/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Annotation of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.17 - (hide annotations) (download) (as text)
Thu Aug 7 18:27:51 2003 UTC (21 years, 11 months ago) by edhill
Branch: MAIN
Changes since 1.16: +12 -12 lines
File MIME type: application/x-tex
Two improvements:
  - the manual build now works on a "dirty" (post-verification-runs)
    source tree
  - various small fixes to the manual (mostly Y. Hu's comments)

1 edhill 1.17 % $Header: /u/u3/gcmpack/manual/part1/manual.tex,v 1.16 2002/02/28 19:32:19 cnh Exp $
2 cnh 1.2 % $Name: $
3 cnh 1.1
4 adcroft 1.4 %tci%\documentclass[12pt]{book}
5     %tci%\usepackage{amsmath}
6     %tci%\usepackage{html}
7     %tci%\usepackage{epsfig}
8     %tci%\usepackage{graphics,subfigure}
9     %tci%\usepackage{array}
10     %tci%\usepackage{multirow}
11     %tci%\usepackage{fancyhdr}
12     %tci%\usepackage{psfrag}
13    
14     %tci%%TCIDATA{OutputFilter=Latex.dll}
15     %tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
16     %tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
17     %tci%%TCIDATA{Language=American English}
18    
19     %tci%\fancyhead{}
20     %tci%\fancyhead[LO]{\slshape \rightmark}
21     %tci%\fancyhead[RE]{\slshape \leftmark}
22     %tci%\fancyhead[RO,LE]{\thepage}
23     %tci%\fancyfoot[CO,CE]{\today}
24     %tci%\fancyfoot[RO,LE]{ }
25     %tci%\renewcommand{\headrulewidth}{0.4pt}
26     %tci%\renewcommand{\footrulewidth}{0.4pt}
27     %tci%\setcounter{secnumdepth}{3}
28     %tci%\input{tcilatex}
29    
30     %tci%\begin{document}
31    
32     %tci%\tableofcontents
33    
34    
35 cnh 1.1 % Section: Overview
36    
37 edhill 1.17 % $Header: /u/u3/gcmpack/manual/part1/manual.tex,v 1.16 2002/02/28 19:32:19 cnh Exp $
38 cnh 1.1 % $Name: $
39    
40 cnh 1.16 This document provides the reader with the information necessary to
41 cnh 1.1 carry out numerical experiments using MITgcm. It gives a comprehensive
42     description of the continuous equations on which the model is based, the
43     numerical algorithms the model employs and a description of the associated
44     program code. Along with the hydrodynamical kernel, physical and
45     biogeochemical parameterizations of key atmospheric and oceanic processes
46     are available. A number of examples illustrating the use of the model in
47     both process and general circulation studies of the atmosphere and ocean are
48     also presented.
49    
50 cnh 1.16 \section{Introduction}
51    
52 cnh 1.1 MITgcm has a number of novel aspects:
53    
54     \begin{itemize}
55     \item it can be used to study both atmospheric and oceanic phenomena; one
56     hydrodynamical kernel is used to drive forward both atmospheric and oceanic
57 cnh 1.7 models - see fig \ref{fig:onemodel}
58 cnh 1.1
59 cnh 1.3 %% CNHbegin
60     \input{part1/one_model_figure}
61     %% CNHend
62    
63 cnh 1.1 \item it has a non-hydrostatic capability and so can be used to study both
64 cnh 1.7 small-scale and large scale processes - see fig \ref{fig:all-scales}
65 cnh 1.1
66 cnh 1.3 %% CNHbegin
67     \input{part1/all_scales_figure}
68     %% CNHend
69    
70 cnh 1.1 \item finite volume techniques are employed yielding an intuitive
71     discretization and support for the treatment of irregular geometries using
72 cnh 1.7 orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
73 cnh 1.3
74     %% CNHbegin
75     \input{part1/fvol_figure}
76     %% CNHend
77 cnh 1.1
78     \item tangent linear and adjoint counterparts are automatically maintained
79     along with the forward model, permitting sensitivity and optimization
80     studies.
81    
82     \item the model is developed to perform efficiently on a wide variety of
83     computational platforms.
84     \end{itemize}
85    
86 cnh 1.16 Key publications reporting on and charting the development of the model are
87     \cite{hill:95,marshall:97a,marshall:97b,adcroft:97,marshall:98,adcroft:99,hill:99,maro-eta:99}:
88 cnh 1.12
89     \begin{verbatim}
90     Hill, C. and J. Marshall, (1995)
91     Application of a Parallel Navier-Stokes Model to Ocean Circulation in
92     Parallel Computational Fluid Dynamics
93     In Proceedings of Parallel Computational Fluid Dynamics: Implementations
94     and Results Using Parallel Computers, 545-552.
95     Elsevier Science B.V.: New York
96    
97     Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
98 cnh 1.16 Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling
99 cnh 1.12 J. Geophysical Res., 102(C3), 5733-5752.
100    
101     Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
102     A finite-volume, incompressible Navier Stokes model for studies of the ocean
103     on parallel computers,
104     J. Geophysical Res., 102(C3), 5753-5766.
105    
106     Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
107     Representation of topography by shaved cells in a height coordinate ocean
108     model
109     Mon Wea Rev, vol 125, 2293-2315
110    
111     Marshall, J., Jones, H. and C. Hill, (1998)
112     Efficient ocean modeling using non-hydrostatic algorithms
113     Journal of Marine Systems, 18, 115-134
114    
115     Adcroft, A., Hill C. and J. Marshall: (1999)
116     A new treatment of the Coriolis terms in C-grid models at both high and low
117     resolutions,
118     Mon. Wea. Rev. Vol 127, pages 1928-1936
119    
120     Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
121     A Strategy for Terascale Climate Modeling.
122 cnh 1.14 In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
123     in Meteorology, pages 406-425
124     World Scientific Publishing Co: UK
125 cnh 1.12
126     Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
127     Construction of the adjoint MIT ocean general circulation model and
128     application to Atlantic heat transport variability
129     J. Geophysical Res., 104(C12), 29,529-29,547.
130    
131     \end{verbatim}
132 cnh 1.1
133     We begin by briefly showing some of the results of the model in action to
134     give a feel for the wide range of problems that can be addressed using it.
135    
136 edhill 1.17 % $Header: /u/u3/gcmpack/manual/part1/manual.tex,v 1.16 2002/02/28 19:32:19 cnh Exp $
137 cnh 1.1 % $Name: $
138    
139     \section{Illustrations of the model in action}
140    
141     The MITgcm has been designed and used to model a wide range of phenomena,
142     from convection on the scale of meters in the ocean to the global pattern of
143 cnh 1.7 atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
144 cnh 1.1 kinds of problems the model has been used to study, we briefly describe some
145     of them here. A more detailed description of the underlying formulation,
146     numerical algorithm and implementation that lie behind these calculations is
147 cnh 1.2 given later. Indeed many of the illustrative examples shown below can be
148     easily reproduced: simply download the model (the minimum you need is a PC
149 cnh 1.10 running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
150 cnh 1.2 described in detail in the documentation.
