/[MITgcm]/manual/s_overview/text/manual.tex
ViewVC logotype

Annotation of /manual/s_overview/text/manual.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Thu Sep 27 17:45:03 2001 UTC (23 years, 9 months ago) by cnh
Branch: MAIN
File MIME type: application/x-tex
Added figs for part1 + manual.tex which is latest import
from s-word (not split).

Needs tidying up and fig layouts need sorting.

1 cnh 1.1 %%%% % $Header: /u/gcmpack/mitgcmdoc/manual.tex,v 1.3 2001/08/09 19:30:00 adcroft Exp $
2     %%%% % $Name: $
3     %%%% %\usepackage{oldgerm}
4     %%%% % I commented the following because it introduced excessive white space
5     %%%% %\usepackage{palatcm} % better PDF
6     %%%% % page headers and footers
7     %%%% %\pagestyle{fancy}
8     %%%% % referencing
9     %%%% %% \newcommand{\refequ}[1]{equation (\ref{equ:#1})}
10     %%%% %% \newcommand{\refequbig}[1]{Equation (\ref{equ:#1})}
11     %%%% %% \newcommand{\reftab}[1]{Tab.~\ref{tab:#1}}
12     %%%% %% \newcommand{\reftabno}[1]{\ref{tab:#1}}
13     %%%% %% \newcommand{\reffig}[1]{Fig.~\ref{fig:#1}}
14     %%%% %% \newcommand{\reffigno}[1]{\ref{fig:#1}}
15     %%%% % stuff for psfrag
16     %%%% %% \newcommand{\textinfigure}[1]{{\footnotesize\textbf{\textsf{#1}}}}
17     %%%% %% \newcommand{\mathinfigure}[1]{\small\ensuremath{{#1}}}
18     %%%% % This allows numbering of subsubsections
19     %%%% % This changes the the chapter title
20     %%%% %\renewcommand{\chaptername}{Section}
21    
22    
23     %%%% \documentclass[12pt]{book}
24     %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25     %%%% \usepackage{amsmath}
26     %%%% \usepackage{html}
27     %%%% \usepackage{epsfig}
28     %%%% \usepackage{graphics,subfigure}
29     %%%% \usepackage{array}
30     %%%% \usepackage{multirow}
31     %%%% \usepackage{fancyhdr}
32     %%%% \usepackage{psfrag}
33     %%%%
34     %%%% %TCIDATA{OutputFilter=Latex.dll}
35     %%%% %TCIDATA{LastRevised=Thursday, September 27, 2001 10:59:02}
36     %%%% %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
37     %%%% %TCIDATA{Language=American English}
38     %%%%
39     %%%% \fancyhead{}
40     %%%% \fancyhead[LO]{\slshape \rightmark}
41     %%%% \fancyhead[RE]{\slshape \leftmark}
42     %%%% \fancyhead[RO,LE]{\thepage}
43     %%%% \fancyfoot[CO,CE]{\today}
44     %%%% \fancyfoot[RO,LE]{ }
45     %%%% \renewcommand{\headrulewidth}{0.4pt}
46     %%%% \renewcommand{\footrulewidth}{0.4pt}
47     %%%% \setcounter{secnumdepth}{3}
48     %%%%
49     %%%% \input{tcilatex}
50     %%%%
51     %%%% \begin{document}
52     %%%%
53     %%%% \tableofcontents
54    
55     \pagebreak
56    
57     \part{MITgcm basics}
58    
59     % Section: Overview
60    
61     % $Header: /u/gcmpack/mitgcmdoc/part1/introduction.tex,v 1.1.1.1 2001/08/08 16:16:16 adcroft Exp $
62     % $Name: $
63    
64     \section{Introduction}
65    
66     This documentation provides the reader with the information necessary to
67     carry out numerical experiments using MITgcm. It gives a comprehensive
68     description of the continuous equations on which the model is based, the
69     numerical algorithms the model employs and a description of the associated
70     program code. Along with the hydrodynamical kernel, physical and
71     biogeochemical parameterizations of key atmospheric and oceanic processes
72     are available. A number of examples illustrating the use of the model in
73     both process and general circulation studies of the atmosphere and ocean are
74     also presented.
75    
76     MITgcm has a number of novel aspects:
77    
78     \begin{itemize}
79     \item it can be used to study both atmospheric and oceanic phenomena; one
80     hydrodynamical kernel is used to drive forward both atmospheric and oceanic
81     models - see fig.1%
82     \marginpar{
83     Fig.1 One model}\ref{fig:onemodel}
84    
85     \begin{figure}
86     \begin{center}
87     \resizebox{!}{4in}{
88     \rotatebox{90}{
89     \rotatebox{180}{
90     \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/onemodel.eps}
91     }
92     }
93     }
94     \end{center}
95     \label{fig:onemodel}
96     \end{figure}
97    
98     \item it has a non-hydrostatic capability and so can be used to study both
99     small-scale and large scale processes - see fig.2%
100     \marginpar{
101     Fig.2 All scales}\ref{fig:all-scales}
102    
103    
104     \begin{figure}
105     \begin{center}
106     \resizebox{!}{4in}{
107     \rotatebox{90}{
108     \rotatebox{180}{
109     \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/scales.eps}
110     }
111     }
112     }
113     \end{center}
114     \label{fig:scales}
115     \end{figure}
116    
117    
118     \item finite volume techniques are employed yielding an intuitive
119     discretization and support for the treatment of irregular geometries using
120     orthogonal curvilinear grids and shaved cells - see fig.3%
121     \marginpar{
122     Fig.3 Finite volumes}\ref{fig:Finite volumes}
123    
124     \item tangent linear and adjoint counterparts are automatically maintained
125     along with the forward model, permitting sensitivity and optimization
126     studies.
127    
128     \item the model is developed to perform efficiently on a wide variety of
129     computational platforms.
130     \end{itemize}
131    
132     Key publications reporting on and charting the development of the model are
133     listed in an Appendix.
134    
135     We begin by briefly showing some of the results of the model in action to
136     give a feel for the wide range of problems that can be addressed using it.
