/[MITgcm]/manual/s_overview/continuous_eqns.tex
ViewVC logotype

Contents of /manual/s_overview/continuous_eqns.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download) (as text)
Wed Aug 8 16:16:18 2001 UTC (23 years, 11 months ago) by adcroft
Branch: MAIN
Branch point for: dummy
File MIME type: application/x-tex
Initial revision

1 % $Header: $
2 % $Name: $
3
4 \section{Continuous equations in `r' coordinates}
5
6 To render atmosphere and ocean models from one dynamical core we exploit
7 `isomorphisms' between equation sets that govern the evolution of the
8 respective fluids - see fig.4%
9 \marginpar{
10 Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down
11 and encoded. The model variables have different interpretations depending on
12 whether the atmosphere or ocean is being studied. Thus, for example, the
13 vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
14 modeling the atmosphere and height, $z$, if we are modeling the ocean. A
15 complete list of the isomorphisms is given in table 1.%
16 \marginpar{
17 Table 1. Isomorphisms}
18
19 The state of the fluid at any time is characterized by the distribution of
20 velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
21 `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
22 depend on $\theta $, $S$, and $p$. The equations that govern the evolution
23 of these fields, obtained by applying the laws of classical mechanics and
24 thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
25 a generic vertical coordinate, $r$, see fig.5%
26 \marginpar{
27 Fig.5 The vertical coordinate of model}:
28
29 \[
30 \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}%
31 \right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}}%
32 \mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm}
33 \]
34
35 \[
36 \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{%
37 v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{%
38 \mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm}
39 \]
40
41 \begin{equation}
42 \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{%
43 \partial r}=0\text{ continuity} \label{incompressible}
44 \end{equation}
45
46 \[
47 b=b(\theta ,S,r)\text{ equation of state}
48 \]
49
50 \[
51 \frac{D\theta }{Dt}=\mathcal{F}_{\theta }\text{ }\mathcal{+D}_{\theta }\text{
52 potential temperature}
53 \]
54
55 \[
56 \frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity%
57 }
58 \]
59
60 Here:
61
62 \[
63 r\text{ is the vertical coordinate}
64 \]
65
66 \[
67 \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
68 is the total derivative}
69 \]
70
71 \[
72 \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}%
73 \text{ is the `grad' operator}
74 \]
75 with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}%
76 \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
77 is a unit vector in the vertical
78
79 \[
80 t\text{ is time}
81 \]
82
83 \[
84 \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
85 velocity}
86 \]
87
88 \[
89 \phi \text{ is the `pressure'/`geopotential'}
90 \]
91
92 \[
93 \vec{\Omega}\text{ is the Earth's rotation}
94 \]
95
96 \[
97 b\text{ is the `buoyancy'}
98 \]
99
100 \[
101 \theta \text{ is potential temperature}
102 \]
103
104 \[
105 S\text{ is specific humidity in the atmosphere; salinity in the ocean}
106 \]
107
108 \[
109 \mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}}%
110 \text{ are forcing and dissipation of }\vec{\mathbf{v}}
111 \]
112
113 \[
114 \mathcal{F}_{\theta }\mathcal{\ }\text{and }\mathcal{D}_{\theta }\text{ are
115 forcing and dissipation of }\theta
116 \]
117
118 \[
119 \mathcal{F}_{S}\mathcal{\ }\text{and }\mathcal{D}_{S}\text{ are forcing and
120 dissipation of }S
121 \]
122
123 The $\mathcal{F}^{\prime }s$ and $\mathcal{D}^{\prime }s$ are provided by
124 extensive `physics' packages for atmosphere and ocean described in section
125 ?.?.
126
127 \subsection{Kinematic Boundary conditions}
128
129 \subsubsection{vertical}
130
131 at fixed and moving $r$ surfaces we set (see fig.4):
132
133 \begin{eqnarray*}
134 \dot{r} &=&0\text{ at }r=R_{fixed}(x,y):\text{(ocean bottom, top of the
135 atmosphere)} \\
136 \dot{r} &=&\frac{Dr}{Dt}\text{ at }r=R_{moving}\text{ (ocean surface, bottom
137 of the atmosphere)}
138 \end{eqnarray*}
139 Here
140
141 \[
142 R_{moving}=R_{o}+\eta
143 \]
144 where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
145 whether we are in the atmosphere or ocean) of the `moving surface' in the
146 resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
147 of motion.
