/[MITgcm]/manual/s_overview/continuous_eqns.tex
ViewVC logotype

Contents of /manual/s_overview/continuous_eqns.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (show annotations) (download) (as text)
Wed Oct 10 16:48:40 2001 UTC (23 years, 9 months ago) by cnh
Branch: MAIN
CVS Tags: HEAD
Changes since 1.4: +1 -1 lines
File MIME type: application/x-tex
FILE REMOVED
Updates to part1 for figures

1 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/continuous_eqns.tex,v 1.4 2001/09/27 01:57:17 cnh Exp $
2 % $Name: $
3
4 \section{Continuous equations in `r' coordinates}
5
6 To render atmosphere and ocean models from one dynamical core we exploit
7 `isomorphisms' between equation sets that govern the evolution of the
8 respective fluids - see fig.4
9 \marginpar{
10 Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down
11 and encoded. The model variables have different interpretations depending on
12 whether the atmosphere or ocean is being studied. Thus, for example, the
13 vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
14 modeling the atmosphere and height, $z$, if we are modeling the ocean. A
15 complete list of the isomorphisms is given in table 1.
16 \marginpar{
17 Table 1. Isomorphisms}
18
19 The state of the fluid at any time is characterized by the distribution of
20 velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
21 `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
22 depend on $\theta $, $S$, and $p$. The equations that govern the evolution
23 of these fields, obtained by applying the laws of classical mechanics and
24 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
25 a generic vertical coordinate, $r$, see fig.5
26 \marginpar{
27 Fig.5 The vertical coordinate of model}:
28
29 \[
30 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
31 \right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}}
32 \mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm}
33 \]
34
35 \[
36 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
37 v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{
38 \mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm}
39 \]
40
41 \begin{equation}
42 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
43 \partial r}=0\text{ continuity} \label{incompressible}
44 \end{equation}
45
46 \[
47 b=b(\theta ,S,r)\text{ equation of state}
48 \]
49
50 \[
51 \frac{D\theta }{Dt}=\mathcal{F}_{\theta }\text{ }\mathcal{+D}_{\theta }\text{
52 potential temperature}
53 \]
54
55 \[
56 \frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity
57 }
58 \]
59
60 Here:
61
62 \[
63 r\text{ is the vertical coordinate}
64 \]
65
66 \[
67 \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
68 is the total derivative}
69 \]
70
71 \[
72 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
73 \text{ is the `grad' operator}
74 \]
75 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
76 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
77 is a unit vector in the vertical
78
79 \[
80 t\text{ is time}
81 \]
82
83 \[
84 \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
85 velocity}
86 \]
87
88 \[
89 \phi \text{ is the `pressure'/`geopotential'}
90 \]
91
92 \[
93 \vec{\Omega}\text{ is the Earth's rotation}
94 \]
95
96 \[
97 b\text{ is the `buoyancy'}
98 \]
99
100 \[
101 \theta \text{ is potential temperature}
102 \]
103
104 \[
105 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
106 \]
107
108 \[
109 \mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}}
110 \text{ are forcing and dissipation of }\vec{\mathbf{v}}
111 \]
112
113 \[
114 \mathcal{F}_{\theta }\mathcal{\ }\text{and }\mathcal{D}_{\theta }\text{ are
115 forcing and dissipation of }\theta
116 \]
117
118 \[
119 \mathcal{F}_{S}\mathcal{\ }\text{and }\mathcal{D}_{S}\text{ are forcing and
120 dissipation of }S
121 \]
122
123 The $\mathcal{F}^{\prime }s$ and $\mathcal{D}^{\prime }s$ are provided by
124 extensive `physics' packages for atmosphere and ocean described in section
125 ?.?.
126
127 \subsection{Kinematic Boundary conditions}
128
129 \subsubsection{vertical}
130
131 at fixed and moving $r$ surfaces we set (see fig.4):
132
133 \begin{eqnarray*}
134 \dot{r} &=&0\text{ at }r=R_{fixed}(x,y):\text{(ocean bottom, top of the
135 atmosphere)} \\
136 \dot{r} &=&\frac{Dr}{Dt}\text{ at }r=R_{moving}\text{ (ocean surface, bottom
137 of the atmosphere)}
138 \end{eqnarray*}
139 Here
140
141 \[
142 R_{moving}=R_{o}+\eta
143 \]
144 where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
145 whether we are in the atmosphere or ocean) of the `moving surface' in the
146 resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
147 of motion.
