 | 
  | 
  | 
\begin{equation*} | 
| 1176 | 
  | 
  | 
c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi  | 
| 1177 | 
adcroft | 
1.4 | 
}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{ | 
| 1178 | 
  | 
  | 
\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p} | 
| 1179 | 
cnh | 
1.1 | 
\frac{Dp}{Dt} | 
| 1180 | 
adcroft | 
1.4 | 
\end{equation*} | 
| 1181 | 
cnh | 
1.1 | 
where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. | 
| 1182 | 
  | 
  | 
 | 
| 1183 | 
  | 
  | 
The heat equation is obtained by noting that  | 
| 1184 | 
  | 
  | 
\begin{equation*} | 
| 1185 | 
  | 
  | 
c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta  | 
| 1186 | 
cnh | 
1.2 | 
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt} | 
| 1187 | 
cnh | 
1.1 | 
\end{equation*} | 
| 1188 | 
  | 
  | 
and on substituting into (\ref{eq-p-heat-interim}) gives:  | 
| 1189 | 
  | 
  | 
\begin{equation} | 
| 1190 | 
  | 
  | 
\Pi \frac{D\theta }{Dt}=\mathcal{Q} | 
| 1191 | 
  | 
  | 
\label{eq:potential-temperature-equation} | 
| 1192 | 
  | 
  | 
\end{equation} | 
| 1193 | 
  | 
  | 
which is in conservative form. | 
| 1194 | 
  | 
  | 
 | 
| 1195 | 
adcroft | 
1.4 | 
For convenience in the model we prefer to step forward (\ref | 
| 1196 | 
cnh | 
1.1 | 
{eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}). | 
| 1197 | 
  | 
  | 
 | 
| 1198 | 
  | 
  | 
\subsubsection{Boundary conditions} | 
| 1199 | 
  | 
  | 
 | 
| 1200 | 
  | 
  | 
The upper and lower boundary conditions are :  | 
| 1201 | 
  | 
  | 
\begin{eqnarray} | 
| 1202 | 
  | 
  | 
\mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\ | 
| 1203 | 
  | 
  | 
\mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo} | 
| 1204 | 
  | 
  | 
\label{eq:boundary-condition-atmosphere} | 
| 1205 | 
  | 
  | 
\end{eqnarray} | 
| 1206 | 
  | 
  | 
In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega | 
| 1207 | 
  | 
  | 
=0 $); in $z$-coordinates and the lower boundary is analogous to a free | 
| 1208 | 
  | 
  | 
surface ($\phi $ is imposed and $\omega \neq 0$). | 
| 1209 | 
  | 
  | 
 | 
| 1210 | 
  | 
  | 
\subsubsection{Splitting the geo-potential} | 
| 1211 | 
  | 
  | 
 | 
| 1212 | 
  | 
  | 
For the purposes of initialization and reducing round-off errors, the model | 
| 1213 | 
  | 
  | 
deals with perturbations from reference (or ``standard'') profiles. For | 
| 1214 | 
  | 
  | 
example, the hydrostatic geopotential associated with the resting atmosphere | 
| 1215 | 
  | 
  | 
is not dynamically relevant and can therefore be subtracted from the | 
| 1216 | 
  | 
  | 
equations. The equations written in terms of perturbations are obtained by | 
| 1217 | 
  | 
  | 
substituting the following definitions into the previous model equations:  | 
| 1218 | 
  | 
  | 
\begin{eqnarray} | 
| 1219 | 
  | 
  | 
\theta &=&\theta _{o}+\theta ^{\prime }  \label{eq:atmos-ref-prof-theta} \\ | 
| 1220 | 
  | 
  | 
\alpha &=&\alpha _{o}+\alpha ^{\prime }  \label{eq:atmos-ref-prof-alpha} \\ | 
| 1221 | 
  | 
  | 
\phi &=&\phi _{o}+\phi ^{\prime }  \label{eq:atmos-ref-prof-phi} | 
| 1222 | 
  | 
  | 
\end{eqnarray} | 
| 1223 | 
  | 
  | 
The reference state (indicated by subscript ``0'') corresponds to | 
| 1224 | 
  | 
  | 
horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi | 
| 1225 | 
  | 
  | 
_{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi | 
| 1226 | 
  | 
  | 
_{o}(p_{o})=g~Z_{topo}$, defined:  | 
| 1227 | 
  | 
  | 
\begin{eqnarray*} | 
| 1228 | 
  | 
  | 
\theta _{o}(p) &=&f^{n}(p) \\ | 
| 1229 | 
  | 
  | 
\alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\ | 
| 1230 | 
  | 
  | 
\phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp | 
| 1231 | 
  | 
  | 
