/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Annotation of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.15 - (hide annotations) (download) (as text)
Wed Nov 21 16:33:17 2001 UTC (23 years, 7 months ago) by cnh
Branch: MAIN
Changes since 1.14: +11 -10 lines
File MIME type: application/x-tex
Caoption and figure reference updates

1 cnh 1.15 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $
2 cnh 1.2 % $Name: $
3 cnh 1.1
4 adcroft 1.4 %tci%\documentclass[12pt]{book}
5     %tci%\usepackage{amsmath}
6     %tci%\usepackage{html}
7     %tci%\usepackage{epsfig}
8     %tci%\usepackage{graphics,subfigure}
9     %tci%\usepackage{array}
10     %tci%\usepackage{multirow}
11     %tci%\usepackage{fancyhdr}
12     %tci%\usepackage{psfrag}
13    
14     %tci%%TCIDATA{OutputFilter=Latex.dll}
15     %tci%%TCIDATA{LastRevised=Thursday, October 04, 2001 14:41:22}
16     %tci%%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
17     %tci%%TCIDATA{Language=American English}
18    
19     %tci%\fancyhead{}
20     %tci%\fancyhead[LO]{\slshape \rightmark}
21     %tci%\fancyhead[RE]{\slshape \leftmark}
22     %tci%\fancyhead[RO,LE]{\thepage}
23     %tci%\fancyfoot[CO,CE]{\today}
24     %tci%\fancyfoot[RO,LE]{ }
25     %tci%\renewcommand{\headrulewidth}{0.4pt}
26     %tci%\renewcommand{\footrulewidth}{0.4pt}
27     %tci%\setcounter{secnumdepth}{3}
28     %tci%\input{tcilatex}
29    
30     %tci%\begin{document}
31    
32     %tci%\tableofcontents
33    
34    
35 cnh 1.1 % Section: Overview
36    
37 cnh 1.15 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $
38 cnh 1.1 % $Name: $
39    
40     \section{Introduction}
41    
42     This documentation provides the reader with the information necessary to
43     carry out numerical experiments using MITgcm. It gives a comprehensive
44     description of the continuous equations on which the model is based, the
45     numerical algorithms the model employs and a description of the associated
46     program code. Along with the hydrodynamical kernel, physical and
47     biogeochemical parameterizations of key atmospheric and oceanic processes
48     are available. A number of examples illustrating the use of the model in
49     both process and general circulation studies of the atmosphere and ocean are
50     also presented.
51    
52     MITgcm has a number of novel aspects:
53    
54     \begin{itemize}
55     \item it can be used to study both atmospheric and oceanic phenomena; one
56     hydrodynamical kernel is used to drive forward both atmospheric and oceanic
57 cnh 1.7 models - see fig \ref{fig:onemodel}
58 cnh 1.1
59 cnh 1.3 %% CNHbegin
60     \input{part1/one_model_figure}
61     %% CNHend
62    
63 cnh 1.1 \item it has a non-hydrostatic capability and so can be used to study both
64 cnh 1.7 small-scale and large scale processes - see fig \ref{fig:all-scales}
65 cnh 1.1
66 cnh 1.3 %% CNHbegin
67     \input{part1/all_scales_figure}
68     %% CNHend
69    
70 cnh 1.1 \item finite volume techniques are employed yielding an intuitive
71     discretization and support for the treatment of irregular geometries using
72 cnh 1.7 orthogonal curvilinear grids and shaved cells - see fig \ref{fig:finite-volumes}
73 cnh 1.3
74     %% CNHbegin
75     \input{part1/fvol_figure}
76     %% CNHend
77 cnh 1.1
78     \item tangent linear and adjoint counterparts are automatically maintained
79     along with the forward model, permitting sensitivity and optimization
80     studies.
81    
82     \item the model is developed to perform efficiently on a wide variety of
83     computational platforms.
84     \end{itemize}
85    
86 cnh 1.12 Key publications reporting on and charting the development of the model are:
87    
88     \begin{verbatim}
89    
90     Hill, C. and J. Marshall, (1995)
91     Application of a Parallel Navier-Stokes Model to Ocean Circulation in
92     Parallel Computational Fluid Dynamics
93     In Proceedings of Parallel Computational Fluid Dynamics: Implementations
94     and Results Using Parallel Computers, 545-552.
95     Elsevier Science B.V.: New York
96    
97     Marshall, J., C. Hill, L. Perelman, and A. Adcroft, (1997)
98     Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,
99     J. Geophysical Res., 102(C3), 5733-5752.
100    
101     Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, (1997)
102     A finite-volume, incompressible Navier Stokes model for studies of the ocean
103     on parallel computers,
104     J. Geophysical Res., 102(C3), 5753-5766.
105    
106     Adcroft, A.J., Hill, C.N. and J. Marshall, (1997)
107     Representation of topography by shaved cells in a height coordinate ocean
108     model
109     Mon Wea Rev, vol 125, 2293-2315
110    
111     Marshall, J., Jones, H. and C. Hill, (1998)
112     Efficient ocean modeling using non-hydrostatic algorithms
113     Journal of Marine Systems, 18, 115-134
114    
115     Adcroft, A., Hill C. and J. Marshall: (1999)
116     A new treatment of the Coriolis terms in C-grid models at both high and low
117     resolutions,
118     Mon. Wea. Rev. Vol 127, pages 1928-1936
119    
120     Hill, C, Adcroft,A., Jamous,D., and J. Marshall, (1999)
121     A Strategy for Terascale Climate Modeling.
122 cnh 1.14 In Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors
123     in Meteorology, pages 406-425
124     World Scientific Publishing Co: UK
125 cnh 1.12
126     Marotzke, J, Giering,R., Zhang, K.Q., Stammer,D., Hill,C., and T.Lee, (1999)
127     Construction of the adjoint MIT ocean general circulation model and
128     application to Atlantic heat transport variability
129     J. Geophysical Res., 104(C12), 29,529-29,547.
130    
131    
132     \end{verbatim}
133 cnh 1.1
134     We begin by briefly showing some of the results of the model in action to
135     give a feel for the wide range of problems that can be addressed using it.
136    
137 cnh 1.15 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $
138 cnh 1.1 % $Name: $
139    
140     \section{Illustrations of the model in action}
141    
142     The MITgcm has been designed and used to model a wide range of phenomena,
143     from convection on the scale of meters in the ocean to the global pattern of
144 cnh 1.7 atmospheric winds - see figure \ref{fig:all-scales}. To give a flavor of the
145 cnh 1.1 kinds of problems the model has been used to study, we briefly describe some
146     of them here. A more detailed description of the underlying formulation,
147     numerical algorithm and implementation that lie behind these calculations is
148 cnh 1.2 given later. Indeed many of the illustrative examples shown below can be
149     easily reproduced: simply download the model (the minimum you need is a PC
150 cnh 1.10 running Linux, together with a FORTRAN\ 77 compiler) and follow the examples
151 cnh 1.2 described in detail in the documentation.
152 cnh 1.1
153     \subsection{Global atmosphere: `Held-Suarez' benchmark}
154    
155 cnh 1.7 A novel feature of MITgcm is its ability to simulate, using one basic algorithm,
156     both atmospheric and oceanographic flows at both small and large scales.