148
149 \subsubsection{horizontal}
150
151 \[
152 \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0
153 \]
154 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
155
156 \subsection{Atmosphere}
157
158 In the atmosphere, see fig. we interpret:
159 \begin{eqnarray}
160 r &=&p\text{ is the pressure} \\
161 \dot{r} &=&\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
162 coordinates} \\
163 \phi &=&g\,z\text{ is the geopotential height} \\
164 b &=&\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy} \\
165 \theta &=&T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature} \\
166 S &=&q\text{, the specific humidity}
167 \end{eqnarray}
168 where
169
170 \[
171 T\text{is absolute temperature}
172 \]
173 \[
174 p\text{ is the pressure}
175 \]
176 \begin{eqnarray*}
177 &&z\text{ is the height of the pressure surface} \\
178 &&g\text{ is the acceleration due to gravity}
179 \end{eqnarray*}
180
181 In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
182 the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
183 \[
184 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }
185 \]
186 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
187 constant and $c_{p}$ the specific heat of air at constant pressure.
188
189 At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
190
191 \[
192 R_{fixed}=p_{top}=0
193 \]
194 In a resting atmosphere the elevation of the mountains at the bottom is
195 given by
196 \[
197 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
198 \]
199 i.e. the (hydrostatic) pressure at the top of the mountains in a resting
200 atmosphere.
201
202 The boundary conditions at top and bottom are given by:
203
204 \begin{eqnarray}
205 &&\omega =0~\text{at }r=R_{fixed} \label{eq:fixed-bc-atmos}
206 \text{ (top of the atmosphere)} \\
207 \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
208 atmosphere)}
209 \label{eq:moving-bc-atmos}
210 \end{eqnarray}
211
212 Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent
213 set of atmospheric equations which, for convenience, are written out in $p$
214 coordinates in Appendix Atmosphere - see eqs(\ref{eq-p-hmom}) to (\ref
215 {eq-p-heat}).
216
217 \subsection{Ocean}
218
219 In the ocean we interpret:
220 \begin{eqnarray}
221 r &=&z\text{ is the height}
222 \label{eq:ocean-z}\\
223 \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
224 \label{eq:ocean-w}\\
225 \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure}
226 \label{eq:ocean-p}\\
227 b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
228 _{c}\right) \text{ is the buoyancy}
229 \label{eq:ocean-b}
230 \end{eqnarray}
231 where $\rho _{c}$ is a fixed reference density of water and $g$ is the
232 acceleration due to gravity.\noindent
233
234 In the above
235
236 At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
237
238 The surface of the ocean is given by: $R_{moving}=\eta $
239
240 The position of the resting free surface of the ocean is given by $
241 R_{o}=Z_{o}=0$.
242
243 Boundary conditions are:
244
245 \begin{eqnarray}
246 w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)}
247 \label{eq:fixed-bc-ocean}\\
248 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
249 \label{eq:moving-bc-ocean}}
250 \end{eqnarray}
251 where $\eta $ is the elevation of the free surface.
252
253 Then eq(\ref{incompressible}) yields a consistent set of oceanic equations
254 which, for convenience, are written out in $z$ coordinates in Appendix Ocean.
255
256 \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
257 Non-hydrostatic forms}
258
259 Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
260
261 \begin{equation}
262 \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
263 \label{eq:phi-split}
264 \end{equation}
265 and write eq(\ref{incompressible}a) in the form:
266
267 \begin{equation}
268 \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
269 _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
270 _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h}
271 \end{equation}
272
273 \begin{equation}
274 \frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic}
275 \end{equation}
276
277 \begin{equation}
278 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
279 \partial r}=G_{\dot{r}} \label{eq:mom-w}
280 \end{equation}
281 Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
282
283 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
284 {hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis
285 terms in the momentum equations. In spherical coordinates they take the form
286 \footnote{
287 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
288 in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined
289 terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully
290 non-hydrostatic model (\textbf{NH}) includes all terms.}:
291
292 \begin{equation}
293 \left.