137     \pagebreak
138    
139     % $Header: /u/gcmpack/mitgcmdoc/part1/illustration.tex,v 1.1.1.1 2001/08/08 16:16:16 adcroft Exp $
140     % $Name: $
141    
142     \section{Illustrations of the model in action}
143    
144     The MITgcm has been designed and used to model a wide range of phenomena,
145     from convection on the scale of meters in the ocean to the global pattern of
146     atmospheric winds - see fig.2\ref{fig:all-scales}. To give a flavor of the
147     kinds of problems the model has been used to study, we briefly describe some
148     of them here. A more detailed description of the underlying formulation,
149     numerical algorithm and implementation that lie behind these calculations is
150     given later. Indeed it is easy to reproduce the results shown here: simply
151     download the model (the minimum you need is a PC running linux, together
152     with a FORTRAN\ 77 compiler) and follow the examples.
153    
154     \subsection{Global atmosphere: `Held-Suarez' benchmark}
155    
156     Fig.E1a.\ref{fig:Held-Suarez} is an instaneous plot of the 500$mb$ height
157     field obtained using a 5-level version of the atmospheric pressure isomorph
158     run at 2.8$^{\circ }$ resolution. We see fully developed baroclinic eddies
159     along the northern hemisphere storm track. There are no mountains or
160     land-sea contrast in this calculation, but you can easily put them in. The
161     model is driven by relaxation to a radiative-convective equilibrium profile,
162     following the description set out in Held and Suarez; 1994 designed to test
163     atmospheric hydrodynamical cores - there are no mountains or land-sea
164     contrast. As decribed in Adcroft (2001), a `cubed sphere' is used to
165     descretize the globe permitting a uniform gridding and obviated the need to
166     fourier filter.
167    
168     Fig.E1b shows the 5-year mean, zonally averaged potential temperature, zonal
169     wind and meridional overturning streamfunction from the 5-level model.
170    
171    
172     \begin{figure}
173     \begin{center}
174     \resizebox{!}{4in}{
175     \rotatebox{90}{
176     \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/hscs.eps}
177     }
178     }
179     \end{center}
180     \label{fig:hscs}
181     \end{figure}
182    
183    
184     A regular spherical lat-lon grid can also be used.
185    
186     \begin{figure}
187     \begin{center}
188     \resizebox{!}{4in}{
189     \rotatebox{90}{
190     \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/hslatlon.eps}
191     }
192     }
193     \end{center}
194     \label{fig:hslatlon}
195     \end{figure}
196    
197     \subsection{Ocean gyres}
198    
199     \subsection{Global ocean circulation}
200    
201     Fig.E2a shows the pattern of ocean currents at the surface of a 4$^{\circ }$
202     global ocean model run with 15 vertical levels. The model is driven using
203     monthly-mean winds with mixed boundary conditions on temperature and
204     salinity at the surface. Fig.E2b shows the overturning (thermohaline)
205     circulation. Lopped cells are used to represent topography on a regular $%
206     lat-lon$ grid extending from 70$^{\circ }N$ to 70$^{\circ }S$.
207    
208    
209     \begin{figure}
210     \begin{center}
211     \resizebox{!}{4in}{
212     % \rotatebox{90}{
213     \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/ocean_circ_455_2030.eps}
214     % }
215     }
216     \end{center}
217     \label{fig:horizcirc}
218     \end{figure}
219    
220     \begin{figure}
221     \begin{center}
222     \resizebox{!}{4in}{
223     \rotatebox{90}{
224     \rotatebox{180}{
225     \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/moc.eps}
226     }
227     }
228     }
229     \end{center}
230     \label{fig:moc}
231     \end{figure}
232    
233    
234     \subsection{Flow over topography}
235    
236     \subsection{Ocean convection}
237    
238     Fig.E3 shows convection over a slope using the non-hydrostatic ocean
239     isomorph and lopped cells to respresent topography. .....The grid resolution
240     is
241    
242     \subsection{Boundary forced internal waves}
243    
244     \subsection{Carbon outgassing sensitivity}
245    
246     Fig.E4 shows....
247    
248     \begin{figure}
249     \begin{center}
250     \resizebox{!}{4in}{
251     \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/co209.eps}
252     }
253     \end{center}
254     \label{fig:co2mrt}
255     \end{figure}
256    
257    
258     % $Header: /u/gcmpack/mitgcmdoc/part1/continuous_eqns.tex,v 1.3 2001/09/26 14:53:10 cnh Exp $
259     % $Name: $
260    
261     \section{Continuous equations in `r' coordinates}
262    
263     To render atmosphere and ocean models from one dynamical core we exploit
264     `isomorphisms' between equation sets that govern the evolution of the
265     respective fluids - see fig.4%
266     \marginpar{
267     Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down
268     and encoded. The model variables have different interpretations depending on
269     whether the atmosphere or ocean is being studied. Thus, for example, the
270     vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
271     modeling the atmosphere and height, $z$, if we are modeling the ocean.
