/[MITgcm]/manual/s_overview/continuous_eqns.tex
ViewVC logotype

Annotation of /manual/s_overview/continuous_eqns.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (hide annotations) (download) (as text)
Wed Oct 10 16:48:40 2001 UTC (22 years, 6 months ago) by cnh
Branch: MAIN
CVS Tags: HEAD
Changes since 1.4: +1 -1 lines
File MIME type: application/x-tex
FILE REMOVED
Updates to part1 for figures

1 cnh 1.5 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/continuous_eqns.tex,v 1.4 2001/09/27 01:57:17 cnh Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4     \section{Continuous equations in `r' coordinates}
5    
6     To render atmosphere and ocean models from one dynamical core we exploit
7     `isomorphisms' between equation sets that govern the evolution of the
8 cnh 1.4 respective fluids - see fig.4
9 adcroft 1.1 \marginpar{
10     Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down
11     and encoded. The model variables have different interpretations depending on
12     whether the atmosphere or ocean is being studied. Thus, for example, the
13     vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
14     modeling the atmosphere and height, $z$, if we are modeling the ocean. A
15 cnh 1.4 complete list of the isomorphisms is given in table 1.
16 adcroft 1.1 \marginpar{
17     Table 1. Isomorphisms}
18    
19     The state of the fluid at any time is characterized by the distribution of
20     velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
21     `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
22     depend on $\theta $, $S$, and $p$. The equations that govern the evolution
23     of these fields, obtained by applying the laws of classical mechanics and
24     thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
25 cnh 1.4 a generic vertical coordinate, $r$, see fig.5
26 adcroft 1.1 \marginpar{
27     Fig.5 The vertical coordinate of model}:
28    
29     \[
30 cnh 1.4 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
31     \right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}}
32 adcroft 1.1 \mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm}
33     \]
34    
35     \[
36 cnh 1.4 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
37     v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{
38 adcroft 1.1 \mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm}
39     \]
40    
41     \begin{equation}
42 cnh 1.4 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
43 adcroft 1.1 \partial r}=0\text{ continuity} \label{incompressible}
44     \end{equation}
45    
46     \[
47     b=b(\theta ,S,r)\text{ equation of state}
48     \]
49    
50     \[
51     \frac{D\theta }{Dt}=\mathcal{F}_{\theta }\text{ }\mathcal{+D}_{\theta }\text{
52     potential temperature}
53     \]
54    
55     \[
56 cnh 1.4 \frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity
57 adcroft 1.1 }
58     \]
59    
60     Here:
61    
62     \[
63     r\text{ is the vertical coordinate}
64     \]
65    
66     \[
67     \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
68     is the total derivative}
69     \]
70    
71     \[
72 cnh 1.4 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
73 adcroft 1.1 \text{ is the `grad' operator}
74     \]
75 cnh 1.4 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
76 adcroft 1.1 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
77     is a unit vector in the vertical
78    
79     \[
80     t\text{ is time}
81     \]
82    
83     \[
84     \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
85     velocity}
86     \]
87    
88     \[
89     \phi \text{ is the `pressure'/`geopotential'}
90     \]
91    
92     \[
93     \vec{\Omega}\text{ is the Earth's rotation}
94     \]
95    
96     \[
97     b\text{ is the `buoyancy'}
98     \]
99    
100     \[
101     \theta \text{ is potential temperature}
102     \]
103    
104     \[
105     S\text{ is specific humidity in the atmosphere; salinity in the ocean}
106     \]
107    
108     \[
109 cnh 1.4 \mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}}
110 adcroft 1.1 \text{ are forcing and dissipation of }\vec{\mathbf{v}}
111     \]
112    
113     \[
114     \mathcal{F}_{\theta }\mathcal{\ }\text{and }\mathcal{D}_{\theta }\text{ are
115     forcing and dissipation of }\theta
116     \]
117    
118     \[
119     \mathcal{F}_{S}\mathcal{\ }\text{and }\mathcal{D}_{S}\text{ are forcing and
120     dissipation of }S
121     \]
122    
123     The $\mathcal{F}^{\prime }s$ and $\mathcal{D}^{\prime }s$ are provided by
124     extensive `physics' packages for atmosphere and ocean described in section
125     ?.?.