\end{eqnarray*} | 
| 1232 | 
  | 
  | 
%\begin{eqnarray*} | 
| 1233 | 
  | 
  | 
%\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\ | 
| 1234 | 
  | 
  | 
%\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp | 
| 1235 | 
  | 
  | 
%\end{eqnarray*} | 
| 1236 | 
  | 
  | 
 | 
| 1237 | 
  | 
  | 
The final form of the HPE's in p coordinates is then:  | 
| 1238 | 
  | 
  | 
\begin{eqnarray} | 
| 1239 | 
adcroft | 
1.4 | 
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1240 | 
cnh | 
1.8 | 
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\ | 
| 1241 | 
cnh | 
1.1 | 
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ | 
| 1242 | 
adcroft | 
1.4 | 
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ | 
| 1243 | 
cnh | 
1.1 | 
\partial p} &=&0 \\ | 
| 1244 | 
  | 
  | 
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\ | 
| 1245 | 
cnh | 
1.8 | 
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  | 
| 1246 | 
cnh | 
1.1 | 
\end{eqnarray} | 
| 1247 | 
  | 
  | 
 | 
| 1248 | 
afe | 
1.18 | 
% $Header: /u/gcmpack/manual/part1/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ | 
| 1249 | 
cnh | 
1.1 | 
% $Name:  $ | 
| 1250 | 
  | 
  | 
 | 
| 1251 | 
  | 
  | 
\section{Appendix OCEAN} | 
| 1252 | 
  | 
  | 
 | 
| 1253 | 
  | 
  | 
\subsection{Equations of motion for the ocean} | 
| 1254 | 
  | 
  | 
 | 
| 1255 | 
  | 
  | 
We review here the method by which the standard (Boussinesq, incompressible) | 
| 1256 | 
  | 
  | 
HPE's for the ocean written in z-coordinates are obtained. The | 
| 1257 | 
  | 
  | 
non-Boussinesq equations for oceanic motion are:  | 
| 1258 | 
  | 
  | 
\begin{eqnarray} | 
| 1259 | 
adcroft | 
1.4 | 
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1260 | 
cnh | 
1.1 | 
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\ | 
| 1261 | 
  | 
  | 
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} | 
| 1262 | 
  | 
  | 
&=&\epsilon _{nh}\mathcal{F}_{w} \\ | 
| 1263 | 
adcroft | 
1.4 | 
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}} | 
| 1264 | 
cnh | 
1.8 | 
_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\ | 
| 1265 | 
  | 
  | 
\rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\ | 
| 1266 | 
  | 
  | 
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\ | 
| 1267 | 
  | 
  | 
\frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zns-salt} | 
| 1268 | 
  | 
  | 
\label{eq:non-boussinesq} | 
| 1269 | 
adcroft | 
1.4 | 
\end{eqnarray} | 
| 1270 | 
cnh | 
1.1 | 
These equations permit acoustics modes, inertia-gravity waves, | 
| 1271 | 
cnh | 
1.10 | 
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline | 
| 1272 | 
cnh | 
1.1 | 
mode. As written, they cannot be integrated forward consistently - if we | 
| 1273 | 
  | 
  | 
step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be | 
| 1274 | 
adcroft | 
1.4 | 
consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref | 
| 1275 | 
cnh | 
1.1 | 
{eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is | 
| 1276 | 
  | 
  | 
therefore necessary to manipulate the system as follows. Differentiating the | 
| 1277 | 
  | 
  | 
EOS (equation of state) gives: | 
| 1278 | 
  | 
  | 
 | 
| 1279 | 
  | 
  | 
\begin{equation} | 
| 1280 | 
  | 
  | 
\frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right| | 
| 1281 | 
  | 
  | 
_{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right| | 
| 1282 | 
  | 
  | 
_{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right| | 
| 1283 | 
  | 
  | 
_{\theta ,S}\frac{Dp}{Dt}  \label{EOSexpansion} | 
| 1284 | 
  | 
  | 
\end{equation} | 
| 1285 | 
  | 
  | 
 | 
| 1286 | 
  | 
  | 
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the | 
| 1287 | 
cnh | 
1.8 | 
reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:  | 
| 1288 | 
cnh | 
1.1 | 
\begin{equation} | 
| 1289 | 
adcroft | 
1.4 | 
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ | 
| 1290 | 
cnh | 
1.1 | 
v}}+\partial _{z}w\approx 0  \label{eq-zns-pressure} | 
| 1291 | 
  | 
  | 
\end{equation} | 
| 1292 | 
  | 
  | 
where we have used an approximation sign to indicate that we have assumed | 
| 1293 | 
  | 
  | 
adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$. | 
| 1294 | 
  | 
  | 
Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that | 
| 1295 | 
  | 
  | 
can be explicitly integrated forward:  | 
| 1296 | 
  | 
  | 
\begin{eqnarray} | 
| 1297 | 
adcroft | 
1.4 | 
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1298 | 
cnh | 
1.1 | 
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} | 
| 1299 | 
  | 
  | 
\label{eq-cns-hmom} \\ | 
| 1300 | 
  | 
  | 
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} | 
| 1301 | 
  | 
  | 
&=&\epsilon _{nh}\mathcal{F}_{w}  \label{eq-cns-hydro} \\ | 
| 1302 | 
adcroft | 
1.4 | 
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{ | 
| 1303 | 
cnh | 
1.1 | 
v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-cns-cont} \\ | 
| 1304 | 
  | 
  | 
\rho &=&\rho (\theta ,S,p)  \label{eq-cns-eos} \\ | 
| 1305 | 
  | 
  | 
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-cns-heat} \\ | 
| 1306 | 
  | 
  | 
\frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-cns-salt} | 
| 1307 | 
  | 
  | 
\end{eqnarray} | 
| 1308 | 
  | 
  | 
 | 
| 1309 | 
  | 
  | 
\subsubsection{Compressible z-coordinate equations} | 
| 1310 | 
  | 
  | 
 | 
| 1311 | 
  | 
  | 
Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$ | 
| 1312 | 
  | 
  | 
wherever it appears in a product (ie. non-linear term) - this is the | 
| 1313 | 
  | 
  | 
`Boussinesq assumption'. The only term that then retains the full variation | 
| 1314 | 
  | 
  | 
in $\rho $ is the gravitational acceleration:  | 
| 1315 | 
  | 
  | 
\begin{eqnarray} | 
| 1316 | 
adcroft | 
1.4 | 
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1317 | 
cnh | 
1.1 | 
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} | 
| 1318 | 
  | 
  | 
\label{eq-zcb-hmom} \\ | 
| 1319 | 
adcroft | 
1.4 | 
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}} | 
| 1320 | 
cnh | 
1.1 | 
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} | 
| 1321 | 
  | 
  | 
\label{eq-zcb-hydro} \\ | 
| 1322 | 
adcroft | 
1.4 | 
\frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{ | 
| 1323 | 
cnh | 
1.1 | 
\mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0  \label{eq-zcb-cont} \\ | 
| 1324 | 
  | 
  | 
\rho &=&\rho (\theta ,S,p)  \label{eq-zcb-eos} \\ | 
| 1325 | 
  | 
  | 
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zcb-heat} \\ | 
| 1326 | 
  | 
  | 
\frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zcb-salt} | 
| 1327 | 
  | 
  | 
\end{eqnarray} | 
| 1328 | 
  | 
  | 
These equations still retain acoustic modes. But, because the | 
| 1329 | 
adcroft | 
1.4 | 
``compressible'' terms are linearized, the pressure equation \ref | 
| 1330 | 
cnh | 
1.1 | 
{eq-zcb-cont} can be integrated implicitly with ease (the time-dependent | 
| 1331 | 
  | 
  | 
term appears as a Helmholtz term in the non-hydrostatic pressure equation). | 
| 1332 | 
  | 
  | 
These are the \emph{truly} compressible Boussinesq equations. Note that the | 
| 1333 | 
  | 
  | 
EOS must have the same pressure dependency as the linearized pressure term, | 
| 1334 | 
adcroft | 
1.4 | 
ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{ | 
| 1335 | 
cnh | 
1.1 | 
c_{s}^{2}}$, for consistency. | 
| 1336 | 
  | 
  | 
 | 
| 1337 | 
  | 
  | 
\subsubsection{`Anelastic' z-coordinate equations} | 