157 cnh 1.2
158 cnh 1.7 Figure \ref{fig:eddy_cs} shows an instantaneous plot of the 500$mb$
159 cnh 1.2 temperature field obtained using the atmospheric isomorph of MITgcm run at
160     2.8$^{\circ }$ resolution on the cubed sphere. We see cold air over the pole
161     (blue) and warm air along an equatorial band (red). Fully developed
162     baroclinic eddies spawned in the northern hemisphere storm track are
163     evident. There are no mountains or land-sea contrast in this calculation,
164     but you can easily put them in. The model is driven by relaxation to a
165     radiative-convective equilibrium profile, following the description set out
166     in Held and Suarez; 1994 designed to test atmospheric hydrodynamical cores -
167     there are no mountains or land-sea contrast.
168    
169 cnh 1.3 %% CNHbegin
170     \input{part1/cubic_eddies_figure}
171     %% CNHend
172    
173 cnh 1.2 As described in Adcroft (2001), a `cubed sphere' is used to discretize the
174 cnh 1.10 globe permitting a uniform griding and obviated the need to Fourier filter.
175 cnh 1.2 The `vector-invariant' form of MITgcm supports any orthogonal curvilinear
176     grid, of which the cubed sphere is just one of many choices.
177 cnh 1.1
178 cnh 1.7 Figure \ref{fig:hs_zave_u} shows the 5-year mean, zonally averaged zonal
179     wind from a 20-level configuration of
180 cnh 1.2 the model. It compares favorable with more conventional spatial
181 cnh 1.7 discretization approaches. The two plots show the field calculated using the
182     cube-sphere grid and the flow calculated using a regular, spherical polar
183     latitude-longitude grid. Both grids are supported within the model.
184 cnh 1.1
185 cnh 1.3 %% CNHbegin
186     \input{part1/hs_zave_u_figure}
187     %% CNHend
188    
189 cnh 1.2 \subsection{Ocean gyres}
190 cnh 1.1
191 cnh 1.2 Baroclinic instability is a ubiquitous process in the ocean, as well as the
192     atmosphere. Ocean eddies play an important role in modifying the
193     hydrographic structure and current systems of the oceans. Coarse resolution
194     models of the oceans cannot resolve the eddy field and yield rather broad,
195     diffusive patterns of ocean currents. But if the resolution of our models is
196     increased until the baroclinic instability process is resolved, numerical
197     solutions of a different and much more realistic kind, can be obtained.
198    
199 cnh 1.7 Figure \ref{fig:ocean-gyres} shows the surface temperature and velocity
200     field obtained from MITgcm run at $\frac{1}{6}^{\circ }$ horizontal
201     resolution on a $lat-lon$
202 cnh 1.2 grid in which the pole has been rotated by 90$^{\circ }$ on to the equator
203     (to avoid the converging of meridian in northern latitudes). 21 vertical
204     levels are used in the vertical with a `lopped cell' representation of
205     topography. The development and propagation of anomalously warm and cold
206 cnh 1.7 eddies can be clearly seen in the Gulf Stream region. The transport of
207 cnh 1.2 warm water northward by the mean flow of the Gulf Stream is also clearly
208     visible.
209 cnh 1.1
210 cnh 1.3 %% CNHbegin
211 cnh 1.11 \input{part1/atl6_figure}
212 cnh 1.3 %% CNHend
213    
214    
215 cnh 1.1 \subsection{Global ocean circulation}
216    
217 cnh 1.7 Figure \ref{fig:large-scale-circ} (top) shows the pattern of ocean currents at
218     the surface of a 4$^{\circ }$
219 cnh 1.2 global ocean model run with 15 vertical levels. Lopped cells are used to
220     represent topography on a regular $lat-lon$ grid extending from 70$^{\circ
221     }N $ to 70$^{\circ }S$. The model is driven using monthly-mean winds with
222     mixed boundary conditions on temperature and salinity at the surface. The
223     transfer properties of ocean eddies, convection and mixing is parameterized
224     in this model.
225    
226 cnh 1.7 Figure \ref{fig:large-scale-circ} (bottom) shows the meridional overturning
227     circulation of the global ocean in Sverdrups.
228 cnh 1.2
229 cnh 1.3 %%CNHbegin
230     \input{part1/global_circ_figure}
231     %%CNHend
232    
233 cnh 1.2 \subsection{Convection and mixing over topography}
234    
235     Dense plumes generated by localized cooling on the continental shelf of the
236     ocean may be influenced by rotation when the deformation radius is smaller
237     than the width of the cooling region. Rather than gravity plumes, the
238     mechanism for moving dense fluid down the shelf is then through geostrophic
239 adcroft 1.9 eddies. The simulation shown in the figure \ref{fig:convect-and-topo}
240 cnh 1.7 (blue is cold dense fluid, red is
241 cnh 1.2 warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to
242     trigger convection by surface cooling. The cold, dense water falls down the
243     slope but is deflected along the slope by rotation. It is found that
244     entrainment in the vertical plane is reduced when rotational control is
245     strong, and replaced by lateral entrainment due to the baroclinic
246     instability of the along-slope current.
247 cnh 1.1
248 cnh 1.3 %%CNHbegin
249     \input{part1/convect_and_topo}
250     %%CNHend
251    
252 cnh 1.1 \subsection{Boundary forced internal waves}
253    
254 cnh 1.2 The unique ability of MITgcm to treat non-hydrostatic dynamics in the
255     presence of complex geometry makes it an ideal tool to study internal wave
256     dynamics and mixing in oceanic canyons and ridges driven by large amplitude
257     barotropic tidal currents imposed through open boundary conditions.
258    
259 cnh 1.7 Fig. \ref{fig:boundary-forced-wave} shows the influence of cross-slope
260     topographic variations on
261 cnh 1.2 internal wave breaking - the cross-slope velocity is in color, the density
262     contoured. The internal waves are excited by application of open boundary
263 cnh 1.7 conditions on the left. They propagate to the sloping boundary (represented
264 cnh 1.2 using MITgcm's finite volume spatial discretization) where they break under
265     nonhydrostatic dynamics.
266    
267 cnh 1.3 %%CNHbegin
268     \input{part1/boundary_forced_waves}
269     %%CNHend
270    
271 cnh 1.2 \subsection{Parameter sensitivity using the adjoint of MITgcm}
272    
273     Forward and tangent linear counterparts of MITgcm are supported using an
274     `automatic adjoint compiler'. These can be used in parameter sensitivity and
275     data assimilation studies.
276    
277 cnh 1.7 As one example of application of the MITgcm adjoint, Figure \ref{fig:hf-sensitivity}
278     maps the gradient $\frac{\partial J}{\partial \mathcal{H}}$where $J$ is the magnitude
279 cnh 1.10 of the overturning stream-function shown in figure \ref{fig:large-scale-circ}
280 cnh 1.7 at 60$^{\circ }$N and $
281     \mathcal{H}(\lambda,\varphi)$ is the mean, local air-sea heat flux over
282     a 100 year period. We see that $J$ is
283 cnh 1.2 sensitive to heat fluxes over the Labrador Sea, one of the important sources
284     of deep water for the thermohaline circulations. This calculation also
285     yields sensitivities to all other model parameters.
286    
287 cnh 1.3 %%CNHbegin
288     \input{part1/adj_hf_ocean_figure}
289     %%CNHend
290    
291 cnh 1.2 \subsection{Global state estimation of the ocean}
292    
293     An important application of MITgcm is in state estimation of the global
294     ocean circulation. An appropriately defined `cost function', which measures
295     the departure of the model from observations (both remotely sensed and
296 cnh 1.10 in-situ) over an interval of time, is minimized by adjusting `control
297 cnh 1.2 parameters' such as air-sea fluxes, the wind field, the initial conditions
298 cnh 1.15 etc. Figure \ref{fig:assimilated-globes} shows the large scale planetary
299     circulation and a Hopf-Muller plot of Equatorial sea-surface height.