126    
127     \subsection{Kinematic Boundary conditions}
128    
129     \subsubsection{vertical}
130    
131     at fixed and moving $r$ surfaces we set (see fig.4):
132    
133     \begin{eqnarray*}
134     \dot{r} &=&0\text{ at }r=R_{fixed}(x,y):\text{(ocean bottom, top of the
135     atmosphere)} \\
136     \dot{r} &=&\frac{Dr}{Dt}\text{ at }r=R_{moving}\text{ (ocean surface, bottom
137     of the atmosphere)}
138     \end{eqnarray*}
139     Here
140    
141     \[
142     R_{moving}=R_{o}+\eta
143     \]
144     where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
145     whether we are in the atmosphere or ocean) of the `moving surface' in the
146     resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
147     of motion.
148    
149     \subsubsection{horizontal}
150    
151     \[
152     \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0
153     \]
154     where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
155    
156     \subsection{Atmosphere}
157    
158     In the atmosphere, see fig. we interpret:
159     \begin{eqnarray}
160     r &=&p\text{ is the pressure} \\
161     \dot{r} &=&\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
162     coordinates} \\
163     \phi &=&g\,z\text{ is the geopotential height} \\
164     b &=&\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy} \\
165     \theta &=&T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature} \\
166     S &=&q\text{, the specific humidity}
167     \end{eqnarray}
168     where
169    
170     \[
171     T\text{is absolute temperature}
172     \]
173     \[
174     p\text{ is the pressure}
175     \]
176     \begin{eqnarray*}
177     &&z\text{ is the height of the pressure surface} \\
178     &&g\text{ is the acceleration due to gravity}
179     \end{eqnarray*}
180    
181     In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
182     the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
183     \[
184     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }
185     \]
186     where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
187     constant and $c_{p}$ the specific heat of air at constant pressure.
188    
189     At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
190    
191     \[
192     R_{fixed}=p_{top}=0
193     \]
194     In a resting atmosphere the elevation of the mountains at the bottom is
195     given by
196     \[
197     R_{moving}=R_{o}(x,y)=p_{o}(x,y)
198     \]
199     i.e. the (hydrostatic) pressure at the top of the mountains in a resting
200     atmosphere.
201    
202     The boundary conditions at top and bottom are given by:
203    
204 cnh 1.3 \begin{eqnarray}
205 cnh 1.2 &&\omega =0~\text{at }r=R_{fixed} \label{eq:fixed-bc-atmos}
206     \text{ (top of the atmosphere)} \\
207 adcroft 1.1 \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
208     atmosphere)}
209 cnh 1.2 \label{eq:moving-bc-atmos}
210 cnh 1.3 \end{eqnarray}
211 adcroft 1.1
212     Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent
213     set of atmospheric equations which, for convenience, are written out in $p$
214     coordinates in Appendix Atmosphere - see eqs(\ref{eq-p-hmom}) to (\ref
215     {eq-p-heat}).
216    
217     \subsection{Ocean}
218    
219     In the ocean we interpret:
220     \begin{eqnarray}
221 cnh 1.2 r &=&z\text{ is the height}
222     \label{eq:ocean-z}\\
223     \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
224     \label{eq:ocean-w}\\
225     \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure}
226     \label{eq:ocean-p}\\
227 adcroft 1.1 b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
228     _{c}\right) \text{ is the buoyancy}
229 cnh 1.2 \label{eq:ocean-b}
230 adcroft 1.1 \end{eqnarray}
231     where $\rho _{c}$ is a fixed reference density of water and $g$ is the
232     acceleration due to gravity.\noindent
233    
234     In the above
235    
236     At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
237    
238     The surface of the ocean is given by: $R_{moving}=\eta $
239    
240 cnh 1.4 The position of the resting free surface of the ocean is given by $
241 adcroft 1.1 R_{o}=Z_{o}=0$.