272    
273     The state of the fluid at any time is characterized by the distribution of
274     velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
275     `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
276     depend on $\theta $, $S$, and $p$. The equations that govern the evolution
277     of these fields, obtained by applying the laws of classical mechanics and
278     thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
279     a generic vertical coordinate, $r$, see fig.5%
280     \marginpar{
281     Fig.5 The vertical coordinate of model}:
282    
283     \begin{figure}
284     \begin{center}
285     \resizebox{!}{4in}{
286     \rotatebox{90}{
287     \rotatebox{180}{
288     \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/vertcoord.eps}
289     }
290     }
291     }
292     \end{center}
293     \label{fig:vertcoord}
294     \end{figure}
295    
296     \begin{equation*}
297     \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}%
298     \right) _{h}+\mathbf{\nabla }_{h}\phi =\mathcal{F}_{\vec{\mathbf{v}_{h}}}%
299     \text{ horizontal mtm}
300     \end{equation*}
301    
302     \begin{equation*}
303     \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{%
304     v}}\right) +\frac{\partial \phi }{\partial r}+b=\mathcal{F}_{\dot{r}}\text{
305     vertical mtm}
306     \end{equation*}
307    
308     \begin{equation}
309     \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{%
310     \partial r}=0\text{ continuity} \label{eq:continuous}
311     \end{equation}
312    
313     \begin{equation*}
314     b=b(\theta ,S,r)\text{ equation of state}
315     \end{equation*}
316    
317     \begin{equation*}
318     \frac{D\theta }{Dt}=\mathcal{Q}_{\theta }\text{ potential temperature}
319     \end{equation*}
320    
321     \begin{equation*}
322     \frac{DS}{Dt}=\mathcal{Q}_{S}\text{ humidity/salinity}
323     \end{equation*}
324    
325     Here:
326    
327     \begin{equation*}
328     r\text{ is the vertical coordinate}
329     \end{equation*}
330    
331     \begin{equation*}
332     \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
333     is the total derivative}
334     \end{equation*}
335    
336     \begin{equation*}
337     \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}%
338     \text{ is the `grad' operator}
339     \end{equation*}
340     with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}%
341     \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
342     is a unit vector in the vertical
343    
344     \begin{equation*}
345     t\text{ is time}
346     \end{equation*}
347    
348     \begin{equation*}
349     \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
350     velocity}
351     \end{equation*}
352    
353     \begin{equation*}
354     \phi \text{ is the `pressure'/`geopotential'}
355     \end{equation*}
356    
357     \begin{equation*}
358     \vec{\Omega}\text{ is the Earth's rotation}
359     \end{equation*}
360    
361     \begin{equation*}
362     b\text{ is the `buoyancy'}
363     \end{equation*}
364    
365     \begin{equation*}
366     \theta \text{ is potential temperature}
367     \end{equation*}
368    
369     \begin{equation*}
370     S\text{ is specific humidity in the atmosphere; salinity in the ocean}
371     \end{equation*}
372    
373     \begin{equation*}
374     \mathcal{F}_{\vec{\mathbf{v}}}\text{ are forcing and dissipation of }\vec{%
375     \mathbf{v}}
376     \end{equation*}
377    
378     \begin{equation*}
379     \mathcal{Q}_{\theta }\mathcal{\ }\text{are forcing and dissipation of }%
380     \theta
381     \end{equation*}
382    
383     \begin{equation*}
384     \mathcal{Q}_{S}\mathcal{\ }\text{are forcing and dissipation of }S
385     \end{equation*}
386    
387     The $\mathcal{F}^{\prime }s$ and $\mathcal{Q}^{\prime }s$ are provided by
388     extensive `physics' packages for atmosphere and ocean described in Chapter 6.
389    
390     \subsection{Kinematic Boundary conditions}
391    
392     \subsubsection{vertical}
393    
394     at fixed and moving $r$ surfaces we set (see fig.5):
395    
396     \begin{equation}
397     \dot{r}=0atr=R_{fixed}(x,y)\text{ (ocean bottom, top of the atmosphere)}
398     \label{eq:fixedbc}
399     \end{equation}
400    
401     \begin{equation}
402     \dot{r}=\frac{Dr}{Dt}atr=R_{moving}\text{ \
403     (oceansurface,bottomoftheatmosphere)} \label{eq:movingbc}
404     \end{equation}
405    
406     Here
407    
408     \begin{equation*}
409     R_{moving}=R_{o}+\eta
410     \end{equation*}
411     where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
412     whether we are in the atmosphere or ocean) of the `moving surface' in the
413     resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
414     of motion.
415    
416     \subsubsection{horizontal}
417    
418     \begin{equation}
419     \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 \label{eq:noflow}
420     \end{equation}%
421     where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
422    
423     \subsection{Atmosphere}
424    
425     In the atmosphere, see fig.5, we interpret:
426    
427     \begin{equation}
428     r=p\text{ is the pressure} \label{eq:atmos-r}
429     \end{equation}
430    
431     \begin{equation}
432     \dot{r}=\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
433     coordinates} \label{eq:atmos-omega}
434     \end{equation}
435    
436     \begin{equation}
437     \phi =g\,z\text{ is the geopotential height} \label{eq:atmos-phi}
438     \end{equation}
439    
440     \begin{equation}
441     b=\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy}
442     \label{eq:atmos-b}
443     \end{equation}
444    
445     \begin{equation}
446     \theta =T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature}
447     \label{eq:atmos-theta}
448     \end{equation}
449    
450     \begin{equation}
451     S=q,\text{ is the specific humidity} \label{eq:atmos-s}
452     \end{equation}
453     where
454    
455     \begin{equation*}
456     T\text{ is absolute temperature}
457     \end{equation*}%
458     \begin{equation*}
459     p\text{ is the pressure}
460     \end{equation*}%
461     \begin{eqnarray*}
462     &&z\text{ is the height of the pressure surface} \\
463     &&g\text{ is the acceleration due to gravity}
464     \end{eqnarray*}
465    
466     In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
467     the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
468     \begin{equation}
469     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{eq:exner}
470     \end{equation}%
471     where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
472     constant and $c_{p}$ the specific heat of air at constant pressure.
473    
474     At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
475    
476     \begin{equation*}
477     R_{fixed}=p_{top}=0
478     \end{equation*}
479     In a resting atmosphere the elevation of the mountains at the bottom is
480     given by
481     \begin{equation*}
482     R_{moving}=R_{o}(x,y)=p_{o}(x,y)
483     \end{equation*}
484     i.e. the (hydrostatic) pressure at the top of the mountains in a resting
485     atmosphere.
486    
487     The boundary conditions at top and bottom are given by:
488    
489     \begin{eqnarray}
490     &&\omega =0~\text{at }r=R_{fixed} \text{ (top of the atmosphere)}
491     \label{eq:fixed-bc-atmos} \\
492     \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
493     atmosphere)} \label{eq:moving-bc-atmos}
494     \end{eqnarray}
495    
496     Then the (hydrostatic form of) eq(\ref{eq:continuous}) yields a consistent
497     set of atmospheric equations which, for convenience, are written out in $p$
498     coordinates in Appendix Atmosphere - see eqs(\ref{eq:atmos-prime}).