294 \begin{tabular}{l}
295 $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
296 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}
297 \right\} $ \\
298 $-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}}
299 \right\} $ \\
300 $+\mathcal{F}_{u}\mathcal{+D}_{u}$
301 \end{tabular}
302 \right\} \left\{
303 \begin{tabular}{l}
304 \textit{advection} \\
305 \textit{metric} \\
306 \textit{Coriolis} \\
307 \textit{\ Forcing/Dissipation}
308 \end{tabular}
309 \right. \qquad \label{eq:gu-speherical}
310 \end{equation}
311
312 \begin{equation}
313 \left.
314 \begin{tabular}{l}
315 $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
316 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}
317 }\right\} $ \\
318 $-\left\{ -2\Omega u\sin lat\right\} $ \\
319 $+\mathcal{F}_{v}\mathcal{+D}_{v}$
320 \end{tabular}
321 \right\} \left\{
322 \begin{tabular}{l}
323 \textit{advection} \\
324 \textit{metric} \\
325 \textit{Coriolis} \\
326 \textit{\ Forcing/Dissipation}
327 \end{tabular}
328 \right. \qquad \label{eq:gv-spherical}
329 \end{equation}
330 \qquad \qquad \qquad \qquad \qquad
331
332 \begin{equation}
333 \left.
334 \begin{tabular}{l}
335 $G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\
336 $+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}}
337 \right\} $ \\
338 ${+2\Omega u\cos lat}$ \\
339 $\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$
340 \end{tabular}
341 \right\} \left\{
342 \begin{tabular}{l}
343 \textit{advection} \\
344 \textit{metric} \\
345 \textit{Coriolis} \\
346 \textit{\ Forcing/Dissipation}
347 \end{tabular}
348 \right. \label{eq:gw-spherical}
349 \end{equation}
350 \qquad \qquad \qquad \qquad \qquad
351
352 In the above `${r}$' is the distance from the center of the earth and `$
353 lat$' is latitude.
354
355 Grad and div operators in spherical coordinates are defined in appendix
356 OPERATORS.
357 \marginpar{
358 Fig.6 Spherical polar coordinate system.}
359
360 \subsubsection{Shallow atmosphere approximation}
361
362 ............................
363
364 \subsubsection{Hydrostatic and quasi-hydrostatic forms}
365
366 These are discussed at length in Marshall et al (1997a).
367
368 In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
369 terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r
370 }$' is replaced by `$a$', the mean radius of the earth. Once the pressure is
371 found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi
372 _{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels
373 by integration of the hydrostatic relation, eq(\ref{hydro}).
374
375 In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
376 gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
377 \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
378 contribution to the pressure field: only the terms underlined twice in Eqs. (
379 \ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the
380 shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all}
381 the metric terms are retained and the full variation of the radial position
382 of a particle monitored. The \textbf{QH}\ vertical momentum equation (\ref
383 {vertmtm}) becomes:
384
385 \[
386 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat
387 \]
388 making a small correction to the hydrostatic pressure.
389
390 \textbf{QH} has good energetic credentials - they are the same as for
391 \textbf{HPE}. Importantly, however, it has the same angular momentum
392 principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
393 et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
394
395 \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
396
397 The MIT model presently supports a full non-hydrostatic ocean isomorph, but
398 only a quasi-non-hydrostatic atmospheric isomorph.
399
400 \paragraph{Non-hydrostatic Ocean}
401
402 In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $
403 \rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation
404 must be solved subject to Neumann boundary conditions (see below). It is
405 important to note that use of the full \textbf{NH} does not admit any new
406 `fast' waves in to the system - the incompressible condition (\ref
407 {incompressible}) has already filtered out acoustic modes. It does, however,
408 ensure that the gravity waves are treated accurately with an exact
409 dispersion relation. The \textbf{NH} set has a complete angular momentum
410 principle and consistent energetics - see White and Bromley, 1995; Marshall
411 et.al.\ 1997a.