| 1338 | 
  | 
  | 
 | 
| 1339 | 
  | 
  | 
The anelastic approximation filters the acoustic mode by removing the | 
| 1340 | 
adcroft | 
1.4 | 
time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont} | 
| 1341 | 
  | 
  | 
). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o} | 
| 1342 | 
cnh | 
1.1 | 
\frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between | 
| 1343 | 
  | 
  | 
continuity and EOS. A better solution is to change the dependency on | 
| 1344 | 
  | 
  | 
pressure in the EOS by splitting the pressure into a reference function of | 
| 1345 | 
  | 
  | 
height and a perturbation:  | 
| 1346 | 
  | 
  | 
\begin{equation*} | 
| 1347 | 
cnh | 
1.2 | 
\rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime }) | 
| 1348 | 
cnh | 
1.1 | 
\end{equation*} | 
| 1349 | 
  | 
  | 
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from | 
| 1350 | 
  | 
  | 
differentiating the EOS, the continuity equation then becomes:  | 
| 1351 | 
  | 
  | 
\begin{equation*} | 
| 1352 | 
adcroft | 
1.4 | 
\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{ | 
| 1353 | 
  | 
  | 
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+ | 
| 1354 | 
cnh | 
1.2 | 
\frac{\partial w}{\partial z}=0 | 
| 1355 | 
cnh | 
1.1 | 
\end{equation*} | 
| 1356 | 
  | 
  | 
If the time- and space-scales of the motions of interest are longer than | 
| 1357 | 
adcroft | 
1.4 | 
those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt}, | 
| 1358 | 
cnh | 
1.1 | 
\mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and  | 
| 1359 | 
adcroft | 
1.4 | 
$\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{ | 
| 1360 | 
cnh | 
1.1 | 
Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta | 
| 1361 | 
  | 
  | 
,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon | 
| 1362 | 
  | 
  | 
_{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation | 
| 1363 | 
  | 
  | 
and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the | 
| 1364 | 
  | 
  | 
anelastic continuity equation:  | 
| 1365 | 
  | 
  | 
\begin{equation} | 
| 1366 | 
adcroft | 
1.4 | 
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}- | 
| 1367 | 
cnh | 
1.1 | 
\frac{g}{c_{s}^{2}}w=0  \label{eq-za-cont1} | 
| 1368 | 
  | 
  | 
\end{equation} | 
| 1369 | 
  | 
  | 
A slightly different route leads to the quasi-Boussinesq continuity equation | 
| 1370 | 
adcroft | 
1.4 | 
where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+ | 
| 1371 | 
  | 
  | 
\mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla } | 
| 1372 | 
cnh | 
1.1 | 
_{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:  | 
| 1373 | 
  | 
  | 
\begin{equation} | 
| 1374 | 
adcroft | 
1.4 | 
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{ | 
| 1375 | 
cnh | 
1.1 | 
\partial \left( \rho _{o}w\right) }{\partial z}=0  \label{eq-za-cont2} | 
| 1376 | 
  | 
  | 
\end{equation} | 
| 1377 | 
  | 
  | 
Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same | 
| 1378 | 
  | 
  | 
equation if:  | 
| 1379 | 
  | 
  | 
\begin{equation} | 
| 1380 | 
  | 
  | 
\frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}} | 
| 1381 | 
  | 
  | 
\end{equation} | 
| 1382 | 
  | 
  | 
Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$ | 
| 1383 | 
adcroft | 
1.4 | 
and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{ | 
| 1384 | 
cnh | 
1.1 | 
g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The | 
| 1385 | 
  | 
  | 
full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are | 
| 1386 | 
  | 
  | 
then:  | 
| 1387 | 
  | 
  | 
\begin{eqnarray} | 
| 1388 | 
adcroft | 
1.4 | 
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1389 | 
cnh | 
1.1 | 