300     Both are obtained from assimilation bringing the model in to
301 cnh 1.7 consistency with altimetric and in-situ observations over the period
302 cnh 1.15 1992-1997.
303 cnh 1.2
304 cnh 1.3 %% CNHbegin
305 cnh 1.13 \input{part1/assim_figure}
306 cnh 1.3 %% CNHend
307    
308 cnh 1.2 \subsection{Ocean biogeochemical cycles}
309    
310     MITgcm is being used to study global biogeochemical cycles in the ocean. For
311     example one can study the effects of interannual changes in meteorological
312     forcing and upper ocean circulation on the fluxes of carbon dioxide and
313 cnh 1.7 oxygen between the ocean and atmosphere. Figure \ref{fig:biogeo} shows
314     the annual air-sea flux of oxygen and its relation to density outcrops in
315     the southern oceans from a single year of a global, interannually varying
316     simulation. The simulation is run at $1^{\circ}\times1^{\circ}$ resolution
317     telescoping to $\frac{1}{3}^{\circ}\times\frac{1}{3}^{\circ}$ in the tropics (not shown).
318 cnh 1.2
319 cnh 1.3 %%CNHbegin
320     \input{part1/biogeo_figure}
321     %%CNHend
322 cnh 1.2
323     \subsection{Simulations of laboratory experiments}
324    
325 cnh 1.7 Figure \ref{fig:lab-simulation} shows MITgcm being used to simulate a
326 cnh 1.10 laboratory experiment inquiring in to the dynamics of the Antarctic Circumpolar Current (ACC). An
327 cnh 1.2 initially homogeneous tank of water ($1m$ in diameter) is driven from its
328     free surface by a rotating heated disk. The combined action of mechanical
329     and thermal forcing creates a lens of fluid which becomes baroclinically
330     unstable. The stratification and depth of penetration of the lens is
331 cnh 1.7 arrested by its instability in a process analogous to that which sets the
332 cnh 1.2 stratification of the ACC.
333 cnh 1.1
334 cnh 1.3 %%CNHbegin
335     \input{part1/lab_figure}
336     %%CNHend
337    
338 cnh 1.15 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $
339 cnh 1.1 % $Name: $
340    
341     \section{Continuous equations in `r' coordinates}
342    
343     To render atmosphere and ocean models from one dynamical core we exploit
344     `isomorphisms' between equation sets that govern the evolution of the
345 cnh 1.7 respective fluids - see figure \ref{fig:isomorphic-equations}.
346     One system of hydrodynamical equations is written down
347 cnh 1.1 and encoded. The model variables have different interpretations depending on
348     whether the atmosphere or ocean is being studied. Thus, for example, the
349     vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
350 cnh 1.7 modeling the atmosphere (left hand side of figure \ref{fig:isomorphic-equations})
351     and height, $z$, if we are modeling the ocean (right hand side of figure
352     \ref{fig:isomorphic-equations}).
353 cnh 1.1
354 cnh 1.3 %%CNHbegin
355     \input{part1/zandpcoord_figure.tex}
356     %%CNHend
357    
358 cnh 1.1 The state of the fluid at any time is characterized by the distribution of
359     velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
360     `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
361     depend on $\theta $, $S$, and $p$. The equations that govern the evolution
362     of these fields, obtained by applying the laws of classical mechanics and
363     thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
364 cnh 1.7 a generic vertical coordinate, $r$, so that the appropriate
365     kinematic boundary conditions can be applied isomorphically
366     see figure \ref{fig:zandp-vert-coord}.
367 cnh 1.1
368 cnh 1.3 %%CNHbegin
369     \input{part1/vertcoord_figure.tex}
370     %%CNHend
371    
372 cnh 1.1 \begin{equation*}
373 adcroft 1.4 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
374     \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}
375 cnh 1.8 \text{ horizontal mtm} \label{eq:horizontal_mtm}
376 cnh 1.1 \end{equation*}
377    
378 cnh 1.8 \begin{equation}
379 adcroft 1.4 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
380 cnh 1.1 v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
381 cnh 1.8 vertical mtm} \label{eq:vertical_mtm}
382     \end{equation}
383 cnh 1.1
384     \begin{equation}
385 adcroft 1.4 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
386 cnh 1.8 \partial r}=0\text{ continuity} \label{eq:continuity}
387 cnh 1.1 \end{equation}
388    
389 cnh 1.8 \begin{equation}
390     b=b(\theta ,S,r)\text{ equation of state} \label{eq:equation_of_state}
391     \end{equation}
392 cnh 1.1
393 cnh 1.8 \begin{equation}
394 cnh 1.2 \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
395 cnh 1.8 \label{eq:potential_temperature}
396     \end{equation}
397 cnh 1.1
398 cnh 1.8 \begin{equation}
399 cnh 1.2 \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
400 adcroft 1.9 \label{eq:humidity_salt}
401 cnh 1.8 \end{equation}
402 cnh 1.1
403     Here:
404    
405     \begin{equation*}
406 cnh 1.2 r\text{ is the vertical coordinate}
407 cnh 1.1 \end{equation*}
408    
409     \begin{equation*}
410     \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
411 cnh 1.2 is the total derivative}
412 cnh 1.1 \end{equation*}
413    
414     \begin{equation*}
415 adcroft 1.4 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
416 cnh 1.2 \text{ is the `grad' operator}
417 cnh 1.1 \end{equation*}
418 adcroft 1.4 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
419 cnh 1.1 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
420     is a unit vector in the vertical
421    
422     \begin{equation*}
423 cnh 1.2 t\text{ is time}
424 cnh 1.1 \end{equation*}
425    
426     \begin{equation*}
427     \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
428 cnh 1.2 velocity}
429 cnh 1.1 \end{equation*}
430    
431     \begin{equation*}
432 cnh 1.2 \phi \text{ is the `pressure'/`geopotential'}
433 cnh 1.1 \end{equation*}
434    
435     \begin{equation*}
436 cnh 1.2 \vec{\Omega}\text{ is the Earth's rotation}
437 cnh 1.1 \end{equation*}
438    
439     \begin{equation*}
440 cnh 1.2 b\text{ is the `buoyancy'}
441 cnh 1.1 \end{equation*}
442    
443     \begin{equation*}
444 cnh 1.2 \theta \text{ is potential temperature}
445 cnh 1.1 \end{equation*}
446    
447     \begin{equation*}
448 cnh 1.2 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
449 cnh 1.1 \end{equation*}
450    
451     \begin{equation*}
452 adcroft 1.4 \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{
453 cnh 1.1 \mathbf{v}}
454     \end{equation*}
455    
456     \begin{equation*}
457 cnh 1.2 \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }\theta
458 cnh 1.1 \end{equation*}
459    
460     \begin{equation*}
461     \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
462     \end{equation*}
463    
464     The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
465 cnh 1.7 `physics' and forcing packages for atmosphere and ocean. These are described
466     in later chapters.