499    
500     \subsection{Ocean}
501    
502     In the ocean we interpret:
503     \begin{eqnarray}
504     r &=&z\text{ is the height} \label{eq:ocean-z} \\
505     \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
506     \label{eq:ocean-w} \\
507     \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \label{eq:ocean-p} \\
508     b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
509     _{c}\right) \text{ is the buoyancy} \label{eq:ocean-b}
510     \end{eqnarray}
511     where $\rho _{c}$ is a fixed reference density of water and $g$ is the
512     acceleration due to gravity.\noindent
513    
514     In the above
515    
516     At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
517    
518     The surface of the ocean is given by: $R_{moving}=\eta $
519    
520     The position of the resting free surface of the ocean is given by $%
521     R_{o}=Z_{o}=0$.
522    
523     Boundary conditions are:
524    
525     \begin{eqnarray}
526     w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \label{eq:fixed-bc-ocean}
527     \\
528     w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) %
529     \label{eq:moving-bc-ocean}}
530     \end{eqnarray}
531     where $\eta $ is the elevation of the free surface.
532    
533     Then eq(\ref{eq:continuous}) yields a consistent set of oceanic equations
534     which, for convenience, are written out in $z$ coordinates in Appendix Ocean
535     - see eqs(\ref{eq:ocean-mom}) to (\ref{eq:ocean-salt}).
536    
537     \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
538     Non-hydrostatic forms}
539    
540     Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
541    
542     \begin{equation}
543     \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
544     \label{eq:phi-split}
545     \end{equation}%
546     and write eq(\ref{incompressible}a,b) in the form:
547    
548     \begin{equation}
549     \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
550     _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
551     _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
552     \end{equation}
553    
554     \begin{equation}
555     \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
556     \end{equation}
557    
558     \begin{equation}
559     \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{%
560     \partial r}=G_{\dot{r}} \label{eq:mom-w}
561     \end{equation}
562     Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
563    
564     The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref%
565     {eq:mom-h}) and (\ref{eq:mom-w}) represent advective, metric and Coriolis
566     terms in the momentum equations. In spherical coordinates they take the form%
567     \footnote{%
568     In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
569     in (\ref{eq:gu-speherical}), (\ref{eq:gv-spherical}) and (\ref%
570     {eq:gw-spherical}) are omitted; the singly-underlined terms are included in
571     the quasi-hydrostatic model (\textbf{QH}). The fully non-hydrostatic model (%
572     \textbf{NH}) includes all terms.} - see Marshall et al 1997a for a full
573     discussion:
574    
575     \begin{equation}
576     \left.
577     \begin{tabular}{l}
578     $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
579     $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}\right\} $
580     \\
581     $-\left\{ -2\Omega v\sin lat+\underline{2\Omega \dot{r}\cos lat}\right\} $
582     \\
583     $+\mathcal{F}_{u}$%
584     \end{tabular}%
585     \ \right\} \left\{
586     \begin{tabular}{l}
587     \textit{advection} \\
588     \textit{metric} \\
589     \textit{Coriolis} \\
590     \textit{\ Forcing/Dissipation}%
591     \end{tabular}%
592     \ \right. \qquad \label{eq:gu-speherical}
593     \end{equation}
594    
595     \begin{equation}
596     \left.
597     \begin{tabular}{l}
598     $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
599     $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}}\right\}
600     $ \\
601     $-\left\{ -2\Omega u\sin lat\right\} $ \\
602     $+\mathcal{F}_{v}$%
603     \end{tabular}%
604     \ \right\} \left\{
605     \begin{tabular}{l}
606     \textit{advection} \\
607     \textit{metric} \\
608     \textit{Coriolis} \\
609     \textit{\ Forcing/Dissipation}%
610     \end{tabular}%
611     \ \right. \qquad \label{eq:gv-spherical}
612     \end{equation}%
613     \qquad \qquad \qquad \qquad \qquad
614    
615     \begin{equation}
616     \left.
617     \begin{tabular}{l}
618     $G_{\dot{r}}=-\underline{\underline{\vec{\mathbf{v}}.\nabla \dot{r}}}$ \\
619     $+\left\{ \underline{\frac{u^{_{^{2}}}+v^{2}}{{r}}}\right\} $ \\
620     ${+}\underline{{2\Omega u\cos lat}}$ \\
621     $\underline{\underline{\mathcal{F}_{\dot{r}}}}$%
622     \end{tabular}%
623     \ \right\} \left\{
624     \begin{tabular}{l}
625     \textit{advection} \\
626     \textit{metric} \\
627     \textit{Coriolis} \\
628     \textit{\ Forcing/Dissipation}%
629     \end{tabular}%
630     \ \right. \label{eq:gw-spherical}
631     \end{equation}%
632     \qquad \qquad \qquad \qquad \qquad
633    
634     In the above `${r}$' is the distance from the center of the earth and `$lat$%
635     ' is latitude.
636    
637     Grad and div operators in spherical coordinates are defined in appendix
638     OPERATORS.%
639     \marginpar{
640     Fig.6 Spherical polar coordinate system.}
641    
642     \begin{figure}
643     \begin{center}
644     \resizebox{!}{4in}{
645     \rotatebox{90}{
646     \rotatebox{180}{
647     \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/spherical-polar.eps}
648     }
649     }
650     }
651     \end{center}
652     \label{fig:spcoord}
653     \end{figure}
654    
655    
656     \subsubsection{Shallow atmosphere approximation}
657    
658     Most models are based on the `hydrostatic primitive equations' (HPE's) in
659     which the vertical momentum equation is reduced to a statement of
660     hydrostatic balance and the `traditional approximation' is made in which the
661     Coriolis force is treated approximately and the shallow atmosphere
662     approximation is made.\ The MITgcm need not make the `traditional
663     approximation'. To be able to support consistent non-hydrostatic forms the
664     shallow atmosphere approximation can be relaxed - when dividing through by $r
665     $ in, for example, (\ref{eq:gu-speherical}), we do not replace $r$ by $a$,
666     the radius of the earth.
667    
668     \subsubsection{Hydrostatic and quasi-hydrostatic forms}
669    
670     These are discussed at length in Marshall et al (1997a).
671    
672     In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
673     terms in Eqs. (\ref{eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical})
674     are neglected and `${r}$' is replaced by `$a$', the mean radius of the
675     earth. Once the pressure is found at one level - e.g. by inverting a 2-d
676     Elliptic equation for $\phi _{s}$ at $r=R_{moving}$ - the pressure can be
677     computed at all other levels by integration of the hydrostatic relation, eq(%
678     \ref{eq:hydrostatic}).