412
413 \paragraph{Quasi-nonhydrostatic Atmosphere}
414
415 In the non-hydrostatic version of our atmospheric model we approximate $\dot{
416 r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only
417 here) by:
418
419 \begin{equation}
420 \dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt} \label{eq:quasi-nh-w}
421 \end{equation}
422 where $p_{hy}$ is the hydrostatic pressure.
423
424 ........................................
425
426 \subsubsection{Summary of equation sets supported by model}
427
428 The key equation sets and isomorphisms are summarised in fig.4.
429
430 \paragraph{Atmosphere}
431
432 \subparagraph{Hydrostatic and quasi-hydrostatic}
433
434 Hydrostatic, and quasi-hydrostatic forms of the compressible non-Boussinesq
435 equations in $p-$coordinates are supported\ref{eq-p} - see appendix
436 Atmosphere, where they are written out in $p-$coordinates.
437
438 \subparagraph{Quasi-nonhydrostatic}
439
440 A quasi-nonhydrostatic form is also supported - see appendix Ocean.
441
442 \paragraph{Ocean}
443
444 \subparagraph{Hydrostatic and quasi-hydrostatic}
445
446 Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
447 equations in $z-$coordinates are supported
448
449 \subparagraph{Non-hydrostatic }
450
451 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
452 coordinates are supported.
453
454 \subsection{Solution strategy}
455
456 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
457 NH} models are summarized in Fig.7.
458 \marginpar{
459 Fig.7 Solution strategy}
460
461 Overview paragraph......
462
463 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
464 course, some complication that goes with the inclusion of $\cos \phi \ $
465 Coriolis terms and the relaxation of the shallow atmosphere approximation.
466 But this leads to negligible increase in computation. In \textbf{NH}, in
467 contrast, one additional elliptic equation - a three-dimensional one - must
468 be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
469 essentially negligible in the hydrostatic limit (see detailed discussion in
470 Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
471 hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
472
473 \subsection{Finding the pressure field}
474
475 Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
476 pressure field must be obtained diagnostically. We proceed, as before, by
477 dividing the total (pressure/geo) potential in to three parts, a surface
478 part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
479 non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and
480 writing the momentum equation
481 as in (\ref{eq:mom-h}).
482
483 \subsubsection{Hydrostatic pressure}
484
485 Hydrostatic pressure is obtained by integrating (\ref{hydro}) vertically
486 from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
487
488 \[
489 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi
490 _{hyd}\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
491 \]
492 and so
493
494 \begin{equation}
495 \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr
496 \label{eq:hydro-phi}
497 \end{equation}
498
499 \subsubsection{Surface pressure}
500
501 The surface pressure equation can be obtained by integrating continuity, (
502 \ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$
503
504 \[
505 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
506 }_{h}+\partial _{r}\dot{r}\right) dr=0
507 \]
508
509 Thus:
510
511 \[
512 \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
513 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
514 _{h}dr=0
515 \]
516 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
517 r $. The above can be rearranged to yield, using Leibnitz's theorem:
518
519 \begin{equation}
520 \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
521 \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0
522 \label{eq:free-surface}
523 \end{equation}
524
525 Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
526 (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can
527 be written
528 \begin{equation}
529 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta
530 \label{eq:phi-surf}
531 \end{equation}
532 where $b$ is the buoyancy.
533
534 In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{mtm-split}), (\ref
535 {integralcontinuity}) and (\ref{link}) can be solved by inverting a 2-d
536 elliptic equation for $\phi _{s}$ as described in section ?.?. Both `free
537 surface' and `rigid lid' approaches are available.
538
539 \subsubsection{Non-hydrostatic pressure}
540
541 Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{
542 \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation
543 (\ref{incompressible}), we deduce that:
544
545 \begin{equation}
546 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
547 \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
548 \vec{\mathbf{F}} \label{eq:3d-invert}
549 \end{equation}
550
551 For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
552 subject to appropriate choice of boundary conditions. This method is usually
553 called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
554 Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
555 the 3-d problem does not need to be solved.