148
149 \subsubsection{horizontal}
150
151 \[
152 \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0
153 \]
154 where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
155
156 \subsection{Atmosphere}
157
158 In the atmosphere, see fig. we interpret:
159 \begin{eqnarray}
160 r &=&p\text{ is the pressure} \\
161 \dot{r} &=&\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
162 coordinates} \\
163 \phi &=&g\,z\text{ is the geopotential height} \\
164 b &=&\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy} \\
165 \theta &=&T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature} \\
166 S &=&q\text{, the specific humidity}
167 \end{eqnarray}
168 where
169
170 \[
171 T\text{is absolute temperature}
172 \]
173 \[
174 p\text{ is the pressure}
175 \]
176 \begin{eqnarray*}
177 &&z\text{ is the height of the pressure surface} \\
178 &&g\text{ is the acceleration due to gravity}
179 \end{eqnarray*}
180
181 In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
182 the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
183 \[
184 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }
185 \]
186 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
187 constant and $c_{p}$ the specific heat of air at constant pressure.
188
189 At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
190
191 \[
192 R_{fixed}=p_{top}=0
193 \]
194 In a resting atmosphere the elevation of the mountains at the bottom is
195 given by
196 \[
197 R_{moving}=R_{o}(x,y)=p_{o}(x,y)
198 \]
199 i.e. the (hydrostatic) pressure at the top of the mountains in a resting
200 atmosphere.
201
202 The boundary conditions at top and bottom are given by:
203
204 \begin{eqnarray*}
205 &&\omega =0~\text{at }r=R_{fixed}\text{ (top of the atmosphere)} \\
206 \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
207 atmosphere)}
208 \end{eqnarray*}
209
210 Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent
211 set of atmospheric equations which, for convenience, are written out in $p$
212 coordinates in Appendix Atmosphere - see eqs(\ref{eq-p-hmom}) to (\ref
213 {eq-p-heat}).
214
215 \subsection{Ocean}
216
217 In the ocean we interpret:
218 \begin{eqnarray}
219 r &=&z\text{ is the height} \\
220 \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} \\
221 \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \\
222 b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
223 _{c}\right) \text{ is the buoyancy}
224 \end{eqnarray}
225 where $\rho _{c}$ is a fixed reference density of water and $g$ is the
226 acceleration due to gravity.\noindent
227
228 In the above
229
230 At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
231
232 The surface of the ocean is given by: $R_{moving}=\eta $
233
234 The position of the resting free surface of the ocean is given by $%
235 R_{o}=Z_{o}=0$.
236
237 Boundary conditions are:
238
239 \begin{eqnarray*}
240 w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \\
241 w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)}
242 \end{eqnarray*}
243 where $\eta $ is the elevation of the free surface.
244
245 Then eq(\ref{incompressible}) yields a consistent set of oceanic equations
246 which, for convenience, are written out in $z$ coordinates in Appendix Ocean.
247
248 \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
249 Non-hydrostatic forms}
250
251 Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
252
253 \begin{equation}
254 \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
255 \label{pressuresplit}
256 \end{equation}
257 and write eq(\ref{incompressible}a) in the form:
258
259 \begin{equation}
260 \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
261 _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
262 _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{hor-mtm}
263 \end{equation}
264
265 \begin{equation}
266 \frac{\partial \phi _{hyd}}{\partial r}=-b \label{hydro}
267 \end{equation}
268
269 \begin{equation}
270 \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{%
271 \partial r}=G_{\dot{r}} \label{vertmtm}
272 \end{equation}
273 Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
274
275 The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
276 {hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis
277 terms in the momentum equations. In spherical coordinates they take the form%
278 \footnote{%
279 In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
280 in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined
281 terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully
282 non-hydrostatic model (\textbf{NH}) includes all terms.}:
283
284 \begin{equation}
285 \left.
286 \begin{tabular}{l}
287 $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
288 $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}%
289 \right\} $ \\
290 $-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}}%
291 \right\} $ \\
292 $+\mathcal{F}_{u}\mathcal{+D}_{u}$%
293 \end{tabular}
294 \right\} \left\{
295 \begin{tabular}{l}
296 \textit{advection} \\
297 \textit{metric} \\
298 \textit{Coriolis} \\
299 \textit{\ Forcing/Dissipation}
300 \end{tabular}
301 \right. \qquad \label{Gu}
302 \end{equation}
303
304 \begin{equation}
305 \left.
306 \begin{tabular}{l}
307 $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
308 $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}%
309 }\right\} $ \\
310 $-\left\{ -2\Omega u\sin lat\right\} $ \\
311 $+\mathcal{F}_{v}\mathcal{+D}_{v}$%
312 \end{tabular}
313 \right\} \left\{
314 \begin{tabular}{l}
315 \textit{advection} \\
316 \textit{metric} \\
317 \textit{Coriolis} \\
318 \textit{\ Forcing/Dissipation}
319 \end{tabular}
320 \right. \qquad \label{Gv}
321 \end{equation}
322 \qquad \qquad \qquad \qquad \qquad
323
324 \begin{equation}
325 \left.