151 cnh 1.1
152     \subsection{Global atmosphere: `Held-Suarez' benchmark}
153    
154 cnh 1.7 A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
155     both atmospheric and oceanographic flows at both small and large scales.
156 cnh 1.2
157 cnh 1.7 Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
158 cnh 1.2 temperature field obtained using the atmospheric isomorph of MITgcm run at
159     2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
160     (blue) and warm air along an equatorial band (red). Fully developed
161     baroclinic eddies spawned in the northern hemisphere storm track are
162     evident. There are no mountains or land-sea contrast in this calculation,
163     but you can easily put them in. The model is driven by relaxation to a
164     radiative-convective equilibrium profile, following the description set out
165     in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
166     there are no mountains or land-sea contrast.
167    
168 cnh 1.3 %% CNHbegin
169     \input{part1/cubic_eddies_figure}
170     %% CNHend
171    
172 cnh 1.2 As described in Adcroft (2001), a `cubed sphere' is used to discretize the
173 cnh 1.10 globe permitting a uniform griding and obviated the need to Fourier filter.
174 cnh 1.2 The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
175     grid, of which the cubed sphere is just one of many choices.
176 cnh 1.1
177 cnh 1.7 Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal
178     wind from a 20-level configuration of
179 cnh 1.2 the model. It compares favorable with more conventional spatial
180 cnh 1.7 discretization approaches. The two plots show the field calculated using the
181     cube-sphere grid and the flow calculated using a regular, spherical polar
182     latitude-longitude grid. Both grids are supported within the model.
183 cnh 1.1
184 cnh 1.3 %% CNHbegin
185     \input{part1/hs_zave_u_figure}
186     %% CNHend
187    
188 cnh 1.2 \subsection{Ocean gyres}
189 cnh 1.1
190 cnh 1.2 Baroclinic instability is a ubiquitous process in the ocean, as well as the
191     atmosphere. Ocean eddies play an important role in modifying the
192     hydrographic structure and current systems of the oceans. Coarse resolution
193     models of the oceans cannot resolve the eddy field and yield rather broad,
194     diffusive patterns of ocean currents. But if the resolution of our models is
195     increased until the baroclinic instability process is resolved, numerical
196     solutions of a different and much more realistic kind, can be obtained.
197    
198 cnh 1.7 Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity
199     field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal
200     resolution on a $lat-lon$
201 cnh 1.2 grid in which the pole has been rotated by 90$^{\circ }$ on to the equator
202     (to avoid the converging of meridian in northern latitudes). 21 vertical
203     levels are used in the vertical with a `lopped cell' representation of
204     topography. The development and propagation of anomalously warm and cold
205 cnh 1.7 eddies can be clearly seen in the Gulf Stream region. The transport of
206 cnh 1.2 warm water northward by the mean flow of the Gulf Stream is also clearly
207     visible.
208 cnh 1.1
209 cnh 1.3 %% CNHbegin
210 cnh 1.11 \input{part1/atl6_figure}
211 cnh 1.3 %% CNHend
212    
213    
214 cnh 1.1 \subsection{Global ocean circulation}
215    
216 cnh 1.7 Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at
217     the surface of a 4$^{\circ }$
218 cnh 1.2 global ocean model run with 15 vertical levels. Lopped cells are used to
219     represent topography on a regular $lat-lon$ grid extending from 70$^{\circ
220     }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with
221     mixed boundary conditions on temperature and salinity at the surface. The
222     transfer properties of ocean eddies, convection and mixing is parameterized
223     in this model.
224    
225 cnh 1.7 Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
226     circulation of the global ocean in Sverdrups.
227 cnh 1.2
228 cnh 1.3 %%CNHbegin
229     \input{part1/global_circ_figure}
230     %%CNHend
231    
232 cnh 1.2 \subsection{Convection and mixing over topography}
233    
234     Dense plumes generated by localized cooling on the continental shelf of the
235     ocean may be influenced by rotation when the deformation radius is smaller
236     than the width of the cooling region. Rather than gravity plumes, the
237     mechanism for moving dense fluid down the shelf is then through geostrophic
238 adcroft 1.9 eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
239 cnh 1.7 (blue is cold dense fluid, red is
240 cnh 1.2 warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
241     trigger convection by surface cooling. The cold, dense water falls down the
242     slope but is deflected along the slope by rotation. It is found that
243     entrainment in the vertical plane is reduced when rotational control is
244     strong, and replaced by lateral entrainment due to the baroclinic
245     instability of the along-slope current.
246 cnh 1.1
247 cnh 1.3 %%CNHbegin
248     \input{part1/convect_and_topo}
249     %%CNHend
250    
251 cnh 1.1 \subsection{Boundary forced internal waves}
252    
253 cnh 1.2 The unique ability of MITgcm to treat non-hydrostatic dynamics in the
254     presence of complex geometry makes it an ideal tool to study internal wave
255     dynamics and mixing in oceanic canyons and ridges driven by large amplitude
256     barotropic tidal currents imposed through open boundary conditions.
257    
258 cnh 1.7 Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope
259     topographic variations on
260 cnh 1.2 internal wave breaking - the cross-slope velocity is in color, the density
261     contoured. The internal waves are excited by application of open boundary
262 cnh 1.7 conditions on the left. They propagate to the sloping boundary (represented
263 cnh 1.2 using MITgcm's finite volume spatial discretization) where they break under
264     nonhydrostatic dynamics.
265    
266 cnh 1.3 %%CNHbegin
267     \input{part1/boundary_forced_waves}
268     %%CNHend
269    
270 cnh 1.2 \subsection{Parameter sensitivity using the adjoint of MITgcm}
271    
272     Forward and tangent linear counterparts of MITgcm are supported using an
273     `automatic adjoint compiler'. These can be used in parameter sensitivity and
274     data assimilation studies.
275    
276 cnh 1.7 As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}
277     maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
278 cnh 1.10 of the overturning stream-function shown in figure \ref{fig:large-scale-circ}
279 cnh 1.7 at 60$^{\circ }$N and $
280     \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over
281     a 100 year period. We see that $J$ is
282 cnh 1.2 sensitive to heat fluxes over the Labrador Sea, one of the important sources
283     of deep water for the thermohaline circulations. This calculation also
284     yields sensitivities to all other model parameters.
285    
286 cnh 1.3 %%CNHbegin
287     \input{part1/adj_hf_ocean_figure}
288     %%CNHend
289    
290 cnh 1.2 \subsection{Global state estimation of the ocean}
291    
292     An important application of MITgcm is in state estimation of the global
293     ocean circulation. An appropriately defined `cost function', which measures
294     the departure of the model from observations (both remotely sensed and
295 cnh 1.10 in-situ) over an interval of time, is minimized by adjusting `control
296 cnh 1.2 parameters' such as air-sea fluxes, the wind field, the initial conditions
297 cnh 1.15 etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary
298     circulation and a Hopf-Muller plot of Equatorial sea-surface height.