679    
680     In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
681     gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
682     \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
683     contribution to the pressure field: only the terms underlined twice in Eqs. (%
684     \ref{eq:gu-speherical}$\rightarrow $\ \ref{eq:gw-spherical}) are set to zero
685     and, simultaneously, the shallow atmosphere approximation is relaxed. In
686     \textbf{QH}\ \textit{all} the metric terms are retained and the full
687     variation of the radial position of a particle monitored. The \textbf{QH}\
688     vertical momentum equation (\ref{eq:mom-w}) becomes:
689    
690     \begin{equation*}
691     \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat
692     \end{equation*}
693     making a small correction to the hydrostatic pressure.
694    
695     \textbf{QH} has good energetic credentials - they are the same as for
696     \textbf{HPE}. Importantly, however, it has the same angular momentum
697     principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
698     et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
699    
700     \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
701    
702     The MIT model presently supports a full non-hydrostatic ocean isomorph, but
703     only a quasi-non-hydrostatic atmospheric isomorph.
704    
705     \paragraph{Non-hydrostatic Ocean}
706    
707     In the non-hydrostatic ocean model all terms in equations Eqs.(\ref%
708     {eq:gu-speherical} $\rightarrow $\ \ref{eq:gw-spherical}) are retained. A
709     three dimensional elliptic equation must be solved subject to Neumann
710     boundary conditions (see below). It is important to note that use of the
711     full \textbf{NH} does not admit any new `fast' waves in to the system - the
712     incompressible condition eq(\ref{eq:continuous})c has already filtered out
713     acoustic modes. It does, however, ensure that the gravity waves are treated
714     accurately with an exact dispersion relation. The \textbf{NH} set has a
715     complete angular momentum principle and consistent energetics - see White
716     and Bromley, 1995; Marshall et.al.\ 1997a.
717    
718     \paragraph{Quasi-nonhydrostatic Atmosphere}
719    
720     In the non-hydrostatic version of our atmospheric model we approximate $\dot{%
721     r}$ in the vertical momentum eqs(\ref{eq:mom-w}) and (\ref{eq:gv-spherical})
722     (but only here) by:
723    
724     \begin{equation}
725     \dot{r}=\frac{Dp}{Dt}=\frac{1}{g}\frac{D\phi }{Dt} \label{eq:quasi-nh-w}
726     \end{equation}%
727     where $p_{hy}$ is the hydrostatic pressure.
728    
729     \subsubsection{Summary of equation sets supported by model}
730    
731     \paragraph{Atmosphere}
732    
733     Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the
734     compressible non-Boussinesq equations in $p-$coordinates are supported.
735    
736     \subparagraph{Hydrostatic and quasi-hydrostatic}
737    
738     The hydrostatic set is written out in $p-$coordinates in appendix Atmosphere
739     - see eq(\ref{eq:atmos-prime}).
740    
741     \subparagraph{Quasi-nonhydrostatic}
742    
743     A quasi-nonhydrostatic form is also supported.
744    
745     \paragraph{Ocean}
746    
747     \subparagraph{Hydrostatic and quasi-hydrostatic}
748    
749     Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
750     equations in $z-$coordinates are supported.
751    
752     \subparagraph{Non-hydrostatic}
753    
754     Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$%
755     coordinates are supported - see eqs(\ref{eq:ocean-mom}) to (\ref%
756     {eq:ocean-salt}).
757    
758     \subsection{Solution strategy}
759    
760     The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{%
761     NH} models is summarized in Fig.7.%
762     \marginpar{
763     Fig.7 Solution strategy} Under all dynamics, a 2-d elliptic equation is
764     first solved to find the surface pressure and the hydrostatic pressure at
765     any level computed from the weight of fluid above. Under \textbf{HPE} and
766     \textbf{QH} dynamics, the horizontal momentum equations are then stepped
767     forward and $\dot{r}$ found from continuity. Under \textbf{NH} dynamics a
768     3-d elliptic equation must be solved for the non-hydrostatic pressure before
769     stepping forward the horizontal momentum equations; $\dot{r}$ is found by
770     stepping forward the vertical momentum equation.
771    
772     \begin{figure}
773     \begin{center}
774     \resizebox{!}{4in}{
775     \rotatebox{90}{
776     \rotatebox{180}{
777     \includegraphics*[0.2in,0.7in][10.5in,10.5in]{part1/soln_strategy.eps}
778     }
779     }
780     }
781     \end{center}
782     \label{fig:solnstart}
783     \end{figure}
784    
785    
786     There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
787     course, some complication that goes with the inclusion of $\cos \phi \ $%
788     Coriolis terms and the relaxation of the shallow atmosphere approximation.
789     But this leads to negligible increase in computation. In \textbf{NH}, in
790     contrast, one additional elliptic equation - a three-dimensional one - must
791     be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
792     essentially negligible in the hydrostatic limit (see detailed discussion in
793     Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
794     hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
795    
796     \subsection{Finding the pressure field}
797    
798     Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
799     pressure field must be obtained diagnostically. We proceed, as before, by
800     dividing the total (pressure/geo) potential in to three parts, a surface
801     part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
802     non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{eq:phi-split}), and
803     writing the momentum equation as in (\ref{eq:mom-h}).
804    
805     \subsubsection{Hydrostatic pressure}
806    
807     Hydrostatic pressure is obtained by integrating (\ref{eq:hydrostatic})
808     vertically from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
809    
810     \begin{equation*}
811     \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi _{hyd}%
812     \right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
813     \end{equation*}
814     and so
815    
816     \begin{equation}
817     \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr \label{eq:hydro-phi}
818     \end{equation}
819    
820     The model can be easily modified to accommodate a loading term (e.g
821     atmospheric pressure pushing down on the ocean's surface) by setting:
822    
823     \begin{equation}
824     \phi _{hyd}(r=R_{o})=loading \label{eq:loading}
825     \end{equation}
826    
827     \subsubsection{Surface pressure}
828    
829     The surface pressure equation can be obtained by integrating continuity, (%
830     \ref{eq:continuous})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$
831    
832     \begin{equation*}
833     \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}%
834     }_{h}+\partial _{r}\dot{r}\right) dr=0
835     \end{equation*}
836    
837     Thus:
838    
839     \begin{equation*}
840     \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
841     +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}%
842     _{h}dr=0
843     \end{equation*}
844     where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $%
845     r $. The above can be rearranged to yield, using Leibnitz's theorem:
846    
847     \begin{equation}
848     \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
849     \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=\text{source}
850     \label{eq:free-surface}
851     \end{equation}%
852     where we have incorporated a source term.