326 \begin{tabular}{l}
327 $G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\
328 $+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}}%
329 \right\} $ \\
330 ${+2\Omega u\cos lat}$ \\
331 $\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$%
332 \end{tabular}
333 \right\} \left\{
334 \begin{tabular}{l}
335 \textit{advection} \\
336 \textit{metric} \\
337 \textit{Coriolis} \\
338 \textit{\ Forcing/Dissipation}
339 \end{tabular}
340 \right. \label{Gw}
341 \end{equation}
342 \qquad \qquad \qquad \qquad \qquad
343
344 In the above `${r}$' is the distance from the center of the earth and `$%
345 lat$' is latitude.
346
347 Grad and div operators in spherical coordinates are defined in appendix
348 OPERATORS.%
349 \marginpar{
350 Fig.6 Spherical polar coordinate system.}
351
352 \subsubsection{Shallow atmosphere approximation}
353
354 ............................
355
356 \subsubsection{Hydrostatic and quasi-hydrostatic forms}
357
358 These are discussed at length in Marshall et al (1997a).
359
360 In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
361 terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r%
362 }$' is replaced by `$a$', the mean radius of the earth. Once the pressure is
363 found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi
364 _{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels
365 by integration of the hydrostatic relation, eq(\ref{hydro}).
366
367 In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
368 gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
369 \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
370 contribution to the pressure field: only the terms underlined twice in Eqs. (%
371 \ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the
372 shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all}
373 the metric terms are retained and the full variation of the radial position
374 of a particle monitored. The \textbf{QH}\ vertical momentum equation (\ref
375 {vertmtm}) becomes:
376
377 \[
378 \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat
379 \]
380 making a small correction to the hydrostatic pressure.
381
382 \textbf{QH} has good energetic credentials - they are the same as for
383 \textbf{HPE}. Importantly, however, it has the same angular momentum
384 principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
385 et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
386
387 \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
388
389 The MIT model presently supports a full non-hydrostatic ocean isomorph, but
390 only a quasi-non-hydrostatic atmospheric isomorph.
391
392 \paragraph{Non-hydrostatic Ocean}
393
394 In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $%
395 \rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation
396 must be solved subject to Neumann boundary conditions (see below). It is
397 important to note that use of the full \textbf{NH} does not admit any new
398 `fast' waves in to the system - the incompressible condition (\ref
399 {incompressible}) has already filtered out acoustic modes. It does, however,
400 ensure that the gravity waves are treated accurately with an exact
401 dispersion relation. The \textbf{NH} set has a complete angular momentum
402 principle and consistent energetics - see White and Bromley, 1995; Marshall
403 et.al.\ 1997a.
404
405 \paragraph{Quasi-nonhydrostatic Atmosphere}
406
407 In the non-hydrostatic version of our atmospheric model we approximate $\dot{%
408 r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only
409 here) by:
410
411 \begin{equation}
412 \dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt} \label{quasinonhydro}
413 \end{equation}
414 where $p_{hy}$ is the hydrostatic pressure.
415
416 ........................................
417
418 \subsubsection{Summary of equation sets supported by model}
419
420 The key equation sets and isomorphisms are summarised in fig.4.
421
422 \paragraph{Atmosphere}
423
424 \subparagraph{Hydrostatic and quasi-hydrostatic}
425
426 Hydrostatic, and quasi-hydrostatic forms of the compressible non-Boussinesq
427 equations in $p-$coordinates are supported\ref{eq-p} - see appendix
428 Atmosphere, where they are written out in $p-$coordinates.
429
430 \subparagraph{Quasi-nonhydrostatic}
431
432 A quasi-nonhydrostatic form is also supported - see appendix Ocean.
433
434 \paragraph{Ocean}
435
436 \subparagraph{Hydrostatic and quasi-hydrostatic}
437
438 Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
439 equations in $z-$coordinates are supported
440
441 \subparagraph{Non-hydrostatic }
442
443 Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$%
444 coordinates are supported.
445
446 \subsection{Solution strategy}
447
448 The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{%
449 NH} models are summarized in Fig.7.%
450 \marginpar{
451 Fig.7 Solution strategy}
452
453 Overview paragraph......
454
455 There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
456 course, some complication that goes with the inclusion of $\cos \phi \ $%
457 Coriolis terms and the relaxation of the shallow atmosphere approximation.
458 But this leads to negligible increase in computation. In \textbf{NH}, in
459 contrast, one additional elliptic equation - a three-dimensional one - must
460 be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
461 essentially negligible in the hydrostatic limit (see detailed discussion in
462 Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
463 hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
464
465 \subsection{Finding the pressure field}
466
467 Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
468 pressure field must be obtained diagnostically. We proceed, as before, by
469 dividing the total (pressure/geo) potential in to three parts, a surface
470 part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
471 non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and
472 writing the momentum equation in the form
473 \begin{equation}
474 \frac{\partial }{\partial t}\vec{\mathbf{v}_{h}}+\mathbf{\nabla }_{h}\phi
475 _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }\phi
476 _{nh}=\vec{\mathbf{G}}_{\vec{v}} \label{mtm-split}
477 \end{equation}
478 as in (\ref{hor-mtm}).