299     Both are obtained from assimilation bringing the model in to
300 cnh 1.7 consistency with altimetric and in-situ observations over the period
301 cnh 1.15 1992-1997.
302 cnh 1.2
303 cnh 1.3 %% CNHbegin
304 cnh 1.13 \input{part1/assim_figure}
305 cnh 1.3 %% CNHend
306    
307 cnh 1.2 \subsection{Ocean biogeochemical cycles}
308    
309     MITgcm is being used to study global biogeochemical cycles in the ocean. For
310     example one can study the effects of interannual changes in meteorological
311     forcing and upper ocean circulation on the fluxes of carbon dioxide and
312 cnh 1.7 oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows
313     the annual air-sea flux of oxygen and its relation to density outcrops in
314     the southern oceans from a single year of a global, interannually varying
315     simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution
316     telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown).
317 cnh 1.2
318 cnh 1.3 %%CNHbegin
319     \input{part1/biogeo_figure}
320     %%CNHend
321 cnh 1.2
322     \subsection{Simulations of laboratory experiments}
323    
324 cnh 1.7 Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
325 edhill 1.17 laboratory experiment inquiring into the dynamics of the Antarctic Circumpolar Current (ACC). An
326 cnh 1.2 initially homogeneous tank of water ($1m$ in diameter) is driven from its
327     free surface by a rotating heated disk. The combined action of mechanical
328     and thermal forcing creates a lens of fluid which becomes baroclinically
329     unstable. The stratification and depth of penetration of the lens is
330 cnh 1.7 arrested by its instability in a process analogous to that which sets the
331 cnh 1.2 stratification of the ACC.
332 cnh 1.1
333 cnh 1.3 %%CNHbegin
334     \input{part1/lab_figure}
335     %%CNHend
336    
337 edhill 1.17 % $Header: /u/u3/gcmpack/manual/part1/manual.tex,v 1.16 2002/02/28 19:32:19 cnh Exp $
338 cnh 1.1 % $Name: $
339    
340     \section{Continuous equations in `r' coordinates}
341    
342     To render atmosphere and ocean models from one dynamical core we exploit
343     `isomorphisms' between equation sets that govern the evolution of the
344 cnh 1.7 respective fluids - see figure \ref{fig:isomorphic-equations}.
345     One system of hydrodynamical equations is written down
346 cnh 1.1 and encoded. The model variables have different interpretations depending on
347     whether the atmosphere or ocean is being studied. Thus, for example, the
348     vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
349 edhill 1.17 modeling the atmosphere (right hand side of figure \ref{fig:isomorphic-equations})
350     and height, $z$, if we are modeling the ocean (left hand side of figure
351 cnh 1.7 \ref{fig:isomorphic-equations}).
352 cnh 1.1
353 cnh 1.3 %%CNHbegin
354     \input{part1/zandpcoord_figure.tex}
355     %%CNHend
356    
357 cnh 1.1 The state of the fluid at any time is characterized by the distribution of
358     velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
359     `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
360     depend on $\theta $, $S$, and $p$. The equations that govern the evolution
361     of these fields, obtained by applying the laws of classical mechanics and
362     thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
363 cnh 1.7 a generic vertical coordinate, $r$, so that the appropriate
364     kinematic boundary conditions can be applied isomorphically
365     see figure \ref{fig:zandp-vert-coord}.
366 cnh 1.1
367 cnh 1.3 %%CNHbegin
368     \input{part1/vertcoord_figure.tex}
369     %%CNHend
370    
371 cnh 1.1 \begin{equation*}
372 adcroft 1.4 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
373     \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
374 cnh 1.8 \text{ horizontal mtm} \label{eq:horizontal_mtm}
375 cnh 1.1 \end{equation*}
376    
377 cnh 1.8 \begin{equation}
378 adcroft 1.4 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
379 cnh 1.1 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
380 cnh 1.8 vertical mtm} \label{eq:vertical_mtm}
381     \end{equation}
382 cnh 1.1
383     \begin{equation}
384 adcroft 1.4 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
385 cnh 1.8 \partial r}=0\text{ continuity} \label{eq:continuity}
386 cnh 1.1 \end{equation}
387    
388 cnh 1.8 \begin{equation}
389     b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
390     \end{equation}
391 cnh 1.1
392 cnh 1.8 \begin{equation}
393 cnh 1.2 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
394 cnh 1.8 \label{eq:potential_temperature}
395     \end{equation}
396 cnh 1.1
397 cnh 1.8 \begin{equation}
398 cnh 1.2 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
399 adcroft 1.9 \label{eq:humidity_salt}
400 cnh 1.8 \end{equation}
401 cnh 1.1
402     Here:
403    
404     \begin{equation*}
405 cnh 1.2 r\text{ is the vertical coordinate}
406 cnh 1.1 \end{equation*}
407    
408     \begin{equation*}
409     \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
410 cnh 1.2 is the total derivative}
411 cnh 1.1 \end{equation*}
412    
413     \begin{equation*}
414 adcroft 1.4 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
415 cnh 1.2 \text{ is the `grad' operator}
416 cnh 1.1 \end{equation*}
417 adcroft 1.4 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
418 cnh 1.1 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
419     is a unit vector in the vertical
420    
421     \begin{equation*}
422 cnh 1.2 t\text{ is time}
423 cnh 1.1 \end{equation*}
424    
425     \begin{equation*}
426     \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
427 cnh 1.2 velocity}
428 cnh 1.1 \end{equation*}
429    
430     \begin{equation*}
431 cnh 1.2 \phi \text{ is the `pressure'/`geopotential'}
432 cnh 1.1 \end{equation*}
433    
434     \begin{equation*}
435 cnh 1.2 \vec{\Omega}\text{ is the Earth's rotation}
436 cnh 1.1 \end{equation*}
437    
438     \begin{equation*}
439 cnh 1.2 b\text{ is the `buoyancy'}
440 cnh 1.1 \end{equation*}
441    
442     \begin{equation*}
443 cnh 1.2 \theta \text{ is potential temperature}
444 cnh 1.1 \end{equation*}
445    
446     \begin{equation*}
447 cnh 1.2 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
448 cnh 1.1 \end{equation*}
449    
450     \begin{equation*}
451 adcroft 1.4 \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
452 cnh 1.1 \mathbf{v}}
453     \end{equation*}
454    
455     \begin{equation*}
456 cnh 1.2 \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta
457 cnh 1.1 \end{equation*}
458    
459     \begin{equation*}
460     \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
461     \end{equation*}
462    
463     The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
464 cnh 1.7 `physics' and forcing packages for atmosphere and ocean. These are described
465     in later chapters.
466 cnh 1.1
467     \subsection{Kinematic Boundary conditions}
468    
469     \subsubsection{vertical}
470    
471 cnh 1.7 at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
472 cnh 1.1
473     \begin{equation}
474 edhill 1.17 \dot{r}=0 \text{\ at\ } r=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
475 cnh 1.1 \label{eq:fixedbc}
476     \end{equation}
477    
478     \begin{equation}
479 edhill 1.17 \dot{r}=\frac{Dr}{Dt} \text{\ at\ } r=R_{moving}\text{ \
480 cnh 1.10 (ocean surface,bottom of the atmosphere)} \label{eq:movingbc}
481 cnh 1.1 \end{equation}
482    
483     Here
484    
485     \begin{equation*}
486 cnh 1.2 R_{moving}=R_{o}+\eta
487 cnh 1.1 \end{equation*}
488     where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
489     whether we are in the atmosphere or ocean) of the `moving surface' in the
490     resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
491     of motion.