853    
854     Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
855     (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can
856     be written
857     \begin{equation}
858     \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}\left( b_{s}\eta \right)
859     \label{eq:phi-surf}
860     \end{equation}%
861     where $b_{s}$ is the buoyancy at the surface.
862    
863     In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{eq:mom-h}), (\ref%
864     {eq:free-surface}) and (\ref{eq:phi-surf}) can be solved by inverting a 2-d
865     elliptic equation for $\phi _{s}$ as described in Chapter 2. Both `free
866     surface' and `rigid lid' approaches are available.
867    
868     \subsubsection{Non-hydrostatic pressure}
869    
870     Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{%
871     \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation
872     (\ref{incompressible}), we deduce that:
873    
874     \begin{equation}
875     \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{%
876     \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .%
877     \vec{\mathbf{F}} \label{eq:3d-invert}
878     \end{equation}
879    
880     For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
881     subject to appropriate choice of boundary conditions. This method is usually
882     called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
883     Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
884     the 3-d problem does not need to be solved.
885    
886     \paragraph{Boundary Conditions}
887    
888     We apply the condition of no normal flow through all solid boundaries - the
889     coasts (in the ocean) and the bottom:
890    
891     \begin{equation}
892     \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
893     \end{equation}
894     where $\widehat{n}$ is a vector of unit length normal to the boundary. The
895     kinematic condition (\ref{nonormalflow}) is also applied to the vertical
896     velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $%
897     \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
898     tangential component of velocity, $v_{T}$, at all solid boundaries,
899     depending on the form chosen for the dissipative terms in the momentum
900     equations - see below.
901    
902     Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:
903    
904     \begin{equation}
905     \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
906     \label{eq:inhom-neumann-nh}
907     \end{equation}
908     where
909    
910     \begin{equation*}
911     \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
912     _{s}+\mathbf{\nabla }\phi _{hyd}\right)
913     \end{equation*}%
914     presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
915     (\ref{eq:3d-invert}). As shown, for example, by Williams (1969), one can
916     exploit classical 3D potential theory and, by introducing an appropriately
917     chosen $\delta $-function sheet of `source-charge', replace the inhomogenous
918     boundary condition on pressure by a homogeneous one. The source term $rhs$
919     in (\ref{eq:3d-invert}) is the divergence of the vector $\vec{\mathbf{F}}.$
920     By simultaneously setting $%
921     \begin{array}{l}
922     \widehat{n}.\vec{\mathbf{F}}%
923     \end{array}%
924     =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
925     self-consistent but simpler homogenised Elliptic problem is obtained:
926    
927     \begin{equation*}
928     \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
929     \end{equation*}%
930     where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
931     that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref%
932     {eq:inhom-neumann-nh}) the modified boundary condition becomes:
933    
934     \begin{equation}
935     \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
936     \end{equation}
937    
938     If the flow is `close' to hydrostatic balance then the 3-d inversion
939     converges rapidly because $\phi _{nh}\ $is then only a small correction to
940     the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
941    
942     The solution $\phi _{nh}\ $to (\ref{eq:3d-invert}) and (\ref{homneuman})
943     does not vanish at $r=R_{moving}$, and so refines the pressure there.
944    
945     \subsection{Forcing/dissipation}
946    
947     \subsubsection{Forcing}
948    
949     The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
950     `physics packages' described in detail in chapter ??.
951    
952     \subsubsection{Dissipation}
953    
954     \paragraph{Momentum}
955    
956     Many forms of momentum dissipation are available in the model. Laplacian and
957     biharmonic frictions are commonly used:
958    
959     \begin{equation}
960     D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}%
961     +A_{4}\nabla _{h}^{4}v \label{eq:dissipation}
962     \end{equation}
963     where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
964     coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
965     friction. These coefficients are the same for all velocity components.
966    
967     \paragraph{Tracers}
968    
969     The mixing terms for the temperature and salinity equations have a similar
970     form to that of momentum except that the diffusion tensor can be
971     non-diagonal and have varying coefficients. $\qquad $%
972     \begin{equation}
973     D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
974     _{h}^{4}(T,S) \label{eq:diffusion}
975     \end{equation}
976     where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $%
977     horizontal coefficient for biharmonic diffusion. In the simplest case where
978     the subgrid-scale fluxes of heat and salt are parameterized with constant
979     horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
980     reduces to a diagonal matrix with constant coefficients:
981    
982     \begin{equation}
983     \qquad \qquad \qquad \qquad K=\left(
984     \begin{array}{ccc}
985     K_{h} & 0 & 0 \\
986     0 & K_{h} & 0 \\
987     0 & 0 & K_{v}%
988     \end{array}
989     \right) \qquad \qquad \qquad \label{eq:diagonal-diffusion-tensor}
990     \end{equation}
991     where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
992     coefficients. These coefficients are the same for all tracers (temperature,
993     salinity ... ).
994    
995     \subsection{Vector invariant form}
996    
997     For some purposes it is advantageous to write momentum advection in eq(\ref%
998     {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:
999    
1000     \begin{equation}
1001     \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}%
1002     +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla %
1003     \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
1004     \label{eq:vi-identity}
1005     \end{equation}%
1006     This permits alternative numerical treatments of the non-linear terms based
1007     on their representation as a vorticity flux. Because gradients of coordinate
1008     vectors no longer appear on the rhs of (\ref{eq:vi-identity}), explicit
1009     representation of the metric terms in (\ref{eq:gu-speherical}), (\ref%
1010     {eq:gv-spherical}) and (\ref{eq:gw-spherical}), can be avoided: information
1011     about the geometry is contained in the areas and lengths of the volumes used
1012     to discretize the model.