242    
243     Boundary conditions are:
244    
245 cnh 1.3 \begin{eqnarray}
246 cnh 1.2 w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)}
247     \label{eq:fixed-bc-ocean}\\
248     w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
249     \label{eq:moving-bc-ocean}}
250 cnh 1.3 \end{eqnarray}
251 adcroft 1.1 where $\eta $ is the elevation of the free surface.
252    
253     Then eq(\ref{incompressible}) yields a consistent set of oceanic equations
254     which, for convenience, are written out in $z$ coordinates in Appendix Ocean.
255    
256     \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
257     Non-hydrostatic forms}
258    
259     Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
260    
261     \begin{equation}
262     \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
263 cnh 1.2 \label{eq:phi-split}
264 adcroft 1.1 \end{equation}
265     and write eq(\ref{incompressible}a) in the form:
266    
267     \begin{equation}
268     \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
269     _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
270 cnh 1.2 _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
271 adcroft 1.1 \end{equation}
272    
273     \begin{equation}
274 cnh 1.2 \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
275 adcroft 1.1 \end{equation}
276    
277     \begin{equation}
278 cnh 1.4 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
279 cnh 1.2 \partial r}=G_{\dot{r}} \label{eq:mom-w}
280 adcroft 1.1 \end{equation}
281     Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
282    
283     The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
284     {hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis
285 cnh 1.4 terms in the momentum equations. In spherical coordinates they take the form
286     \footnote{
287 adcroft 1.1 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
288     in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined
289     terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully
290     non-hydrostatic model (\textbf{NH}) includes all terms.}:
291    
292     \begin{equation}
293     \left.
294     \begin{tabular}{l}
295     $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
296 cnh 1.4 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}
297 adcroft 1.1 \right\} $ \\
298 cnh 1.4 $-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}}
299 adcroft 1.1 \right\} $ \\
300 cnh 1.4 $+\mathcal{F}_{u}\mathcal{+D}_{u}$
301 adcroft 1.1 \end{tabular}
302     \right\} \left\{
303     \begin{tabular}{l}
304     \textit{advection} \\
305     \textit{metric} \\
306     \textit{Coriolis} \\
307     \textit{\ Forcing/Dissipation}
308     \end{tabular}
309 cnh 1.2 \right. \qquad \label{eq:gu-speherical}
310 adcroft 1.1 \end{equation}
311    
312     \begin{equation}
313     \left.
314     \begin{tabular}{l}
315     $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
316 cnh 1.4 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}
317 adcroft 1.1 }\right\} $ \\
318     $-\left\{ -2\Omega u\sin lat\right\} $ \\
319 cnh 1.4 $+\mathcal{F}_{v}\mathcal{+D}_{v}$
320 adcroft 1.1 \end{tabular}
321     \right\} \left\{
322     \begin{tabular}{l}
323     \textit{advection} \\
324     \textit{metric} \\
325     \textit{Coriolis} \\
326     \textit{\ Forcing/Dissipation}
327     \end{tabular}
328 cnh 1.2 \right. \qquad \label{eq:gv-spherical}
329 adcroft 1.1 \end{equation}
330     \qquad \qquad \qquad \qquad \qquad
331    
332     \begin{equation}
333     \left.
334     \begin{tabular}{l}
335     $G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\
336 cnh 1.4 $+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}}
337 adcroft 1.1 \right\} $ \\
338     ${+2\Omega u\cos lat}$ \\
339 cnh 1.4 $\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$
340 adcroft 1.1 \end{tabular}
341     \right\} \left\{
342     \begin{tabular}{l}
343     \textit{advection} \\
344     \textit{metric} \\
345     \textit{Coriolis} \\
346     \textit{\ Forcing/Dissipation}
347     \end{tabular}
348 cnh 1.2 \right. \label{eq:gw-spherical}
349 adcroft 1.1 \end{equation}
350     \qquad \qquad \qquad \qquad \qquad
351    
352 cnh 1.4 In the above `${r}$' is the distance from the center of the earth and `$
353 adcroft 1.1 lat$' is latitude.