492    
493     \subsubsection{horizontal}
494    
495     \begin{equation}
496     \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
497 adcroft 1.4 \end{equation}
498 cnh 1.1 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
499    
500     \subsection{Atmosphere}
501    
502 cnh 1.7 In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret:
503 cnh 1.1
504     \begin{equation}
505     r=p\text{ is the pressure} \label{eq:atmos-r}
506     \end{equation}
507    
508     \begin{equation}
509     \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
510     coordinates} \label{eq:atmos-omega}
511     \end{equation}
512    
513     \begin{equation}
514     \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
515     \end{equation}
516    
517     \begin{equation}
518     b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
519     \label{eq:atmos-b}
520     \end{equation}
521    
522     \begin{equation}
523     \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
524     \label{eq:atmos-theta}
525     \end{equation}
526    
527     \begin{equation}
528     S=q,\text{ is the specific humidity} \label{eq:atmos-s}
529     \end{equation}
530     where
531    
532     \begin{equation*}
533     T\text{ is absolute temperature}
534 adcroft 1.4 \end{equation*}
535 cnh 1.1 \begin{equation*}
536     p\text{ is the pressure}
537 adcroft 1.4 \end{equation*}
538 cnh 1.1 \begin{eqnarray*}
539     &&z\text{ is the height of the pressure surface} \\
540     &&g\text{ is the acceleration due to gravity}
541     \end{eqnarray*}
542    
543     In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
544     the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
545     \begin{equation}
546     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
547 adcroft 1.4 \end{equation}
548 cnh 1.1 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
549     constant and $c_{p}$ the specific heat of air at constant pressure.
550    
551     At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
552    
553     \begin{equation*}
554 cnh 1.2 R_{fixed}=p_{top}=0
555 cnh 1.1 \end{equation*}
556     In a resting atmosphere the elevation of the mountains at the bottom is
557     given by
558     \begin{equation*}
559 cnh 1.2 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
560 cnh 1.1 \end{equation*}
561     i.e. the (hydrostatic) pressure at the top of the mountains in a resting
562     atmosphere.
563    
564     The boundary conditions at top and bottom are given by:
565    
566     \begin{eqnarray}
567     &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
568     \label{eq:fixed-bc-atmos} \\
569     \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
570     atmosphere)} \label{eq:moving-bc-atmos}
571     \end{eqnarray}
572    
573 adcroft 1.9 Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt})
574 cnh 1.8 yields a consistent set of atmospheric equations which, for convenience, are written out in $p$
575 cnh 1.1 coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
576    
577     \subsection{Ocean}
578    
579     In the ocean we interpret:
580     \begin{eqnarray}
581     r &=&z\text{ is the height} \label{eq:ocean-z} \\
582     \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
583     \label{eq:ocean-w} \\
584     \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
585     b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
586     _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
587     \end{eqnarray}
588     where $\rho _{c}$ is a fixed reference density of water and $g$ is the
589     acceleration due to gravity.\noindent
590    
591     In the above
592    
593     At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
594    
595     The surface of the ocean is given by: $R_{moving}=\eta $
596    
597 adcroft 1.4 The position of the resting free surface of the ocean is given by $
598 cnh 1.1 R_{o}=Z_{o}=0$.
599    
600     Boundary conditions are:
601    
602     \begin{eqnarray}
603     w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
604     \\
605 adcroft 1.4 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
606 cnh 1.1 \label{eq:moving-bc-ocean}}
607     \end{eqnarray}
608     where $\eta $ is the elevation of the free surface.
609    
610 adcroft 1.9 Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
611 cnh 1.8 of oceanic equations
612 cnh 1.1 which, for convenience, are written out in $z$ coordinates in Appendix Ocean
613     - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
614    
615     \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
616     Non-hydrostatic forms}
617    
618     Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
619    
620     \begin{equation}
621     \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
622     \label{eq:phi-split}
623 adcroft 1.4 \end{equation}
624 cnh 1.8 and write eq(\ref{eq:incompressible}) in the form:
625 cnh 1.1
626     \begin{equation}
627     \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
628     _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
629     _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
630     \end{equation}
631    
632     \begin{equation}
633     \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
634     \end{equation}
635    
636     \begin{equation}
637 adcroft 1.4 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
638 cnh 1.1 \partial r}=G_{\dot{r}} \label{eq:mom-w}
639     \end{equation}
640     Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
641    
642 adcroft 1.4 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
643 cnh 1.1 {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
644 adcroft 1.4 terms in the momentum equations. In spherical coordinates they take the form
645     \footnote{
646 cnh 1.1 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
647 adcroft 1.4 in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref
648 cnh 1.1 {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
649 adcroft 1.4 the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (
650 cnh 1.1 \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
651     discussion:
652    
653     \begin{equation}
654     \left.
655     \begin{tabular}{l}
656     $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
657 cnh 1.6 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $
658 cnh 1.1 \\
659 cnh 1.6 $-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $
660 cnh 1.1 \\
661 adcroft 1.4 $+\mathcal{F}_{u}$
662     \end{tabular}
663 cnh 1.1 \ \right\} \left\{
664     \begin{tabular}{l}
665     \textit{advection} \\
666     \textit{metric} \\
667     \textit{Coriolis} \\
668 adcroft 1.4 \textit{\ Forcing/Dissipation}
669     \end{tabular}
670 cnh 1.2 \ \right. \qquad \label{eq:gu-speherical}
671 cnh 1.1 \end{equation}
672    
673     \begin{equation}
674     \left.
675     \begin{tabular}{l}
676     $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
677 cnh 1.6 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}
678 cnh 1.1 $ \\
679 cnh 1.6 $-\left\{ -2\Omega u\sin \varphi \right\} $ \\
680 adcroft 1.4 $+\mathcal{F}_{v}$
681     \end{tabular}
682 cnh 1.1 \ \right\} \left\{
683     \begin{tabular}{l}
684     \textit{advection} \\
685     \textit{metric} \\
686     \textit{Coriolis} \\
687 adcroft 1.4 \textit{\ Forcing/Dissipation}
688     \end{tabular}
689 cnh 1.2 \ \right. \qquad \label{eq:gv-spherical}
690 adcroft 1.4 \end{equation}
691 cnh 1.2 \qquad \qquad \qquad \qquad \qquad
692 cnh 1.1
693     \begin{equation}
694     \left.