467 cnh 1.1
468     \subsection{Kinematic Boundary conditions}
469    
470     \subsubsection{vertical}
471    
472 cnh 1.7 at fixed and moving $r$ surfaces we set (see figure \ref{fig:zandp-vert-coord}):
473 cnh 1.1
474     \begin{equation}
475     \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
476     \label{eq:fixedbc}
477     \end{equation}
478    
479     \begin{equation}
480     \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
481 cnh 1.10 (ocean surface,bottom of the atmosphere)} \label{eq:movingbc}
482 cnh 1.1 \end{equation}
483    
484     Here
485    
486     \begin{equation*}
487 cnh 1.2 R_{moving}=R_{o}+\eta
488 cnh 1.1 \end{equation*}
489     where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
490     whether we are in the atmosphere or ocean) of the `moving surface' in the
491     resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
492     of motion.
493    
494     \subsubsection{horizontal}
495    
496     \begin{equation}
497     \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
498 adcroft 1.4 \end{equation}
499 cnh 1.1 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
500    
501     \subsection{Atmosphere}
502    
503 cnh 1.7 In the atmosphere, (see figure \ref{fig:zandp-vert-coord}), we interpret:
504 cnh 1.1
505     \begin{equation}
506     r=p\text{ is the pressure} \label{eq:atmos-r}
507     \end{equation}
508    
509     \begin{equation}
510     \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
511     coordinates} \label{eq:atmos-omega}
512     \end{equation}
513    
514     \begin{equation}
515     \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
516     \end{equation}
517    
518     \begin{equation}
519     b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
520     \label{eq:atmos-b}
521     \end{equation}
522    
523     \begin{equation}
524     \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
525     \label{eq:atmos-theta}
526     \end{equation}
527    
528     \begin{equation}
529     S=q,\text{ is the specific humidity} \label{eq:atmos-s}
530     \end{equation}
531     where
532    
533     \begin{equation*}
534     T\text{ is absolute temperature}
535 adcroft 1.4 \end{equation*}
536 cnh 1.1 \begin{equation*}
537     p\text{ is the pressure}
538 adcroft 1.4 \end{equation*}
539 cnh 1.1 \begin{eqnarray*}
540     &&z\text{ is the height of the pressure surface} \\
541     &&g\text{ is the acceleration due to gravity}
542     \end{eqnarray*}
543    
544     In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
545     the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
546     \begin{equation}
547     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
548 adcroft 1.4 \end{equation}
549 cnh 1.1 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
550     constant and $c_{p}$ the specific heat of air at constant pressure.
551    
552     At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
553    
554     \begin{equation*}
555 cnh 1.2 R_{fixed}=p_{top}=0
556 cnh 1.1 \end{equation*}
557     In a resting atmosphere the elevation of the mountains at the bottom is
558     given by
559     \begin{equation*}
560 cnh 1.2 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
561 cnh 1.1 \end{equation*}
562     i.e. the (hydrostatic) pressure at the top of the mountains in a resting
563     atmosphere.
564    
565     The boundary conditions at top and bottom are given by:
566    
567     \begin{eqnarray}
568     &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
569     \label{eq:fixed-bc-atmos} \\
570     \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
571     atmosphere)} \label{eq:moving-bc-atmos}
572     \end{eqnarray}
573    
574 adcroft 1.9 Then the (hydrostatic form of) equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt})
575 cnh 1.8 yields a consistent set of atmospheric equations which, for convenience, are written out in $p$
576 cnh 1.1 coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
577    
578     \subsection{Ocean}
579    
580     In the ocean we interpret:
581     \begin{eqnarray}
582     r &=&z\text{ is the height} \label{eq:ocean-z} \\
583     \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
584     \label{eq:ocean-w} \\
585     \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
586     b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
587     _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
588     \end{eqnarray}
589     where $\rho _{c}$ is a fixed reference density of water and $g$ is the
590     acceleration due to gravity.\noindent
591    
592     In the above
593    
594     At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
595    
596     The surface of the ocean is given by: $R_{moving}=\eta $
597    
598 adcroft 1.4 The position of the resting free surface of the ocean is given by $
599 cnh 1.1 R_{o}=Z_{o}=0$.
600    
601     Boundary conditions are:
602    
603     \begin{eqnarray}
604     w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
605     \\
606 adcroft 1.4 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
607 cnh 1.1 \label{eq:moving-bc-ocean}}
608     \end{eqnarray}
609     where $\eta $ is the elevation of the free surface.
610    
611 adcroft 1.9 Then equations (\ref{eq:horizontal_mtm}-\ref{eq:humidity_salt}) yield a consistent set
612 cnh 1.8 of oceanic equations
613 cnh 1.1 which, for convenience, are written out in $z$ coordinates in Appendix Ocean
614     - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
615    
616     \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
617     Non-hydrostatic forms}
618    
619     Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
620    
621     \begin{equation}
622     \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
623     \label{eq:phi-split}
624 adcroft 1.4 \end{equation}
625 cnh 1.8 and write eq(\ref{eq:incompressible}) in the form:
626 cnh 1.1
627     \begin{equation}
628     \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
629     _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
630     _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
631     \end{equation}
632    
633     \begin{equation}
634     \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
635     \end{equation}
636    
637     \begin{equation}
638 adcroft 1.4 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
639 cnh 1.1 \partial r}=G_{\dot{r}} \label{eq:mom-w}
640     \end{equation}
641     Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
642    
643 adcroft 1.4 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
644 cnh 1.1 {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
645 adcroft 1.4 terms in the momentum equations. In spherical coordinates they take the form
646     \footnote{
647 cnh 1.1 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
648 adcroft 1.4 in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref
649 cnh 1.1 {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
650 adcroft 1.4 the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (
651 cnh 1.1 \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
652     discussion:
653    
654     \begin{equation}
655     \left.
656     \begin{tabular}{l}
657     $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
658 cnh 1.6 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan \varphi}{{r}}\right\} $
659 cnh 1.1 \\
660 cnh 1.6 $-\left\{ -2\Omega v\sin \varphi+\underline{2\Omega \dot{r}\cos \varphi}\right\} $
661 cnh 1.1 \\
662 adcroft 1.4 $+\mathcal{F}_{u}$
663     \end{tabular}
664 cnh 1.1 \ \right\} \left\{
665     \begin{tabular}{l}
666     \textit{advection} \\
667     \textit{metric} \\
668     \textit{Coriolis} \\
669 adcroft 1.4 \textit{\ Forcing/Dissipation}
670     \end{tabular}
671 cnh 1.2 \ \right. \qquad \label{eq:gu-speherical}
672 cnh 1.1 \end{equation}
673    
674     \begin{equation}
675     \left.
676     \begin{tabular}{l}
677     $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
678 cnh 1.6 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan \varphi}{{r}}\right\}
679 cnh 1.1 $ \\
680 cnh 1.6 $-\left\{ -2\Omega u\sin \varphi \right\} $ \\
681 adcroft 1.4 $+\mathcal{F}_{v}$
682     \end{tabular}
683 cnh 1.1 \ \right\} \left\{
684     \begin{tabular}{l}
685     \textit{advection} \\
686     \textit{metric} \\
687     \textit{Coriolis} \\
688 adcroft 1.4 \textit{\ Forcing/Dissipation}
689     \end{tabular}
690 cnh 1.2 \ \right. \qquad \label{eq:gv-spherical}
691 adcroft 1.4 \end{equation}
692 cnh 1.2 \qquad \qquad \qquad \qquad \qquad
693 cnh 1.1
694     \begin{equation}
695     \left.