354    
355     Grad and div operators in spherical coordinates are defined in appendix
356 cnh 1.4 OPERATORS.
357 adcroft 1.1 \marginpar{
358     Fig.6 Spherical polar coordinate system.}
359    
360     \subsubsection{Shallow atmosphere approximation}
361    
362     ............................
363    
364     \subsubsection{Hydrostatic and quasi-hydrostatic forms}
365    
366     These are discussed at length in Marshall et al (1997a).
367    
368     In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
369 cnh 1.4 terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r
370 adcroft 1.1 }$' is replaced by `$a$', the mean radius of the earth. Once the pressure is
371     found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi
372     _{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels
373     by integration of the hydrostatic relation, eq(\ref{hydro}).
374    
375     In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
376     gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
377     \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
378 cnh 1.4 contribution to the pressure field: only the terms underlined twice in Eqs. (
379 adcroft 1.1 \ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the
380     shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all}
381     the metric terms are retained and the full variation of the radial position
382     of a particle monitored. The \textbf{QH}\ vertical momentum equation (\ref
383     {vertmtm}) becomes:
384    
385     \[
386     \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat
387     \]
388     making a small correction to the hydrostatic pressure.
389    
390     \textbf{QH} has good energetic credentials - they are the same as for
391     \textbf{HPE}. Importantly, however, it has the same angular momentum
392     principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
393     et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
394    
395     \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
396    
397     The MIT model presently supports a full non-hydrostatic ocean isomorph, but
398     only a quasi-non-hydrostatic atmospheric isomorph.
399    
400     \paragraph{Non-hydrostatic Ocean}
401    
402 cnh 1.4 In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $
403 adcroft 1.1 \rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation
404     must be solved subject to Neumann boundary conditions (see below). It is
405     important to note that use of the full \textbf{NH} does not admit any new
406     `fast' waves in to the system - the incompressible condition (\ref
407     {incompressible}) has already filtered out acoustic modes. It does, however,
408     ensure that the gravity waves are treated accurately with an exact
409     dispersion relation. The \textbf{NH} set has a complete angular momentum
410     principle and consistent energetics - see White and Bromley, 1995; Marshall
411     et.al.\ 1997a.
412    
413     \paragraph{Quasi-nonhydrostatic Atmosphere}
414    
415 cnh 1.4 In the non-hydrostatic version of our atmospheric model we approximate $\dot{
416 adcroft 1.1 r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only
417     here) by:
418    
419     \begin{equation}
420 cnh 1.2 \dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt} \label{eq:quasi-nh-w}
421 adcroft 1.1 \end{equation}
422     where $p_{hy}$ is the hydrostatic pressure.
423    
424     ........................................
425    
426     \subsubsection{Summary of equation sets supported by model}
427    
428     The key equation sets and isomorphisms are summarised in fig.4.
429    
430     \paragraph{Atmosphere}
431    
432     \subparagraph{Hydrostatic and quasi-hydrostatic}
433    
434     Hydrostatic, and quasi-hydrostatic forms of the compressible non-Boussinesq
435     equations in $p-$coordinates are supported\ref{eq-p} - see appendix
436     Atmosphere, where they are written out in $p-$coordinates.
437    
438     \subparagraph{Quasi-nonhydrostatic}
439    
440     A quasi-nonhydrostatic form is also supported - see appendix Ocean.
441    
442     \paragraph{Ocean}
443    
444     \subparagraph{Hydrostatic and quasi-hydrostatic}
445    
446     Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
447     equations in $z-$coordinates are supported
448    
449     \subparagraph{Non-hydrostatic }
450    
451 cnh 1.4 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
452 adcroft 1.1 coordinates are supported.