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} | 
| 1390 | 
  | 
  | 
\label{eq-zab-hmom} \\ | 
| 1391 | 
adcroft | 
1.4 | 
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}} | 
| 1392 | 
cnh | 
1.1 | 
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} | 
| 1393 | 
  | 
  | 
\label{eq-zab-hydro} \\ | 
| 1394 | 
adcroft | 
1.4 | 
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{ | 
| 1395 | 
cnh | 
1.1 | 
\partial \left( \rho _{o}w\right) }{\partial z} &=&0  \label{eq-zab-cont} \\ | 
| 1396 | 
  | 
  | 
\rho &=&\rho (\theta ,S,p_{o}(z))  \label{eq-zab-eos} \\ | 
| 1397 | 
  | 
  | 
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-zab-heat} \\ | 
| 1398 | 
  | 
  | 
\frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-zab-salt} | 
| 1399 | 
  | 
  | 
\end{eqnarray} | 
| 1400 | 
  | 
  | 
 | 
| 1401 | 
  | 
  | 
\subsubsection{Incompressible z-coordinate equations} | 
| 1402 | 
  | 
  | 
 | 
| 1403 | 
  | 
  | 
Here, the objective is to drop the depth dependence of $\rho _{o}$ and so, | 
| 1404 | 
  | 
  | 
technically, to also remove the dependence of $\rho $ on $p_{o}$. This would | 
| 1405 | 
  | 
  | 
yield the ``truly'' incompressible Boussinesq equations:  | 
| 1406 | 
  | 
  | 
\begin{eqnarray} | 
| 1407 | 
adcroft | 
1.4 | 
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1408 | 
cnh | 
1.1 | 
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} | 
| 1409 | 
  | 
  | 
\label{eq-ztb-hmom} \\ | 
| 1410 | 
adcroft | 
1.4 | 
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}} | 
| 1411 | 
cnh | 
1.1 | 
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} | 
| 1412 | 
  | 
  | 
\label{eq-ztb-hydro} \\ | 
| 1413 | 
  | 
  | 
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} | 
| 1414 | 
  | 
  | 
&=&0  \label{eq-ztb-cont} \\ | 
| 1415 | 
  | 
  | 
\rho &=&\rho (\theta ,S)  \label{eq-ztb-eos} \\ | 
| 1416 | 
  | 
  | 
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq-ztb-heat} \\ | 
| 1417 | 
  | 
  | 
\frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq-ztb-salt} | 
| 1418 | 
  | 
  | 
\end{eqnarray} | 
| 1419 | 
  | 
  | 
where $\rho _{c}$ is a constant reference density of water. | 
| 1420 | 
  | 
  | 
 | 
| 1421 | 
  | 
  | 
\subsubsection{Compressible non-divergent equations} | 
| 1422 | 
  | 
  | 
 | 
| 1423 | 
  | 
  | 
The above ``incompressible'' equations are incompressible in both the flow | 
| 1424 | 
  | 
  | 
and the density. In many oceanic applications, however, it is important to | 
| 1425 | 
  | 
  | 
retain compressibility effects in the density. To do this we must split the | 
| 1426 | 
  | 
  | 
density thus:  | 
| 1427 | 
  | 
  | 
\begin{equation*} | 
| 1428 | 
  | 
  | 
\rho =\rho _{o}+\rho ^{\prime } | 
| 1429 | 
adcroft | 
1.4 | 
\end{equation*} | 
| 1430 | 
cnh | 
1.1 | 
We then assert that variations with depth of $\rho _{o}$ are unimportant | 
| 1431 | 
  | 
  | 
while the compressible effects in $\rho ^{\prime }$ are:  | 
| 1432 | 
  | 
  | 
\begin{equation*} | 
| 1433 | 
  | 
  | 
\rho _{o}=\rho _{c} | 
| 1434 | 
adcroft | 
1.4 | 
\end{equation*} | 
| 1435 | 
cnh | 
1.1 | 
\begin{equation*} | 
| 1436 | 
  | 
  | 
\rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o} | 
| 1437 | 
adcroft | 
1.4 | 
\end{equation*} | 
| 1438 | 
cnh | 
1.1 | 
This then yields what we can call the semi-compressible Boussinesq | 
| 1439 | 
  | 
  | 
equations:  | 
| 1440 | 
  | 
  | 
\begin{eqnarray} | 
| 1441 | 
adcroft | 
1.4 | 
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} | 
| 1442 | 
  | 
  | 
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{ | 
| 1443 | 
cnh | 
1.1 | 
\mathcal{F}}}  \label{eq:ocean-mom} \\ | 
| 1444 | 
  | 
  | 
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho | 