696     \begin{tabular}{l}
697     $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
698     $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
699 cnh 1.6 ${+}\underline{{2\Omega u\cos \varphi}}$ \\
700 adcroft 1.4 $\underline{\underline{\mathcal{F}_{\dot{r}}}}$
701     \end{tabular}
702 cnh 1.1 \ \right\} \left\{
703     \begin{tabular}{l}
704     \textit{advection} \\
705     \textit{metric} \\
706     \textit{Coriolis} \\
707 adcroft 1.4 \textit{\ Forcing/Dissipation}
708     \end{tabular}
709 cnh 1.2 \ \right. \label{eq:gw-spherical}
710 adcroft 1.4 \end{equation}
711 cnh 1.2 \qquad \qquad \qquad \qquad \qquad
712 cnh 1.1
713 cnh 1.6 In the above `${r}$' is the distance from the center of the earth and `$\varphi$
714 cnh 1.1 ' is latitude.
715    
716     Grad and div operators in spherical coordinates are defined in appendix
717 adcroft 1.4 OPERATORS.
718 cnh 1.1
719 cnh 1.3 %%CNHbegin
720     \input{part1/sphere_coord_figure.tex}
721     %%CNHend
722    
723 cnh 1.1 \subsubsection{Shallow atmosphere approximation}
724    
725     Most models are based on the `hydrostatic primitive equations' (HPE's) in
726     which the vertical momentum equation is reduced to a statement of
727     hydrostatic balance and the `traditional approximation' is made in which the
728     Coriolis force is treated approximately and the shallow atmosphere
729     approximation is made.\ The MITgcm need not make the `traditional
730     approximation'. To be able to support consistent non-hydrostatic forms the
731 adcroft 1.4 shallow atmosphere approximation can be relaxed - when dividing through by $
732 cnh 1.2 r $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
733 cnh 1.1 the radius of the earth.
734    
735     \subsubsection{Hydrostatic and quasi-hydrostatic forms}
736 cnh 1.7 \label{sec:hydrostatic_and_quasi-hydrostatic_forms}
737 cnh 1.1
738     These are discussed at length in Marshall et al (1997a).
739    
740     In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
741     terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
742     are neglected and `${r}$' is replaced by `$a$', the mean radius of the
743     earth. Once the pressure is found at one level - e.g. by inverting a 2-d
744     Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
745 adcroft 1.4 computed at all other levels by integration of the hydrostatic relation, eq(
746 cnh 1.1 \ref{eq:hydrostatic}).
747    
748     In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
749     gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
750 cnh 1.6 \varphi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
751 adcroft 1.4 contribution to the pressure field: only the terms underlined twice in Eqs. (
752 cnh 1.1 \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
753     and, simultaneously, the shallow atmosphere approximation is relaxed. In
754     \textbf{QH}\ \textit{all} the metric terms are retained and the full
755     variation of the radial position of a particle monitored. The \textbf{QH}\
756     vertical momentum equation (\ref{eq:mom-w}) becomes:
757    
758     \begin{equation*}
759 cnh 1.6 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos \varphi
760 cnh 1.1 \end{equation*}
761     making a small correction to the hydrostatic pressure.
762    
763     \textbf{QH} has good energetic credentials - they are the same as for
764     \textbf{HPE}. Importantly, however, it has the same angular momentum
765     principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
766     et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
767    
768     \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
769    
770     The MIT model presently supports a full non-hydrostatic ocean isomorph, but
771     only a quasi-non-hydrostatic atmospheric isomorph.
772    
773     \paragraph{Non-hydrostatic Ocean}
774    
775 adcroft 1.4 In the non-hydrostatic ocean model all terms in equations Eqs.(\ref
776 cnh 1.1 {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
777     three dimensional elliptic equation must be solved subject to Neumann
778     boundary conditions (see below). It is important to note that use of the
779     full \textbf{NH} does not admit any new `fast' waves in to the system - the
780 cnh 1.8 incompressible condition eq(\ref{eq:continuity}) has already filtered out
781 cnh 1.1 acoustic modes. It does, however, ensure that the gravity waves are treated
782     accurately with an exact dispersion relation. The \textbf{NH} set has a
783     complete angular momentum principle and consistent energetics - see White
784     and Bromley, 1995; Marshall et.al.\ 1997a.
785    
786     \paragraph{Quasi-nonhydrostatic Atmosphere}
787    
788 adcroft 1.4 In the non-hydrostatic version of our atmospheric model we approximate $\dot{
789 cnh 1.1 r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
790     (but only here) by:
791    
792     \begin{equation}
793     \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
794 adcroft 1.4 \end{equation}
795 cnh 1.1 where $p_{hy}$ is the hydrostatic pressure.
796    
797     \subsubsection{Summary of equation sets supported by model}
798    
799     \paragraph{Atmosphere}
800    
801     Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
802     compressible non-Boussinesq equations in $p-$coordinates are supported.
803    
804     \subparagraph{Hydrostatic and quasi-hydrostatic}
805    
806     The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
807     - see eq(\ref{eq:atmos-prime}).
808    
809     \subparagraph{Quasi-nonhydrostatic}
810    
811     A quasi-nonhydrostatic form is also supported.
812    
813     \paragraph{Ocean}
814    
815     \subparagraph{Hydrostatic and quasi-hydrostatic}
816    
817     Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
818     equations in $z-$coordinates are supported.
819    
820     \subparagraph{Non-hydrostatic}
821    
822 adcroft 1.4 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
823     coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref
824 cnh 1.1 {eq:ocean-salt}).
825    
826     \subsection{Solution strategy}
827    
828 adcroft 1.4 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
829 cnh 1.8 NH} models is summarized in Figure \ref{fig:solution-strategy}.
830     Under all dynamics, a 2-d elliptic equation is
831 cnh 1.1 first solved to find the surface pressure and the hydrostatic pressure at
832     any level computed from the weight of fluid above. Under \textbf{HPE} and
833     \textbf{QH} dynamics, the horizontal momentum equations are then stepped
834     forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
835     3-d elliptic equation must be solved for the non-hydrostatic pressure before
836     stepping forward the horizontal momentum equations; $\dot{r}$ is found by
837     stepping forward the vertical momentum equation.
838    
839 cnh 1.3 %%CNHbegin
840     \input{part1/solution_strategy_figure.tex}
841     %%CNHend
842    
843 cnh 1.1 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
844 cnh 1.6 course, some complication that goes with the inclusion of $\cos \varphi \ $
845 cnh 1.1 Coriolis terms and the relaxation of the shallow atmosphere approximation.
846     But this leads to negligible increase in computation. In \textbf{NH}, in
847     contrast, one additional elliptic equation - a three-dimensional one - must
848     be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
849     essentially negligible in the hydrostatic limit (see detailed discussion in
850     Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
851     hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
852    
853     \subsection{Finding the pressure field}
854 cnh 1.7 \label{sec:finding_the_pressure_field}
855 cnh 1.1
856     Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
857     pressure field must be obtained diagnostically. We proceed, as before, by
858     dividing the total (pressure/geo) potential in to three parts, a surface
859     part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
860     non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
861     writing the momentum equation as in (\ref{eq:mom-h}).