695     \begin{tabular}{l}
696     $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
697     $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
698 cnh 1.6 ${+}\underline{{2\Omega u\cos \varphi}}$ \\
699 adcroft 1.4 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
700     \end{tabular}
701 cnh 1.1 \ \right\} \left\{
702     \begin{tabular}{l}
703     \textit{advection} \\
704     \textit{metric} \\
705     \textit{Coriolis} \\
706 adcroft 1.4 \textit{\ Forcing/Dissipation}
707     \end{tabular}
708 cnh 1.2 \ \right. \label{eq:gw-spherical}
709 adcroft 1.4 \end{equation}
710 cnh 1.2 \qquad \qquad \qquad \qquad \qquad
711 cnh 1.1
712 cnh 1.6 In the above `${r}$' is the distance from the center of the earth and `$\varphi$
713 cnh 1.1 ' is latitude.
714    
715     Grad and div operators in spherical coordinates are defined in appendix
716 adcroft 1.4 OPERATORS.
717 cnh 1.1
718 cnh 1.3 %%CNHbegin
719     \input{part1/sphere_coord_figure.tex}
720     %%CNHend
721    
722 cnh 1.1 \subsubsection{Shallow atmosphere approximation}
723    
724     Most models are based on the `hydrostatic primitive equations' (HPE's) in
725     which the vertical momentum equation is reduced to a statement of
726     hydrostatic balance and the `traditional approximation' is made in which the
727     Coriolis force is treated approximately and the shallow atmosphere
728     approximation is made.\ The MITgcm need not make the `traditional
729     approximation'. To be able to support consistent non-hydrostatic forms the
730 adcroft 1.4 shallow atmosphere approximation can be relaxed - when dividing through by $
731 cnh 1.2 r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
732 cnh 1.1 the radius of the earth.
733    
734     \subsubsection{Hydrostatic and quasi-hydrostatic forms}
735 cnh 1.7 \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
736 cnh 1.1
737     These are discussed at length in Marshall et al (1997a).
738    
739     In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
740     terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
741     are neglected and `${r}$' is replaced by `$a$', the mean radius of the
742     earth. Once the pressure is found at one level - e.g. by inverting a 2-d
743     Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
744 adcroft 1.4 computed at all other levels by integration of the hydrostatic relation, eq(
745 cnh 1.1 \ref{eq:hydrostatic}).
746    
747     In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
748     gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
749 cnh 1.6 \varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
750 adcroft 1.4 contribution to the pressure field: only the terms underlined twice in Eqs. (
751 cnh 1.1 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
752     and, simultaneously, the shallow atmosphere approximation is relaxed. In
753     \textbf{QH}\ \textit{all} the metric terms are retained and the full
754     variation of the radial position of a particle monitored. The \textbf{QH}\
755     vertical momentum equation (\ref{eq:mom-w}) becomes:
756    
757     \begin{equation*}
758 cnh 1.6 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi
759 cnh 1.1 \end{equation*}
760     making a small correction to the hydrostatic pressure.
761    
762     \textbf{QH} has good energetic credentials - they are the same as for
763     \textbf{HPE}. Importantly, however, it has the same angular momentum
764     principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
765     et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
766    
767     \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
768    
769     The MIT model presently supports a full non-hydrostatic ocean isomorph, but
770     only a quasi-non-hydrostatic atmospheric isomorph.
771    
772     \paragraph{Non-hydrostatic Ocean}
773    
774 adcroft 1.4 In the non-hydrostatic ocean model all terms in equations Eqs.(\ref
775 cnh 1.1 {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
776     three dimensional elliptic equation must be solved subject to Neumann
777     boundary conditions (see below). It is important to note that use of the
778     full \textbf{NH} does not admit any new `fast' waves in to the system - the
779 cnh 1.8 incompressible condition eq(\ref{eq:continuity}) has already filtered out
780 cnh 1.1 acoustic modes. It does, however, ensure that the gravity waves are treated
781     accurately with an exact dispersion relation. The \textbf{NH} set has a
782     complete angular momentum principle and consistent energetics - see White
783     and Bromley, 1995; Marshall et.al.\ 1997a.
784    
785     \paragraph{Quasi-nonhydrostatic Atmosphere}
786    
787 adcroft 1.4 In the non-hydrostatic version of our atmospheric model we approximate $\dot{
788 cnh 1.1 r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
789     (but only here) by:
790    
791     \begin{equation}
792     \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
793 adcroft 1.4 \end{equation}
794 cnh 1.1 where $p_{hy}$ is the hydrostatic pressure.
795    
796     \subsubsection{Summary of equation sets supported by model}
797    
798     \paragraph{Atmosphere}
799    
800     Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
801     compressible non-Boussinesq equations in $p-$coordinates are supported.
802    
803     \subparagraph{Hydrostatic and quasi-hydrostatic}
804    
805     The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
806     - see eq(\ref{eq:atmos-prime}).
807    
808     \subparagraph{Quasi-nonhydrostatic}
809    
810     A quasi-nonhydrostatic form is also supported.
811    
812     \paragraph{Ocean}
813    
814     \subparagraph{Hydrostatic and quasi-hydrostatic}
815    
816     Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
817     equations in $z-$coordinates are supported.
818    
819     \subparagraph{Non-hydrostatic}
820    
821 adcroft 1.4 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
822     coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref
823 cnh 1.1 {eq:ocean-salt}).
824    
825     \subsection{Solution strategy}
826    
827 adcroft 1.4 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
828 cnh 1.8 NH} models is summarized in Figure \ref{fig:solution-strategy}.
829     Under all dynamics, a 2-d elliptic equation is
830 cnh 1.1 first solved to find the surface pressure and the hydrostatic pressure at
831     any level computed from the weight of fluid above. Under \textbf{HPE} and
832     \textbf{QH} dynamics, the horizontal momentum equations are then stepped
833     forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
834     3-d elliptic equation must be solved for the non-hydrostatic pressure before
835     stepping forward the horizontal momentum equations; $\dot{r}$ is found by
836     stepping forward the vertical momentum equation.
837    
838 cnh 1.3 %%CNHbegin
839     \input{part1/solution_strategy_figure.tex}
840     %%CNHend
841    
842 cnh 1.1 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
843 cnh 1.6 course, some complication that goes with the inclusion of $\cos \varphi \ $
844 cnh 1.1 Coriolis terms and the relaxation of the shallow atmosphere approximation.
845     But this leads to negligible increase in computation. In \textbf{NH}, in
846     contrast, one additional elliptic equation - a three-dimensional one - must
847     be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
848     essentially negligible in the hydrostatic limit (see detailed discussion in
849     Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
850     hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
851    
852     \subsection{Finding the pressure field}
853 cnh 1.7 \label{sec:finding_the_pressure_field}
854 cnh 1.1
855     Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
856     pressure field must be obtained diagnostically. We proceed, as before, by
857     dividing the total (pressure/geo) potential in to three parts, a surface
858     part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
859     non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
860     writing the momentum equation as in (\ref{eq:mom-h}).