453    
454     \subsection{Solution strategy}
455    
456 cnh 1.4 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
457     NH} models are summarized in Fig.7.
458 adcroft 1.1 \marginpar{
459     Fig.7 Solution strategy}
460    
461     Overview paragraph......
462    
463     There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
464 cnh 1.4 course, some complication that goes with the inclusion of $\cos \phi \ $
465 adcroft 1.1 Coriolis terms and the relaxation of the shallow atmosphere approximation.
466     But this leads to negligible increase in computation. In \textbf{NH}, in
467     contrast, one additional elliptic equation - a three-dimensional one - must
468     be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
469     essentially negligible in the hydrostatic limit (see detailed discussion in
470     Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
471     hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
472    
473     \subsection{Finding the pressure field}
474    
475     Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
476     pressure field must be obtained diagnostically. We proceed, as before, by
477     dividing the total (pressure/geo) potential in to three parts, a surface
478     part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
479     non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and
480 cnh 1.2 writing the momentum equation
481     as in (\ref{eq:mom-h}).
482 adcroft 1.1
483     \subsubsection{Hydrostatic pressure}
484    
485     Hydrostatic pressure is obtained by integrating (\ref{hydro}) vertically
486     from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
487    
488     \[
489     \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi
490     _{hyd}\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
491     \]
492     and so
493    
494 cnh 1.2 \begin{equation}
495 adcroft 1.1 \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr
496 cnh 1.2 \label{eq:hydro-phi}
497     \end{equation}
498 adcroft 1.1
499     \subsubsection{Surface pressure}
500    
501 cnh 1.4 The surface pressure equation can be obtained by integrating continuity, (
502 adcroft 1.1 \ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$
503    
504     \[
505 cnh 1.4 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
506 adcroft 1.1 }_{h}+\partial _{r}\dot{r}\right) dr=0
507     \]
508    
509     Thus:
510    
511     \[
512     \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
513 cnh 1.4 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
514 adcroft 1.1 _{h}dr=0
515     \]
516 cnh 1.4 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
517 adcroft 1.1 r $. The above can be rearranged to yield, using Leibnitz's theorem:
518    
519     \begin{equation}
520     \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
521     \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0
522 cnh 1.2 \label{eq:free-surface}
523 adcroft 1.1 \end{equation}
524    
525     Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
526     (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can
527     be written
528     \begin{equation}
529 cnh 1.2 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta
530     \label{eq:phi-surf}
531 adcroft 1.1 \end{equation}
532     where $b$ is the buoyancy.
533    
534     In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{mtm-split}), (\ref
535     {integralcontinuity}) and (\ref{link}) can be solved by inverting a 2-d
536     elliptic equation for $\phi _{s}$ as described in section ?.?. Both `free
537     surface' and `rigid lid' approaches are available.
538    
539     \subsubsection{Non-hydrostatic pressure}
540    
541 cnh 1.4 Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{
542 adcroft 1.1 \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation
543     (\ref{incompressible}), we deduce that:
544    
545     \begin{equation}
546 cnh 1.4 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
547     \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
548 cnh 1.2 \vec{\mathbf{F}} \label{eq:3d-invert}
549 adcroft 1.1 \end{equation}
550    
551     For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
552     subject to appropriate choice of boundary conditions. This method is usually
553     called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
554     Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
555     the 3-d problem does not need to be solved.
556    
557     \paragraph{Boundary Conditions}
558    
559     We apply the condition of no normal flow through all solid boundaries - the
560     coasts (in the ocean) and the bottom:
561    
562     \begin{equation}
563     \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
564     \end{equation}
565     where $\widehat{n}$ is a vector of unit length normal to the boundary. The
566     kinematic condition (\ref{nonormalflow}) is also applied to the vertical
567 cnh 1.4 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
568 adcroft 1.1 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
569     tangential component of velocity, $v_{T}$, at all solid boundaries,
570     depending on the form chosen for the dissipative terms in the momentum
571     equations - see below.