862    
863     \subsubsection{Hydrostatic pressure}
864    
865     Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
866     vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
867    
868     \begin{equation*}
869 adcroft 1.4 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}
870 cnh 1.2 \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
871 cnh 1.1 \end{equation*}
872     and so
873    
874     \begin{equation}
875     \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
876     \end{equation}
877    
878     The model can be easily modified to accommodate a loading term (e.g
879     atmospheric pressure pushing down on the ocean's surface) by setting:
880    
881     \begin{equation}
882     \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
883     \end{equation}
884    
885     \subsubsection{Surface pressure}
886    
887 cnh 1.8 The surface pressure equation can be obtained by integrating continuity,
888     (\ref{eq:continuity}), vertically from $r=R_{fixed}$ to $r=R_{moving}$
889 cnh 1.1
890     \begin{equation*}
891 adcroft 1.4 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
892 cnh 1.2 }_{h}+\partial _{r}\dot{r}\right) dr=0
893 cnh 1.1 \end{equation*}
894    
895     Thus:
896    
897     \begin{equation*}
898     \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
899 adcroft 1.4 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
900 cnh 1.2 _{h}dr=0
901 cnh 1.1 \end{equation*}
902 adcroft 1.4 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
903 cnh 1.1 r $. The above can be rearranged to yield, using Leibnitz's theorem:
904    
905     \begin{equation}
906     \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
907     \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
908     \label{eq:free-surface}
909 adcroft 1.4 \end{equation}
910 cnh 1.1 where we have incorporated a source term.
911    
912     Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
913 cnh 1.8 (atmospheric model), in (\ref{eq:mom-h}), the horizontal gradient term can
914 cnh 1.1 be written
915     \begin{equation}
916 cnh 1.2 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
917 cnh 1.1 \label{eq:phi-surf}
918 adcroft 1.4 \end{equation}
919 cnh 1.1 where $b_{s}$ is the buoyancy at the surface.
920    
921 cnh 1.8 In the hydrostatic limit ($\epsilon _{nh}=0$), equations (\ref{eq:mom-h}), (\ref
922 cnh 1.1 {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
923     elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
924     surface' and `rigid lid' approaches are available.
925    
926     \subsubsection{Non-hydrostatic pressure}
927    
928 cnh 1.8 Taking the horizontal divergence of (\ref{eq:mom-h}) and adding
929     $\frac{\partial }{\partial r}$ of (\ref{eq:mom-w}), invoking the continuity equation
930     (\ref{eq:continuity}), we deduce that:
931 cnh 1.1
932     \begin{equation}
933 adcroft 1.4 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
934     \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
935 cnh 1.1 \vec{\mathbf{F}} \label{eq:3d-invert}
936     \end{equation}
937    
938     For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
939     subject to appropriate choice of boundary conditions. This method is usually
940     called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
941     Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
942     the 3-d problem does not need to be solved.
943    
944     \paragraph{Boundary Conditions}
945    
946     We apply the condition of no normal flow through all solid boundaries - the
947     coasts (in the ocean) and the bottom:
948    
949     \begin{equation}
950     \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
951     \end{equation}
952     where $\widehat{n}$ is a vector of unit length normal to the boundary. The
953     kinematic condition (\ref{nonormalflow}) is also applied to the vertical
954 adcroft 1.4 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
955 cnh 1.1 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
956     tangential component of velocity, $v_{T}$, at all solid boundaries,
957     depending on the form chosen for the dissipative terms in the momentum
958     equations - see below.
959    
960 cnh 1.8 Eq.(\ref{nonormalflow}) implies, making use of (\ref{eq:mom-h}), that:
961 cnh 1.1
962     \begin{equation}
963     \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
964     \label{eq:inhom-neumann-nh}
965     \end{equation}
966     where
967    
968     \begin{equation*}
969     \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
970     _{s}+\mathbf{\nabla }\phi _{hyd}\right)
971 adcroft 1.4 \end{equation*}
972 cnh 1.1 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
973     (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
974     exploit classical 3D potential theory and, by introducing an appropriately
975 cnh 1.2 chosen $\delta $-function sheet of `source-charge', replace the
976     inhomogeneous boundary condition on pressure by a homogeneous one. The
977 adcroft 1.4 source term $rhs$ in (\ref{eq:3d-invert}) is the divergence of the vector $
978     \vec{\mathbf{F}}.$ By simultaneously setting $
979 cnh 1.1 \begin{array}{l}
980 adcroft 1.4 \widehat{n}.\vec{\mathbf{F}}
981     \end{array}
982 cnh 1.1 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
983 cnh 1.2 self-consistent but simpler homogenized Elliptic problem is obtained:
984 cnh 1.1
985     \begin{equation*}
986 cnh 1.2 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
987 adcroft 1.4 \end{equation*}
988 cnh 1.1 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
989 adcroft 1.4 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
990 cnh 1.1 {eq:inhom-neumann-nh}) the modified boundary condition becomes:
991    
992     \begin{equation}
993     \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
994     \end{equation}
995    
996     If the flow is `close' to hydrostatic balance then the 3-d inversion
997     converges rapidly because $\phi _{nh}\ $is then only a small correction to
998     the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
999    
1000 cnh 1.8 The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{eq:inhom-neumann-nh})
1001 cnh 1.1 does not vanish at $r=R_{moving}$, and so refines the pressure there.
1002    
1003     \subsection{Forcing/dissipation}
1004    
1005     \subsubsection{Forcing}
1006    
1007     The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
1008 cnh 1.8 `physics packages' and forcing packages. These are described later on.
1009 cnh 1.1
1010     \subsubsection{Dissipation}
1011    
1012     \paragraph{Momentum}
1013    
1014     Many forms of momentum dissipation are available in the model. Laplacian and
1015     biharmonic frictions are commonly used:
1016    
1017     \begin{equation}
1018 adcroft 1.4 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
1019 cnh 1.1 +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
1020     \end{equation}
1021     where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
1022     coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
1023     friction. These coefficients are the same for all velocity components.
1024    
1025     \paragraph{Tracers}
1026    
1027     The mixing terms for the temperature and salinity equations have a similar
1028     form to that of momentum except that the diffusion tensor can be
1029 adcroft 1.4 non-diagonal and have varying coefficients. $\qquad $
1030 cnh 1.1 \begin{equation}
1031     D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
1032     _{h}^{4}(T,S) \label{eq:diffusion}
1033     \end{equation}
1034 adcroft 1.4 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
1035 cnh 1.1 horizontal coefficient for biharmonic diffusion. In the simplest case where
1036     the subgrid-scale fluxes of heat and salt are parameterized with constant
1037     horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
1038     reduces to a diagonal matrix with constant coefficients:
1039    
1040     \begin{equation}
1041     \qquad \qquad \qquad \qquad K=\left(
1042     \begin{array}{ccc}
1043     K_{h} & 0 & 0 \\
1044     0 & K_{h} & 0 \\
1045 adcroft 1.4 0 & 0 & K_{v}
1046 cnh 1.1 \end{array}
1047     \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
1048     \end{equation}
1049     where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
1050     coefficients. These coefficients are the same for all tracers (temperature,
1051     salinity ... ).
1052    
1053     \subsection{Vector invariant form}
1054    
1055 adcroft 1.4 For some purposes it is advantageous to write momentum advection in eq(\ref
1056 cnh 1.8 {eq:horizontal_mtm}) and (\ref{eq:vertical_mtm}) in the (so-called) `vector invariant' form:
1057 cnh 1.1
1058     \begin{equation}
1059 adcroft 1.4 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
1060     +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
1061 cnh 1.2 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1062 cnh 1.1 \label{eq:vi-identity}
1063 adcroft 1.4 \end{equation}
1064 cnh 1.1 This permits alternative numerical treatments of the non-linear terms based
1065     on their representation as a vorticity flux. Because gradients of coordinate
1066     vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1067 adcroft 1.4 representation of the metric terms in (\ref{eq:gu-speherical}), (\ref
1068 cnh 1.1 {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1069     about the geometry is contained in the areas and lengths of the volumes used
1070     to discretize the model.