861    
862     \subsubsection{Hydrostatic pressure}
863    
864     Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
865     vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
866    
867     \begin{equation*}
868 adcroft 1.4 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
869 cnh 1.2 \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
870 cnh 1.1 \end{equation*}
871     and so
872    
873     \begin{equation}
874     \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
875     \end{equation}
876    
877     The model can be easily modified to accommodate a loading term (e.g
878     atmospheric pressure pushing down on the ocean's surface) by setting:
879    
880     \begin{equation}
881     \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
882     \end{equation}
883    
884     \subsubsection{Surface pressure}
885    
886 cnh 1.8 The surface pressure equation can be obtained by integrating continuity,
887     (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
888 cnh 1.1
889     \begin{equation*}
890 adcroft 1.4 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
891 cnh 1.2 }_{h}+\partial _{r}\dot{r}\right) dr=0
892 cnh 1.1 \end{equation*}
893    
894     Thus:
895    
896     \begin{equation*}
897     \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
898 adcroft 1.4 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
899 cnh 1.2 _{h}dr=0
900 cnh 1.1 \end{equation*}
901 adcroft 1.4 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
902 cnh 1.1 r $. The above can be rearranged to yield, using Leibnitz's theorem:
903    
904     \begin{equation}
905     \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
906     \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
907     \label{eq:free-surface}
908 adcroft 1.4 \end{equation}
909 cnh 1.1 where we have incorporated a source term.
910    
911     Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
912 cnh 1.8 (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
913 cnh 1.1 be written
914     \begin{equation}
915 cnh 1.2 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
916 cnh 1.1 \label{eq:phi-surf}
917 adcroft 1.4 \end{equation}
918 cnh 1.1 where $b_{s}$ is the buoyancy at the surface.
919    
920 cnh 1.8 In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
921 cnh 1.1 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
922     elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
923     surface' and `rigid lid' approaches are available.
924    
925     \subsubsection{Non-hydrostatic pressure}
926    
927 cnh 1.8 Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
928     $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
929     (\ref{eq:continuity}), we deduce that:
930 cnh 1.1
931     \begin{equation}
932 adcroft 1.4 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
933     \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
934 cnh 1.1 \vec{\mathbf{F}} \label{eq:3d-invert}
935     \end{equation}
936    
937     For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
938     subject to appropriate choice of boundary conditions. This method is usually
939     called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
940     Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
941     the 3-d problem does not need to be solved.
942    
943     \paragraph{Boundary Conditions}
944    
945     We apply the condition of no normal flow through all solid boundaries - the
946     coasts (in the ocean) and the bottom:
947    
948     \begin{equation}
949     \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
950     \end{equation}
951     where $\widehat{n}$ is a vector of unit length normal to the boundary. The
952     kinematic condition (\ref{nonormalflow}) is also applied to the vertical
953 adcroft 1.4 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
954 cnh 1.1 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
955     tangential component of velocity, $v_{T}$, at all solid boundaries,
956     depending on the form chosen for the dissipative terms in the momentum
957     equations - see below.
958    
959 cnh 1.8 Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
960 cnh 1.1
961     \begin{equation}
962     \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
963     \label{eq:inhom-neumann-nh}
964     \end{equation}
965     where
966    
967     \begin{equation*}
968     \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
969     _{s}+\mathbf{\nabla }\phi _{hyd}\right)
970 adcroft 1.4 \end{equation*}
971 cnh 1.1 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
972     (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
973     exploit classical 3D potential theory and, by introducing an appropriately
974 cnh 1.2 chosen $\delta $-function sheet of `source-charge', replace the
975     inhomogeneous boundary condition on pressure by a homogeneous one. The
976 adcroft 1.4 source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $
977     \vec{\mathbf{F}}.$ By simultaneously setting $
978 cnh 1.1 \begin{array}{l}
979 adcroft 1.4 \widehat{n}.\vec{\mathbf{F}}
980     \end{array}
981 cnh 1.1 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
982 cnh 1.2 self-consistent but simpler homogenized Elliptic problem is obtained:
983 cnh 1.1
984     \begin{equation*}
985 cnh 1.2 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
986 adcroft 1.4 \end{equation*}
987 cnh 1.1 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
988 adcroft 1.4 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
989 cnh 1.1 {eq:inhom-neumann-nh}) the modified boundary condition becomes:
990    
991     \begin{equation}
992     \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
993     \end{equation}
994    
995     If the flow is `close' to hydrostatic balance then the 3-d inversion
996     converges rapidly because $\phi _{nh}\ $is then only a small correction to
997     the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
998    
999 cnh 1.8 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
1000 cnh 1.1 does not vanish at $r=R_{moving}$, and so refines the pressure there.
1001    
1002     \subsection{Forcing/dissipation}
1003    
1004     \subsubsection{Forcing}
1005    
1006     The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
1007 cnh 1.8 `physics packages' and forcing packages. These are described later on.
1008 cnh 1.1
1009     \subsubsection{Dissipation}
1010    
1011     \paragraph{Momentum}
1012    
1013     Many forms of momentum dissipation are available in the model. Laplacian and
1014     biharmonic frictions are commonly used:
1015    
1016     \begin{equation}
1017 adcroft 1.4 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
1018 cnh 1.1 +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
1019     \end{equation}
1020     where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
1021     coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
1022     friction. These coefficients are the same for all velocity components.
1023    
1024     \paragraph{Tracers}
1025    
1026     The mixing terms for the temperature and salinity equations have a similar
1027     form to that of momentum except that the diffusion tensor can be
1028 adcroft 1.4 non-diagonal and have varying coefficients. $\qquad $
1029 cnh 1.1 \begin{equation}
1030     D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
1031     _{h}^{4}(T,S) \label{eq:diffusion}
1032     \end{equation}
1033 adcroft 1.4 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
1034 cnh 1.1 horizontal coefficient for biharmonic diffusion. In the simplest case where
1035     the subgrid-scale fluxes of heat and salt are parameterized with constant
1036     horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
1037     reduces to a diagonal matrix with constant coefficients:
1038    
1039     \begin{equation}
1040     \qquad \qquad \qquad \qquad K=\left(
1041     \begin{array}{ccc}
1042     K_{h} & 0 & 0 \\
1043     0 & K_{h} & 0 \\
1044 adcroft 1.4 0 & 0 & K_{v}
1045 cnh 1.1 \end{array}
1046     \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
1047     \end{equation}
1048     where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
1049     coefficients. These coefficients are the same for all tracers (temperature,
1050     salinity ... ).
1051    
1052     \subsection{Vector invariant form}
1053    
1054 adcroft 1.4 For some purposes it is advantageous to write momentum advection in eq(\ref
1055 cnh 1.8 {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form:
1056 cnh 1.1
1057     \begin{equation}
1058 adcroft 1.4 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
1059     +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
1060 cnh 1.2 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1061 cnh 1.1 \label{eq:vi-identity}
1062 adcroft 1.4 \end{equation}
1063 cnh 1.1 This permits alternative numerical treatments of the non-linear terms based
1064     on their representation as a vorticity flux. Because gradients of coordinate
1065     vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1066 adcroft 1.4 representation of the metric terms in (\ref{eq:gu-speherical}), (\ref
1067 cnh 1.1 {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1068     about the geometry is contained in the areas and lengths of the volumes used
1069     to discretize the model.