| 1445 | 
  | 
  | 
_{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} | 
| 1446 | 
  | 
  | 
\label{eq:ocean-wmom} \\ | 
| 1447 | 
  | 
  | 
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} | 
| 1448 | 
  | 
  | 
&=&0  \label{eq:ocean-cont} \\ | 
| 1449 | 
  | 
  | 
\rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c}  \label{eq:ocean-eos} | 
| 1450 | 
  | 
  | 
\\ | 
| 1451 | 
  | 
  | 
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta }  \label{eq:ocean-theta} \\ | 
| 1452 | 
  | 
  | 
\frac{DS}{Dt} &=&\mathcal{Q}_{s}  \label{eq:ocean-salt} | 
| 1453 | 
adcroft | 
1.4 | 
\end{eqnarray} | 
| 1454 | 
cnh | 
1.1 | 
Note that the hydrostatic pressure of the resting fluid, including that | 
| 1455 | 
  | 
  | 
associated with $\rho _{c}$, is subtracted out since it has no effect on the | 
| 1456 | 
  | 
  | 
dynamics. | 
| 1457 | 
  | 
  | 
 | 
| 1458 | 
  | 
  | 
Though necessary, the assumptions that go into these equations are messy | 
| 1459 | 
  | 
  | 
since we essentially assume a different EOS for the reference density and | 
| 1460 | 
  | 
  | 
the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon | 
| 1461 | 
  | 
  | 
_{nh}=0$ form of these equations that are used throughout the ocean modeling | 
| 1462 | 
  | 
  | 
community and referred to as the primitive equations (HPE). | 
| 1463 | 
  | 
  | 
 | 
| 1464 | 
afe | 
1.18 | 
% $Header: /u/gcmpack/manual/part1/manual.tex,v 1.17 2003/08/07 18:27:51 edhill Exp $ | 
| 1465 | 
cnh | 
1.1 | 
% $Name:  $ | 
| 1466 | 
  | 
  | 
 | 
| 1467 | 
  | 
  | 
\section{Appendix:OPERATORS} | 
| 1468 | 
  | 
  | 
 | 
| 1469 | 
  | 
  | 
\subsection{Coordinate systems} | 
| 1470 | 
  | 
  | 
 | 
| 1471 | 
  | 
  | 
\subsubsection{Spherical coordinates} | 
| 1472 | 
  | 
  | 
 | 
| 1473 | 
  | 
  | 
In spherical coordinates, the velocity components in the zonal, meridional | 
| 1474 | 
  | 
  | 
and vertical direction respectively, are given by (see Fig.2) : | 
| 1475 | 
  | 
  | 
 | 
| 1476 | 
  | 
  | 
\begin{equation*} | 
| 1477 | 
cnh | 
1.6 | 
u=r\cos \varphi \frac{D\lambda }{Dt} | 
| 1478 | 
cnh | 
1.1 | 
\end{equation*} | 
| 1479 | 
  | 
  | 
 | 
| 1480 | 
  | 
  | 
\begin{equation*} | 
| 1481 | 
cnh | 
1.6 | 
v=r\frac{D\varphi }{Dt}\qquad | 
| 1482 | 
cnh | 
1.1 | 
\end{equation*} | 
| 1483 | 
  | 
  | 
$\qquad \qquad \qquad \qquad $ | 
| 1484 | 
  | 
  | 
 | 
| 1485 | 
  | 
  | 
\begin{equation*} | 
| 1486 | 
cnh | 
1.2 | 
\dot{r}=\frac{Dr}{Dt} | 
| 1487 | 
cnh | 
1.1 | 
\end{equation*} | 
| 1488 | 
  | 
  | 
 | 
| 1489 | 
cnh | 
1.6 | 
Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial | 
| 1490 | 
cnh | 
1.1 | 
distance of the particle from the center of the earth, $\Omega $ is the | 
| 1491 | 
  | 
  | 
angular speed of rotation of the Earth and $D/Dt$ is the total derivative. | 
| 1492 | 
  | 
  | 
 | 
| 1493 | 
  | 
  | 
The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in | 
| 1494 | 
  | 
  | 
spherical coordinates: | 
| 1495 | 
  | 
  | 
 | 
| 1496 | 
  | 
  | 
\begin{equation*} | 
| 1497 | 
cnh | 
1.6 | 
\nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda } | 
| 1498 | 
  | 
  | 
,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r} | 
| 1499 | 
cnh | 
1.2 | 
\right) | 
| 1500 | 
cnh | 
1.1 | 
\end{equation*} | 
| 1501 | 
  | 
  | 
 | 
| 1502 | 
  | 
  | 
\begin{equation*} | 
| 1503 | 
cnh | 
1.6 | 
\nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial | 
| 1504 | 
  | 
  | 
\lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\} | 
| 1505 | 
cnh | 
1.2 | 
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} | 
| 1506 | 
cnh | 
1.1 | 
\end{equation*} | 
| 1507 | 
  | 
  | 
 | 
| 1508 | 
adcroft | 
1.4 | 
%tci%\end{document} |