572    
573     Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:
574    
575     \begin{equation}
576     \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
577 cnh 1.2 \label{eq:inhom-neumann-nh}
578 adcroft 1.1 \end{equation}
579     where
580    
581     \[
582     \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
583     _{s}+\mathbf{\nabla }\phi _{hyd}\right)
584     \]
585     presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
586     (\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit
587 cnh 1.4 classical 3D potential theory and, by introducing an appropriately chosen $
588 adcroft 1.1 \delta $-function sheet of `source-charge', replace the inhomogenous
589     boundary condition on pressure by a homogeneous one. The source term $rhs$
590     in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By
591     simultaneously setting $
592     \begin{array}{l}
593     \widehat{n}.\vec{\mathbf{F}}
594     \end{array}
595     =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
596     self-consistent but simpler homogenised Elliptic problem is obtained:
597    
598     \[
599     \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
600     \]
601     where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
602     that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
603     {inhomneumann}) the modified boundary condition becomes:
604    
605     \begin{equation}
606 cnh 1.2 \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
607 adcroft 1.1 \end{equation}
608    
609     If the flow is `close' to hydrostatic balance then the 3-d inversion
610     converges rapidly because $\phi _{nh}\ $is then only a small correction to
611     the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
612    
613     The solution $\phi _{nh}\ $to (\ref{3dinvert}) and (\ref{homneuman}) does
614     not vanish at $r=R_{moving}$, and so refines the pressure there.
615    
616     \subsection{Forcing/dissipation}
617    
618     \subsubsection{Forcing}
619    
620     The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
621     `physics packages' described in detail in section ?.?.
622    
623     \subsubsection{Dissipation}
624    
625     \paragraph{Momentum}
626    
627     Many forms of momentum dissipation are available in the model. Laplacian and
628     biharmonic frictions are commonly used:
629    
630 cnh 1.2 \begin{equation}
631 cnh 1.4 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
632 adcroft 1.1 +A_{4}\nabla _{h}^{4}v
633 cnh 1.2 \label{eq:dissipation}
634     \end{equation}
635 adcroft 1.1 where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
636     coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
637     friction. These coefficients are the same for all velocity components.
638    
639     \paragraph{Tracers}
640    
641     The mixing terms for the temperature and salinity equations have a similar
642     form to that of momentum except that the diffusion tensor can be
643 cnh 1.4 non-diagonal and have varying coefficients. $\qquad $
644 cnh 1.2 \begin{equation}
645 adcroft 1.1 D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
646     _{h}^{4}(T,S)
647 cnh 1.2 \label{eq:diffusion}
648     \end{equation}
649 cnh 1.4 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
650 adcroft 1.1 horizontal coefficient for biharmonic diffusion. In the simplest case where
651     the subgrid-scale fluxes of heat and salt are parameterized with constant
652     horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
653     reduces to a diagonal matrix with constant coefficients:
654    
655 cnh 1.2 \begin{equation}
656 adcroft 1.1 \qquad \qquad \qquad \qquad K=\left(
657     \begin{array}{ccc}
658     K_{h} & 0 & 0 \\
659     0 & K_{h} & 0 \\
660     0 & 0 & K_{v}
661     \end{array}
662     \right) \qquad \qquad \qquad
663 cnh 1.2 \label{eq:diagonal-diffusion-tensor}
664     \end{equation}
665 adcroft 1.1 where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
666     coefficients. These coefficients are the same for all tracers (temperature,
667     salinity ... ).
668    
669     \subsection{Vector invariant form}
670    
671     For some purposes it is advantageous to write momentum advection in eq(\ref
672     {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:
673    
674     \begin{equation}
675 cnh 1.4 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
676 adcroft 1.1 +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
677     \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
678 cnh 1.2 \label{eq:vi-identity}
679 adcroft 1.1 \end{equation}
680     This permits alternative numerical treatments of the non-linear terms based
681     on their representation as a vorticity flux. Because gradients of coordinate
682     vectors no longer appear on the rhs of (\ref{vecinvariant}) (???), explicit
683     representation of the metric terms in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}),
684     can be avoided: information about the geometry is contained in the areas and
685     lengths of the volumes used to discretize the model.
686    
687     \subsection{Adjoint}
688    
689     ......

  ViewVC Help
Powered by ViewVC 1.1.22