1070    
1071     \subsection{Adjoint}
1072    
1073 cnh 1.8 Tangent linear and adjoint counterparts of the forward model are described
1074 cnh 1.2 in Chapter 5.
1075 cnh 1.1
1076 edhill 1.17 % $Header: /u/u3/gcmpack/manual/part1/manual.tex,v 1.16 2002/02/28 19:32:19 cnh Exp $
1077 cnh 1.1 % $Name: $
1078    
1079     \section{Appendix ATMOSPHERE}
1080    
1081     \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
1082     coordinates}
1083    
1084     \label{sect-hpe-p}
1085    
1086     The hydrostatic primitive equations (HPEs) in p-coordinates are:
1087     \begin{eqnarray}
1088 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1089 cnh 1.2 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1090 cnh 1.1 \label{eq:atmos-mom} \\
1091 cnh 1.2 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
1092 adcroft 1.4 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1093 cnh 1.1 \partial p} &=&0 \label{eq:atmos-cont} \\
1094 cnh 1.2 p\alpha &=&RT \label{eq:atmos-eos} \\
1095 cnh 1.1 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1096 adcroft 1.4 \end{eqnarray}
1097 cnh 1.1 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1098     surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1099     \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1100 cnh 1.6 derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is
1101 adcroft 1.4 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
1102     }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
1103     {eq:atmos-heat}) is the first law of thermodynamics where internal energy $
1104     e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $
1105 cnh 1.1 p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1106    
1107     It is convenient to cast the heat equation in terms of potential temperature
1108     $\theta $ so that it looks more like a generic conservation law.
1109     Differentiating (\ref{eq:atmos-eos}) we get:
1110     \begin{equation*}
1111     p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1112 adcroft 1.4 \end{equation*}
1113     which, when added to the heat equation (\ref{eq:atmos-heat}) and using $
1114 cnh 1.1 c_{p}=c_{v}+R$, gives:
1115     \begin{equation}
1116     c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1117     \label{eq-p-heat-interim}
1118 adcroft 1.4 \end{equation}
1119 cnh 1.1 Potential temperature is defined:
1120     \begin{equation}
1121     \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1122 adcroft 1.4 \end{equation}
1123 cnh 1.1 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1124     we will make use of the Exner function $\Pi (p)$ which defined by:
1125     \begin{equation}
1126     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1127 adcroft 1.4 \end{equation}
1128 cnh 1.1 The following relations will be useful and are easily expressed in terms of
1129     the Exner function:
1130     \begin{equation*}
1131     c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1132 adcroft 1.4 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
1133     \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
1134 cnh 1.1 \frac{Dp}{Dt}
1135 adcroft 1.4 \end{equation*}
1136 cnh 1.1 where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1137    
1138     The heat equation is obtained by noting that
1139     \begin{equation*}
1140     c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1141 cnh 1.2 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1142 cnh 1.1 \end{equation*}
1143     and on substituting into (\ref{eq-p-heat-interim}) gives:
1144     \begin{equation}
1145     \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1146     \label{eq:potential-temperature-equation}
1147     \end{equation}
1148     which is in conservative form.
1149    
1150 adcroft 1.4 For convenience in the model we prefer to step forward (\ref
1151 cnh 1.1 {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1152    
1153     \subsubsection{Boundary conditions}
1154    
1155     The upper and lower boundary conditions are :
1156     \begin{eqnarray}
1157     \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1158     \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1159     \label{eq:boundary-condition-atmosphere}
1160     \end{eqnarray}
1161     In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1162     =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1163     surface ($\phi $ is imposed and $\omega \neq 0$).
1164    
1165     \subsubsection{Splitting the geo-potential}
1166    
1167     For the purposes of initialization and reducing round-off errors, the model
1168     deals with perturbations from reference (or ``standard'') profiles. For
1169     example, the hydrostatic geopotential associated with the resting atmosphere
1170     is not dynamically relevant and can therefore be subtracted from the
1171     equations. The equations written in terms of perturbations are obtained by
1172     substituting the following definitions into the previous model equations:
1173     \begin{eqnarray}
1174     \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1175     \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1176     \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1177     \end{eqnarray}
1178     The reference state (indicated by subscript ``0'') corresponds to
1179     horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1180     _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1181     _{o}(p_{o})=g~Z_{topo}$, defined:
1182     \begin{eqnarray*}
1183     \theta _{o}(p) &=&f^{n}(p) \\
1184     \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1185     \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1186     \end{eqnarray*}
1187     %\begin{eqnarray*}
1188     %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1189     %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1190     %\end{eqnarray*}
1191    
1192     The final form of the HPE's in p coordinates is then:
1193     \begin{eqnarray}
1194 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1195 cnh 1.8 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\
1196 cnh 1.1 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1197 adcroft 1.4 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1198 cnh 1.1 \partial p} &=&0 \\
1199     \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1200 cnh 1.8 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1201 cnh 1.1 \end{eqnarray}
1202    
1203 edhill 1.17 % $Header: /u/u3/gcmpack/manual/part1/manual.tex,v 1.16 2002/02/28 19:32:19 cnh Exp $
1204 cnh 1.1 % $Name: $
1205    
1206     \section{Appendix OCEAN}
1207    
1208     \subsection{Equations of motion for the ocean}
1209    
1210     We review here the method by which the standard (Boussinesq, incompressible)
1211     HPE's for the ocean written in z-coordinates are obtained. The
1212     non-Boussinesq equations for oceanic motion are:
1213     \begin{eqnarray}
1214 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1215 cnh 1.1 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1216     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1217     &=&\epsilon _{nh}\mathcal{F}_{w} \\
1218 adcroft 1.4 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1219 cnh 1.8 _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1220     \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1221     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1222     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt}
1223     \label{eq:non-boussinesq}
1224 adcroft 1.4 \end{eqnarray}
1225 cnh 1.1 These equations permit acoustics modes, inertia-gravity waves,
1226 cnh 1.10 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1227 cnh 1.1 mode. As written, they cannot be integrated forward consistently - if we
1228     step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1229 adcroft 1.4 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
1230 cnh 1.1 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1231     therefore necessary to manipulate the system as follows. Differentiating the
1232     EOS (equation of state) gives:
1233    
1234     \begin{equation}
1235     \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1236     _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1237     _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1238     _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1239     \end{equation}
1240    
1241     Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1242 cnh 1.8 reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:
1243 cnh 1.1 \begin{equation}
1244 adcroft 1.4 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1245 cnh 1.1 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1246     \end{equation}
1247     where we have used an approximation sign to indicate that we have assumed
1248     adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1249     Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1250     can be explicitly integrated forward:
1251     \begin{eqnarray}
1252 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1253 cnh 1.1 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1254     \label{eq-cns-hmom} \\
1255     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1256     &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1257 adcroft 1.4 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1258 cnh 1.1 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1259     \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1260     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1261     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1262     \end{eqnarray}
1263    
1264     \subsubsection{Compressible z-coordinate equations}
1265    
1266     Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1267     wherever it appears in a product (ie. non-linear term) - this is the
1268     `Boussinesq assumption'. The only term that then retains the full variation
1269     in $\rho $ is the gravitational acceleration:
1270     \begin{eqnarray}
1271 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1272 cnh 1.1 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1273     \label{eq-zcb-hmom} \\
1274 adcroft 1.4 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1275 cnh 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1276     \label{eq-zcb-hydro} \\
1277 adcroft 1.4 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
1278 cnh 1.1 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1279     \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1280     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1281     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1282     \end{eqnarray}
1283     These equations still retain acoustic modes. But, because the
1284 adcroft 1.4 ``compressible'' terms are linearized, the pressure equation \ref
1285 cnh 1.1 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1286     term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1287     These are the \emph{truly} compressible Boussinesq equations. Note that the
1288     EOS must have the same pressure dependency as the linearized pressure term,
1289 adcroft 1.4 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
1290 cnh 1.1 c_{s}^{2}}$, for consistency.