1013    
1014     \subsection{Adjoint}
1015    
1016     Tangent linear and adoint counterparts of the forward model and described in
1017     Chapter 5.
1018    
1019     % $Header: /u/gcmpack/mitgcmdoc/part1/appendix_atmos.tex,v 1.3 2001/09/26 14:53:10 cnh Exp $
1020     % $Name: $
1021    
1022     \section{Appendix ATMOSPHERE}
1023    
1024     \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
1025     coordinates}
1026    
1027     \label{sect-hpe-p}
1028    
1029     The hydrostatic primitive equations (HPEs) in p-coordinates are:
1030     \begin{eqnarray}
1031     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1032     _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
1033     \label{eq:atmos-mom} \\
1034     \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
1035     \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
1036     \partial p} &=&0 \label{eq:atmos-cont} \\
1037     p\alpha &=&RT \label{eq:atmos-eos} \\
1038     c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq:atmos-heat}
1039     \end{eqnarray}%
1040     where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
1041     surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
1042     \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
1043     derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is
1044     the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp%
1045     }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation(\ref%
1046     {eq:atmos-heat}) is the first law of thermodynamics where internal energy $%
1047     e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $%
1048     p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
1049    
1050     It is convenient to cast the heat equation in terms of potential temperature
1051     $\theta $ so that it looks more like a generic conservation law.
1052     Differentiating (\ref{eq:atmos-eos}) we get:
1053     \begin{equation*}
1054     p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
1055     \end{equation*}%
1056     which, when added to the heat equation (\ref{eq:atmos-heat}) and using $%
1057     c_{p}=c_{v}+R$, gives:
1058     \begin{equation}
1059     c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
1060     \label{eq-p-heat-interim}
1061     \end{equation}%
1062     Potential temperature is defined:
1063     \begin{equation}
1064     \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
1065     \end{equation}%
1066     where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
1067     we will make use of the Exner function $\Pi (p)$ which defined by:
1068     \begin{equation}
1069     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
1070     \end{equation}%
1071     The following relations will be useful and are easily expressed in terms of
1072     the Exner function:
1073     \begin{equation*}
1074     c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
1075     }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{%
1076     \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}%
1077     \frac{Dp}{Dt}
1078     \end{equation*}%
1079     where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
1080    
1081     The heat equation is obtained by noting that
1082     \begin{equation*}
1083     c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
1084     \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
1085     \end{equation*}
1086     and on substituting into (\ref{eq-p-heat-interim}) gives:
1087     \begin{equation}
1088     \Pi \frac{D\theta }{Dt}=\mathcal{Q}
1089     \label{eq:potential-temperature-equation}
1090     \end{equation}
1091     which is in conservative form.
1092    
1093     For convenience in the model we prefer to step forward (\ref%
1094     {eq:potential-temperature-equation}) rather than (\ref{eq:atmos-heat}).
1095    
1096     \subsubsection{Boundary conditions}
1097    
1098     The upper and lower boundary conditions are :
1099     \begin{eqnarray}
1100     \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
1101     \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
1102     \label{eq:boundary-condition-atmosphere}
1103     \end{eqnarray}
1104     In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
1105     =0 $); in $z$-coordinates and the lower boundary is analogous to a free
1106     surface ($\phi $ is imposed and $\omega \neq 0$).
1107    
1108     \subsubsection{Splitting the geo-potential}
1109    
1110     For the purposes of initialization and reducing round-off errors, the model
1111     deals with perturbations from reference (or ``standard'') profiles. For
1112     example, the hydrostatic geopotential associated with the resting atmosphere
1113     is not dynamically relevant and can therefore be subtracted from the
1114     equations. The equations written in terms of perturbations are obtained by
1115     substituting the following definitions into the previous model equations:
1116     \begin{eqnarray}
1117     \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
1118     \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha} \\
1119     \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
1120     \end{eqnarray}
1121     The reference state (indicated by subscript ``0'') corresponds to
1122     horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
1123     _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
1124     _{o}(p_{o})=g~Z_{topo}$, defined:
1125     \begin{eqnarray*}
1126     \theta _{o}(p) &=&f^{n}(p) \\
1127     \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
1128     \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
1129     \end{eqnarray*}
1130     %\begin{eqnarray*}
1131     %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
1132     %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
1133     %\end{eqnarray*}
1134    
1135     The final form of the HPE's in p coordinates is then:
1136     \begin{eqnarray}
1137     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1138     _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\
1139     \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\
1140     \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
1141     \partial p} &=&0 \\
1142     \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } \\
1143     \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime}
1144     \end{eqnarray}
1145    
1146     % $Header: /u/gcmpack/mitgcmdoc/part1/appendix_ocean.tex,v 1.2 2001/09/11 14:39:38 cnh Exp $
1147     % $Name: $
1148    
1149     \section{Appendix OCEAN}
1150    
1151     \subsection{Equations of motion for the ocean}
1152    
1153     We review here the method by which the standard (Boussinesq, incompressible)
1154     HPE's for the ocean written in z-coordinates are obtained. The
1155     non-Boussinesq equations for oceanic motion are:
1156     \begin{eqnarray}
1157     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1158     _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} \\
1159     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1160     &=&\epsilon _{nh}\mathcal{F}_{w} \\
1161     \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}%
1162     _{h}+\frac{\partial w}{\partial z} &=&0 \\
1163     \rho &=&\rho (\theta ,S,p) \\
1164     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\
1165     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:non-boussinesq}
1166     \end{eqnarray}%
1167     These equations permit acoustics modes, inertia-gravity waves,
1168     non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
1169     mode. As written, they cannot be integrated forward consistently - if we
1170     step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
1171     consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref%
1172     {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
1173     therefore necessary to manipulate the system as follows. Differentiating the
1174     EOS (equation of state) gives:
1175    
1176     \begin{equation}
1177     \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
1178     _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
1179     _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
1180     _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
1181     \end{equation}
1182    
1183     Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
1184     reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref%
1185     {eq-zns-cont} gives:
1186     \begin{equation}
1187     \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
1188     v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
1189     \end{equation}
1190     where we have used an approximation sign to indicate that we have assumed
1191     adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
1192     Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
1193     can be explicitly integrated forward:
1194     \begin{eqnarray}
1195     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1196     _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1197     \label{eq-cns-hmom} \\
1198     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
1199     &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
1200     \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
1201     v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
1202     \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
1203     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
1204     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
1205     \end{eqnarray}
1206    
1207     \subsubsection{Compressible z-coordinate equations}
1208    
1209     Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
1210     wherever it appears in a product (ie. non-linear term) - this is the
1211     `Boussinesq assumption'. The only term that then retains the full variation
1212     in $\rho $ is the gravitational acceleration:
1213     \begin{eqnarray}
1214     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1215     _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1216     \label{eq-zcb-hmom} \\
1217     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
1218     \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1219     \label{eq-zcb-hydro} \\
1220     \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{%
1221     \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
1222     \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
1223     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
1224     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
1225     \end{eqnarray}
1226     These equations still retain acoustic modes. But, because the
1227     ``compressible'' terms are linearized, the pressure equation \ref%
1228     {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
1229     term appears as a Helmholtz term in the non-hydrostatic pressure equation).