556
557 \paragraph{Boundary Conditions}
558
559 We apply the condition of no normal flow through all solid boundaries - the
560 coasts (in the ocean) and the bottom:
561
562 \begin{equation}
563 \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
564 \end{equation}
565 where $\widehat{n}$ is a vector of unit length normal to the boundary. The
566 kinematic condition (\ref{nonormalflow}) is also applied to the vertical
567 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
568 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
569 tangential component of velocity, $v_{T}$, at all solid boundaries,
570 depending on the form chosen for the dissipative terms in the momentum
571 equations - see below.
572
573 Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:
574
575 \begin{equation}
576 \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
577 \label{eq:inhom-neumann-nh}
578 \end{equation}
579 where
580
581 \[
582 \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
583 _{s}+\mathbf{\nabla }\phi _{hyd}\right)
584 \]
585 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
586 (\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit
587 classical 3D potential theory and, by introducing an appropriately chosen $
588 \delta $-function sheet of `source-charge', replace the inhomogenous
589 boundary condition on pressure by a homogeneous one. The source term $rhs$
590 in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By
591 simultaneously setting $
592 \begin{array}{l}
593 \widehat{n}.\vec{\mathbf{F}}
594 \end{array}
595 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
596 self-consistent but simpler homogenised Elliptic problem is obtained:
597
598 \[
599 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
600 \]
601 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
602 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
603 {inhomneumann}) the modified boundary condition becomes:
604
605 \begin{equation}
606 \widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh}
607 \end{equation}
608
609 If the flow is `close' to hydrostatic balance then the 3-d inversion
610 converges rapidly because $\phi _{nh}\ $is then only a small correction to
611 the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
612
613 The solution $\phi _{nh}\ $to (\ref{3dinvert}) and (\ref{homneuman}) does
614 not vanish at $r=R_{moving}$, and so refines the pressure there.
615
616 \subsection{Forcing/dissipation}
617
618 \subsubsection{Forcing}
619
620 The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
621 `physics packages' described in detail in section ?.?.
622
623 \subsubsection{Dissipation}
624
625 \paragraph{Momentum}
626
627 Many forms of momentum dissipation are available in the model. Laplacian and
628 biharmonic frictions are commonly used:
629
630 \begin{equation}
631 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
632 +A_{4}\nabla _{h}^{4}v
633 \label{eq:dissipation}
634 \end{equation}
635 where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
636 coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
637 friction. These coefficients are the same for all velocity components.
638
639 \paragraph{Tracers}
640
641 The mixing terms for the temperature and salinity equations have a similar
642 form to that of momentum except that the diffusion tensor can be
643 non-diagonal and have varying coefficients. $\qquad $
644 \begin{equation}
645 D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
646 _{h}^{4}(T,S)
647 \label{eq:diffusion}
648 \end{equation}
649 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
650 horizontal coefficient for biharmonic diffusion. In the simplest case where
651 the subgrid-scale fluxes of heat and salt are parameterized with constant
652 horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
653 reduces to a diagonal matrix with constant coefficients:
654
655 \begin{equation}
656 \qquad \qquad \qquad \qquad K=\left(
657 \begin{array}{ccc}
658 K_{h} & 0 & 0 \\
659 0 & K_{h} & 0 \\
660 0 & 0 & K_{v}
661 \end{array}
662 \right) \qquad \qquad \qquad
663 \label{eq:diagonal-diffusion-tensor}
664 \end{equation}
665 where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
666 coefficients. These coefficients are the same for all tracers (temperature,
667 salinity ... ).
668
669 \subsection{Vector invariant form}
670
671 For some purposes it is advantageous to write momentum advection in eq(\ref
672 {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:
673
674 \begin{equation}
675 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
676 +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
677 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
678 \label{eq:vi-identity}
679 \end{equation}
680 This permits alternative numerical treatments of the non-linear terms based
681 on their representation as a vorticity flux. Because gradients of coordinate
682 vectors no longer appear on the rhs of (\ref{vecinvariant}) (???), explicit
683 representation of the metric terms in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}),
684 can be avoided: information about the geometry is contained in the areas and
685 lengths of the volumes used to discretize the model.
686
687 \subsection{Adjoint}
688
689 ......

  ViewVC Help
Powered by ViewVC 1.1.22