1291    
1292     \subsubsection{`Anelastic' z-coordinate equations}
1293    
1294     The anelastic approximation filters the acoustic mode by removing the
1295 adcroft 1.4 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
1296     ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
1297 cnh 1.1 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1298     continuity and EOS. A better solution is to change the dependency on
1299     pressure in the EOS by splitting the pressure into a reference function of
1300     height and a perturbation:
1301     \begin{equation*}
1302 cnh 1.2 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1303 cnh 1.1 \end{equation*}
1304     Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1305     differentiating the EOS, the continuity equation then becomes:
1306     \begin{equation*}
1307 adcroft 1.4 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
1308     Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
1309 cnh 1.2 \frac{\partial w}{\partial z}=0
1310 cnh 1.1 \end{equation*}
1311     If the time- and space-scales of the motions of interest are longer than
1312 adcroft 1.4 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
1313 cnh 1.1 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1314 adcroft 1.4 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
1315 cnh 1.1 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1316     ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1317     _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1318     and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1319     anelastic continuity equation:
1320     \begin{equation}
1321 adcroft 1.4 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
1322 cnh 1.1 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1323     \end{equation}
1324     A slightly different route leads to the quasi-Boussinesq continuity equation
1325 adcroft 1.4 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
1326     \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
1327 cnh 1.1 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1328     \begin{equation}
1329 adcroft 1.4 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1330 cnh 1.1 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1331     \end{equation}
1332     Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1333     equation if:
1334     \begin{equation}
1335     \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1336     \end{equation}
1337     Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1338 adcroft 1.4 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
1339 cnh 1.1 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1340     full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1341     then:
1342     \begin{eqnarray}
1343 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1344 cnh 1.1 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1345     \label{eq-zab-hmom} \\
1346 adcroft 1.4 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1347 cnh 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1348     \label{eq-zab-hydro} \\
1349 adcroft 1.4 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1350 cnh 1.1 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1351     \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1352     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1353     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1354     \end{eqnarray}
1355    
1356     \subsubsection{Incompressible z-coordinate equations}
1357    
1358     Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1359     technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1360     yield the ``truly'' incompressible Boussinesq equations:
1361     \begin{eqnarray}
1362 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1363 cnh 1.1 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1364     \label{eq-ztb-hmom} \\
1365 adcroft 1.4 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
1366 cnh 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1367     \label{eq-ztb-hydro} \\
1368     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1369     &=&0 \label{eq-ztb-cont} \\
1370     \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1371     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1372     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1373     \end{eqnarray}
1374     where $\rho _{c}$ is a constant reference density of water.
1375    
1376     \subsubsection{Compressible non-divergent equations}
1377    
1378     The above ``incompressible'' equations are incompressible in both the flow
1379     and the density. In many oceanic applications, however, it is important to
1380     retain compressibility effects in the density. To do this we must split the
1381     density thus:
1382     \begin{equation*}
1383     \rho =\rho _{o}+\rho ^{\prime }
1384 adcroft 1.4 \end{equation*}
1385 cnh 1.1 We then assert that variations with depth of $\rho _{o}$ are unimportant
1386     while the compressible effects in $\rho ^{\prime }$ are:
1387     \begin{equation*}
1388     \rho _{o}=\rho _{c}
1389 adcroft 1.4 \end{equation*}
1390 cnh 1.1 \begin{equation*}
1391     \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1392 adcroft 1.4 \end{equation*}
1393 cnh 1.1 This then yields what we can call the semi-compressible Boussinesq
1394     equations:
1395     \begin{eqnarray}
1396 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1397     _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
1398 cnh 1.1 \mathcal{F}}} \label{eq:ocean-mom} \\
1399     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1400     _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1401     \label{eq:ocean-wmom} \\
1402     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1403     &=&0 \label{eq:ocean-cont} \\
1404     \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1405     \\
1406     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1407     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1408 adcroft 1.4 \end{eqnarray}
1409 cnh 1.1 Note that the hydrostatic pressure of the resting fluid, including that
1410     associated with $\rho _{c}$, is subtracted out since it has no effect on the
1411     dynamics.
1412    
1413     Though necessary, the assumptions that go into these equations are messy
1414     since we essentially assume a different EOS for the reference density and
1415     the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1416     _{nh}=0$ form of these equations that are used throughout the ocean modeling
1417     community and referred to as the primitive equations (HPE).
1418    
1419 edhill 1.17 % $Header: /u/u3/gcmpack/manual/part1/manual.tex,v 1.16 2002/02/28 19:32:19 cnh Exp $
1420 cnh 1.1 % $Name: $
1421    
1422     \section{Appendix:OPERATORS}
1423    
1424     \subsection{Coordinate systems}
1425    
1426     \subsubsection{Spherical coordinates}
1427    
1428     In spherical coordinates, the velocity components in the zonal, meridional
1429     and vertical direction respectively, are given by (see Fig.2) :
1430    
1431     \begin{equation*}
1432 cnh 1.6 u=r\cos \varphi \frac{D\lambda }{Dt}
1433 cnh 1.1 \end{equation*}
1434    
1435     \begin{equation*}
1436 cnh 1.6 v=r\frac{D\varphi }{Dt}\qquad
1437 cnh 1.1 \end{equation*}
1438     $\qquad \qquad \qquad \qquad $
1439    
1440     \begin{equation*}
1441 cnh 1.2 \dot{r}=\frac{Dr}{Dt}
1442 cnh 1.1 \end{equation*}
1443    
1444 cnh 1.6 Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1445 cnh 1.1 distance of the particle from the center of the earth, $\Omega $ is the
1446     angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1447    
1448     The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in
1449     spherical coordinates:
1450    
1451     \begin{equation*}
1452 cnh 1.6 \nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
1453     ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
1454 cnh 1.2 \right)
1455 cnh 1.1 \end{equation*}
1456    
1457     \begin{equation*}
1458 cnh 1.6 \nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
1459     \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
1460 cnh 1.2 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1461 cnh 1.1 \end{equation*}
1462    
1463 adcroft 1.4 %tci%\end{document}

  ViewVC Help
Powered by ViewVC 1.1.22