1230     These are the \emph{truly} compressible Boussinesq equations. Note that the
1231     EOS must have the same pressure dependency as the linearized pressure term,
1232     ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{%
1233     c_{s}^{2}}$, for consistency.
1234    
1235     \subsubsection{`Anelastic' z-coordinate equations}
1236    
1237     The anelastic approximation filters the acoustic mode by removing the
1238     time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}%
1239     ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}%
1240     \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
1241     continuity and EOS. A better solution is to change the dependency on
1242     pressure in the EOS by splitting the pressure into a reference function of
1243     height and a perturbation:
1244     \begin{equation*}
1245     \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
1246     \end{equation*}
1247     Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
1248     differentiating the EOS, the continuity equation then becomes:
1249     \begin{equation*}
1250     \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{%
1251     Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+%
1252     \frac{\partial w}{\partial z}=0
1253     \end{equation*}
1254     If the time- and space-scales of the motions of interest are longer than
1255     those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},%
1256     \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
1257     $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{%
1258     Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
1259     ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
1260     _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
1261     and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
1262     anelastic continuity equation:
1263     \begin{equation}
1264     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-%
1265     \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
1266     \end{equation}
1267     A slightly different route leads to the quasi-Boussinesq continuity equation
1268     where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+%
1269     \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }%
1270     _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
1271     \begin{equation}
1272     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
1273     \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
1274     \end{equation}
1275     Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
1276     equation if:
1277     \begin{equation}
1278     \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
1279     \end{equation}
1280     Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
1281     and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{%
1282     g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
1283     full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
1284     then:
1285     \begin{eqnarray}
1286     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1287     _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1288     \label{eq-zab-hmom} \\
1289     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
1290     \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1291     \label{eq-zab-hydro} \\
1292     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
1293     \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
1294     \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
1295     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
1296     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
1297     \end{eqnarray}
1298    
1299     \subsubsection{Incompressible z-coordinate equations}
1300    
1301     Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
1302     technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
1303     yield the ``truly'' incompressible Boussinesq equations:
1304     \begin{eqnarray}
1305     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1306     _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
1307     \label{eq-ztb-hmom} \\
1308     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}%
1309     \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1310     \label{eq-ztb-hydro} \\
1311     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1312     &=&0 \label{eq-ztb-cont} \\
1313     \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
1314     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
1315     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
1316     \end{eqnarray}
1317     where $\rho _{c}$ is a constant reference density of water.
1318    
1319     \subsubsection{Compressible non-divergent equations}
1320    
1321     The above ``incompressible'' equations are incompressible in both the flow
1322     and the density. In many oceanic applications, however, it is important to
1323     retain compressibility effects in the density. To do this we must split the
1324     density thus:
1325     \begin{equation*}
1326     \rho =\rho _{o}+\rho ^{\prime }
1327     \end{equation*}%
1328     We then assert that variations with depth of $\rho _{o}$ are unimportant
1329     while the compressible effects in $\rho ^{\prime }$ are:
1330     \begin{equation*}
1331     \rho _{o}=\rho _{c}
1332     \end{equation*}%
1333     \begin{equation*}
1334     \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
1335     \end{equation*}%
1336     This then yields what we can call the semi-compressible Boussinesq
1337     equations:
1338     \begin{eqnarray}
1339     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
1340     _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{%
1341     \mathcal{F}}} \label{eq:ocean-mom} \\
1342     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
1343     _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
1344     \label{eq:ocean-wmom} \\
1345     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
1346     &=&0 \label{eq:ocean-cont} \\
1347     \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos}
1348     \\
1349     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
1350     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
1351     \end{eqnarray}%
1352     Note that the hydrostatic pressure of the resting fluid, including that
1353     associated with $\rho _{c}$, is subtracted out since it has no effect on the
1354     dynamics.
1355    
1356     Though necessary, the assumptions that go into these equations are messy
1357     since we essentially assume a different EOS for the reference density and
1358     the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
1359     _{nh}=0$ form of these equations that are used throughout the ocean modeling
1360     community and referred to as the primitive equations (HPE).
1361    
1362     % $Header: /u/gcmpack/mitgcmdoc/part1/appendix_operators.tex,v 1.1.1.1 2001/08/08 16:16:19 adcroft Exp $
1363     % $Name: $
1364    
1365     \section{Appendix:OPERATORS}
1366    
1367     \subsection{Coordinate systems}
1368    
1369     \subsubsection{Spherical coordinates}
1370    
1371     In spherical coordinates, the velocity components in the zonal, meridional
1372     and vertical direction respectively, are given by (see Fig.2) :
1373    
1374     \begin{equation*}
1375     u=r\cos \phi \frac{D\lambda }{Dt}
1376     \end{equation*}
1377    
1378     \begin{equation*}
1379     v=r\frac{D\phi }{Dt}\qquad
1380     \end{equation*}
1381     $\qquad \qquad \qquad \qquad $
1382    
1383     \begin{equation*}
1384     \dot{r}=\frac{Dr}{Dt}
1385     \end{equation*}
1386    
1387     Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial
1388     distance of the particle from the center of the earth, $\Omega $ is the
1389     angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
1390    
1391     The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in
1392     spherical coordinates:
1393    
1394     \begin{equation*}
1395     \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }%
1396     ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}%
1397     \right)
1398     \end{equation*}
1399    
1400     \begin{equation*}
1401     \nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial
1402     \lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\}
1403     +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
1404     \end{equation*}
1405    
1406     %%%% \end{document}

  ViewVC Help
Powered by ViewVC 1.1.22