1071    
1072     \subsection{Adjoint}
1073    
1074 cnh 1.8 Tangent linear and adjoint counterparts of the forward model are described
1075 cnh 1.2 in Chapter 5.
1076 cnh 1.1
1077 cnh 1.15 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $
1078 cnh 1.1 % $Name: $
1079    
1080     \section{Appendix ATMOSPHERE}
1081    
1082     \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
1083     coordinates}
1084    
1085     \label{sect-hpe-p}
1086    
1087     The hydrostatic primitive equations (HPEs) in p-coordinates are:
1088     \begin{eqnarray}
1089 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1090 cnh 1.2 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1091 cnh 1.1 \label{eq:atmos-mom} \\
1092 cnh 1.2 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
1093 adcroft 1.4 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1094 cnh 1.1 \partial p} &=&0 \label{eq:atmos-cont} \\
1095 cnh 1.2 p\alpha &=&RT \label{eq:atmos-eos} \\
1096 cnh 1.1 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1097 adcroft 1.4 \end{eqnarray}
1098 cnh 1.1 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1099     surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1100     \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1101 cnh 1.6 derivative, $f=2\Omega \sin \varphi$ is the Coriolis parameter, $\phi =gz$ is
1102 adcroft 1.4 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp
1103     }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref
1104     {eq:atmos-heat}) is the first law of thermodynamics where internal energy $
1105     e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $
1106 cnh 1.1 p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1107    
1108     It is convenient to cast the heat equation in terms of potential temperature
1109     $\theta $ so that it looks more like a generic conservation law.
1110     Differentiating (\ref{eq:atmos-eos}) we get:
1111     \begin{equation*}
1112     p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1113 adcroft 1.4 \end{equation*}
1114     which, when added to the heat equation (\ref{eq:atmos-heat}) and using $
1115 cnh 1.1 c_{p}=c_{v}+R$, gives:
1116     \begin{equation}
1117     c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1118     \label{eq-p-heat-interim}
1119 adcroft 1.4 \end{equation}
1120 cnh 1.1 Potential temperature is defined:
1121     \begin{equation}
1122     \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1123 adcroft 1.4 \end{equation}
1124 cnh 1.1 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1125     we will make use of the Exner function $\Pi (p)$ which defined by:
1126     \begin{equation}
1127     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1128 adcroft 1.4 \end{equation}
1129 cnh 1.1 The following relations will be useful and are easily expressed in terms of
1130     the Exner function:
1131     \begin{equation*}
1132     c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1133 adcroft 1.4 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{
1134     \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}
1135 cnh 1.1 \frac{Dp}{Dt}
1136 adcroft 1.4 \end{equation*}
1137 cnh 1.1 where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1138    
1139     The heat equation is obtained by noting that
1140     \begin{equation*}
1141     c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1142 cnh 1.2 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1143 cnh 1.1 \end{equation*}
1144     and on substituting into (\ref{eq-p-heat-interim}) gives:
1145     \begin{equation}
1146     \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1147     \label{eq:potential-temperature-equation}
1148     \end{equation}
1149     which is in conservative form.
1150    
1151 adcroft 1.4 For convenience in the model we prefer to step forward (\ref
1152 cnh 1.1 {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1153    
1154     \subsubsection{Boundary conditions}
1155    
1156     The upper and lower boundary conditions are :
1157     \begin{eqnarray}
1158     \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1159     \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1160     \label{eq:boundary-condition-atmosphere}
1161     \end{eqnarray}
1162     In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1163     =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1164     surface ($\phi $ is imposed and $\omega \neq 0$).
1165    
1166     \subsubsection{Splitting the geo-potential}
1167    
1168     For the purposes of initialization and reducing round-off errors, the model
1169     deals with perturbations from reference (or ``standard'') profiles. For
1170     example, the hydrostatic geopotential associated with the resting atmosphere
1171     is not dynamically relevant and can therefore be subtracted from the
1172     equations. The equations written in terms of perturbations are obtained by
1173     substituting the following definitions into the previous model equations:
1174     \begin{eqnarray}
1175     \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1176     \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1177     \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1178     \end{eqnarray}
1179     The reference state (indicated by subscript ``0'') corresponds to
1180     horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1181     _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1182     _{o}(p_{o})=g~Z_{topo}$, defined:
1183     \begin{eqnarray*}
1184     \theta _{o}(p) &=&f^{n}(p) \\
1185     \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1186     \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1187     \end{eqnarray*}
1188     %\begin{eqnarray*}
1189     %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1190     %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1191     %\end{eqnarray*}
1192    
1193     The final form of the HPE's in p coordinates is then:
1194     \begin{eqnarray}
1195 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1196 cnh 1.8 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-prime} \\
1197 cnh 1.1 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1198 adcroft 1.4 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{
1199 cnh 1.1 \partial p} &=&0 \\
1200     \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1201 cnh 1.8 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }
1202 cnh 1.1 \end{eqnarray}
1203    
1204 cnh 1.15 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $
1205 cnh 1.1 % $Name: $
1206    
1207     \section{Appendix OCEAN}
1208    
1209     \subsection{Equations of motion for the ocean}
1210    
1211     We review here the method by which the standard (Boussinesq, incompressible)
1212     HPE's for the ocean written in z-coordinates are obtained. The
1213     non-Boussinesq equations for oceanic motion are:
1214     \begin{eqnarray}
1215 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1216 cnh 1.1 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1217     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1218     &=&\epsilon _{nh}\mathcal{F}_{w} \\
1219 adcroft 1.4 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
1220 cnh 1.8 _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont}\\
1221     \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos}\\
1222     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat}\\
1223     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt}
1224     \label{eq:non-boussinesq}
1225 adcroft 1.4 \end{eqnarray}
1226 cnh 1.1 These equations permit acoustics modes, inertia-gravity waves,
1227 cnh 1.10 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermohaline
1228 cnh 1.1 mode. As written, they cannot be integrated forward consistently - if we
1229     step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1230 adcroft 1.4 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
1231 cnh 1.1 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1232     therefore necessary to manipulate the system as follows. Differentiating the
1233     EOS (equation of state) gives:
1234    
1235     \begin{equation}
1236     \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1237     _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1238     _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1239     _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1240     \end{equation}
1241    
1242     Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1243 cnh 1.8 reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref{eq-zns-cont} gives:
1244 cnh 1.1 \begin{equation}
1245 adcroft 1.4 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1246 cnh 1.1 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1247     \end{equation}
1248     where we have used an approximation sign to indicate that we have assumed
1249     adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1250     Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1251     can be explicitly integrated forward:
1252     \begin{eqnarray}
1253 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1254 cnh 1.1 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1255     \label{eq-cns-hmom} \\
1256     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1257     &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1258 adcroft 1.4 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
1259 cnh 1.1 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1260     \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1261     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1262     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1263     \end{eqnarray}
1264    
1265     \subsubsection{Compressible z-coordinate equations}
1266    
1267     Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1268     wherever it appears in a product (ie. non-linear term) - this is the
1269     `Boussinesq assumption'. The only term that then retains the full variation
1270     in $\rho $ is the gravitational acceleration:
1271     \begin{eqnarray}
1272 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1273 cnh 1.1 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1274     \label{eq-zcb-hmom} \\
1275 adcroft 1.4 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1276 cnh 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1277     \label{eq-zcb-hydro} \\
1278 adcroft 1.4 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
1279 cnh 1.1 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1280     \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1281     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1282     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1283     \end{eqnarray}
1284     These equations still retain acoustic modes. But, because the
1285 adcroft 1.4 ``compressible'' terms are linearized, the pressure equation \ref
1286 cnh 1.1 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1287     term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1288     These are the \emph{truly} compressible Boussinesq equations. Note that the
1289     EOS must have the same pressure dependency as the linearized pressure term,
1290 adcroft 1.4 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
1291 cnh 1.1 c_{s}^{2}}$, for consistency.
1292    
1293     \subsubsection{`Anelastic' z-coordinate equations}
1294    
1295     The anelastic approximation filters the acoustic mode by removing the
1296 adcroft 1.4 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
1297     ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
1298 cnh 1.1 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1299     continuity and EOS. A better solution is to change the dependency on
1300     pressure in the EOS by splitting the pressure into a reference function of
1301     height and a perturbation:
1302     \begin{equation*}
1303 cnh 1.2 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1304 cnh 1.1 \end{equation*}
1305     Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1306     differentiating the EOS, the continuity equation then becomes:
1307     \begin{equation*}
1308 adcroft 1.4 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
1309     Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
1310 cnh 1.2 \frac{\partial w}{\partial z}=0
1311 cnh 1.1 \end{equation*}
1312     If the time- and space-scales of the motions of interest are longer than
1313 adcroft 1.4 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
1314 cnh 1.1 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1315 adcroft 1.4 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
1316 cnh 1.1 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1317     ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1318     _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1319     and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1320     anelastic continuity equation:
1321     \begin{equation}
1322 adcroft 1.4 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
1323 cnh 1.1 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1324     \end{equation}
1325     A slightly different route leads to the quasi-Boussinesq continuity equation
1326 adcroft 1.4 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
1327     \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
1328 cnh 1.1 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1329     \begin{equation}
1330 adcroft 1.4 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1331 cnh 1.1 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1332     \end{equation}
1333     Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1334     equation if:
1335     \begin{equation}
1336     \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1337     \end{equation}
1338     Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1339 adcroft 1.4 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
1340 cnh 1.1 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1341     full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1342     then:
1343     \begin{eqnarray}
1344 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1345 cnh 1.1 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1346     \label{eq-zab-hmom} \\
1347 adcroft 1.4 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
1348 cnh 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1349     \label{eq-zab-hydro} \\
1350 adcroft 1.4 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
1351 cnh 1.1 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1352     \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1353     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1354     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1355     \end{eqnarray}
1356    
1357     \subsubsection{Incompressible z-coordinate equations}
1358    
1359     Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1360     technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1361     yield the ``truly'' incompressible Boussinesq equations:
1362     \begin{eqnarray}
1363 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1364 cnh 1.1 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1365     \label{eq-ztb-hmom} \\
1366 adcroft 1.4 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
1367 cnh 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1368     \label{eq-ztb-hydro} \\
1369     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1370     &=&0 \label{eq-ztb-cont} \\
1371     \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1372     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1373     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1374     \end{eqnarray}
1375     where $\rho _{c}$ is a constant reference density of water.
1376    
1377     \subsubsection{Compressible non-divergent equations}
1378    
1379     The above ``incompressible'' equations are incompressible in both the flow
1380     and the density. In many oceanic applications, however, it is important to
1381     retain compressibility effects in the density. To do this we must split the
1382     density thus:
1383     \begin{equation*}
1384     \rho =\rho _{o}+\rho ^{\prime }
1385 adcroft 1.4 \end{equation*}
1386 cnh 1.1 We then assert that variations with depth of $\rho _{o}$ are unimportant
1387     while the compressible effects in $\rho ^{\prime }$ are:
1388     \begin{equation*}
1389     \rho _{o}=\rho _{c}
1390 adcroft 1.4 \end{equation*}
1391 cnh 1.1 \begin{equation*}
1392     \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1393 adcroft 1.4 \end{equation*}
1394 cnh 1.1 This then yields what we can call the semi-compressible Boussinesq
1395     equations:
1396     \begin{eqnarray}
1397 adcroft 1.4 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
1398     _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
1399 cnh 1.1 \mathcal{F}}} \label{eq:ocean-mom} \\
1400     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1401     _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1402     \label{eq:ocean-wmom} \\
1403     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1404     &=&0 \label{eq:ocean-cont} \\
1405     \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1406     \\
1407     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1408     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1409 adcroft 1.4 \end{eqnarray}
1410 cnh 1.1 Note that the hydrostatic pressure of the resting fluid, including that
1411     associated with $\rho _{c}$, is subtracted out since it has no effect on the
1412     dynamics.
1413    
1414     Though necessary, the assumptions that go into these equations are messy
1415     since we essentially assume a different EOS for the reference density and
1416     the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1417     _{nh}=0$ form of these equations that are used throughout the ocean modeling
1418     community and referred to as the primitive equations (HPE).
1419    
1420 cnh 1.15 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/manual.tex,v 1.14 2001/11/21 14:13:17 cnh Exp $
1421 cnh 1.1 % $Name: $
1422    
1423     \section{Appendix:OPERATORS}
1424    
1425     \subsection{Coordinate systems}
1426    
1427     \subsubsection{Spherical coordinates}
1428    
1429     In spherical coordinates, the velocity components in the zonal, meridional
1430     and vertical direction respectively, are given by (see Fig.2) :
1431    
1432     \begin{equation*}
1433 cnh 1.6 u=r\cos \varphi \frac{D\lambda }{Dt}
1434 cnh 1.1 \end{equation*}
1435    
1436     \begin{equation*}
1437 cnh 1.6 v=r\frac{D\varphi }{Dt}\qquad
1438 cnh 1.1 \end{equation*}
1439     $\qquad \qquad \qquad \qquad $
1440    
1441     \begin{equation*}
1442 cnh 1.2 \dot{r}=\frac{Dr}{Dt}
1443 cnh 1.1 \end{equation*}
1444    
1445 cnh 1.6 Here $\varphi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1446 cnh 1.1 distance of the particle from the center of the earth, $\Omega $ is the
1447     angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1448    
1449     The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in
1450     spherical coordinates:
1451    
1452     \begin{equation*}
1453 cnh 1.6 \nabla \equiv \left( \frac{1}{r\cos \varphi }\frac{\partial }{\partial \lambda }
1454     ,\frac{1}{r}\frac{\partial }{\partial \varphi },\frac{\partial }{\partial r}
1455 cnh 1.2 \right)
1456 cnh 1.1 \end{equation*}
1457    
1458     \begin{equation*}
1459 cnh 1.6 \nabla .v\equiv \frac{1}{r\cos \varphi }\left\{ \frac{\partial u}{\partial
1460     \lambda }+\frac{\partial }{\partial \varphi }\left( v\cos \varphi \right) \right\}
1461 cnh 1.2 +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1462 cnh 1.1 \end{equation*}
1463    
1464 adcroft 1.4 %tci%\end{document}

  ViewVC Help
Powered by ViewVC 1.1.22