479
480 \subsubsection{Hydrostatic pressure}
481
482 Hydrostatic pressure is obtained by integrating (\ref{hydro}) vertically
483 from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
484
485 \[
486 \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi
487 _{hyd}\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
488 \]
489 and so
490
491 \[
492 \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr
493 \]
494
495 \subsubsection{Surface pressure}
496
497 The surface pressure equation can be obtained by integrating continuity, (%
498 \ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$
499
500 \[
501 \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}%
502 }_{h}+\partial _{r}\dot{r}\right) dr=0
503 \]
504
505 Thus:
506
507 \[
508 \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
509 +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}%
510 _{h}dr=0
511 \]
512 where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $%
513 r $. The above can be rearranged to yield, using Leibnitz's theorem:
514
515 \begin{equation}
516 \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
517 \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0
518 \label{integralcontinuity}
519 \end{equation}
520
521 Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
522 (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can
523 be written
524 \begin{equation}
525 \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta \label{link}
526 \end{equation}
527 where $b$ is the buoyancy.
528
529 In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{mtm-split}), (\ref
530 {integralcontinuity}) and (\ref{link}) can be solved by inverting a 2-d
531 elliptic equation for $\phi _{s}$ as described in section ?.?. Both `free
532 surface' and `rigid lid' approaches are available.
533
534 \subsubsection{Non-hydrostatic pressure}
535
536 Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{%
537 \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation
538 (\ref{incompressible}), we deduce that:
539
540 \begin{equation}
541 \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{%
542 \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .%
543 \vec{\mathbf{F}} \label{3dinvert}
544 \end{equation}
545
546 For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
547 subject to appropriate choice of boundary conditions. This method is usually
548 called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
549 Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
550 the 3-d problem does not need to be solved.
551
552 \paragraph{Boundary Conditions}
553
554 We apply the condition of no normal flow through all solid boundaries - the
555 coasts (in the ocean) and the bottom:
556
557 \begin{equation}
558 \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
559 \end{equation}
560 where $\widehat{n}$ is a vector of unit length normal to the boundary. The
561 kinematic condition (\ref{nonormalflow}) is also applied to the vertical
562 velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $%
563 \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
564 tangential component of velocity, $v_{T}$, at all solid boundaries,
565 depending on the form chosen for the dissipative terms in the momentum
566 equations - see below.
567
568 Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:
569
570 \begin{equation}
571 \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
572 \label{inhomneumann}
573 \end{equation}
574 where
575
576 \[
577 \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
578 _{s}+\mathbf{\nabla }\phi _{hyd}\right)
579 \]
580 presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
581 (\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit
582 classical 3D potential theory and, by introducing an appropriately chosen $%
583 \delta $-function sheet of `source-charge', replace the inhomogenous
584 boundary condition on pressure by a homogeneous one. The source term $rhs$
585 in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By
586 simultaneously setting $
587 \begin{array}{l}
588 \widehat{n}.\vec{\mathbf{F}}
589 \end{array}
590 =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
591 self-consistent but simpler homogenised Elliptic problem is obtained:
592
593 \[
594 \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
595 \]
596 where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
597 that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
598 {inhomneumann}) the modified boundary condition becomes:
599
600 \begin{equation}
601 \widehat{n}.\nabla \phi _{nh}=0 \label{homneuman}
602 \end{equation}
603
604 If the flow is `close' to hydrostatic balance then the 3-d inversion
605 converges rapidly because $\phi _{nh}\ $is then only a small correction to
606 the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
607
608 The solution $\phi _{nh}\ $to (\ref{3dinvert}) and (\ref{homneuman}) does
609 not vanish at $r=R_{moving}$, and so refines the pressure there.
610
611 \subsection{Forcing/dissipation}
612
613 \subsubsection{Forcing}
614
615 The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
616 `physics packages' described in detail in section ?.?.
617
618 \subsubsection{Dissipation}
619
620 \paragraph{Momentum}
621
622 Many forms of momentum dissipation are available in the model. Laplacian and
623 biharmonic frictions are commonly used:
624
625 \[
626 D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}%
627 +A_{4}\nabla _{h}^{4}v
628 \]
629 where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
630 coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
631 friction. These coefficients are the same for all velocity components.
632
633 \paragraph{Tracers}
634
635 The mixing terms for the temperature and salinity equations have a similar
636 form to that of momentum except that the diffusion tensor can be
637 non-diagonal and have varying coefficients. $\qquad $%
638 \[
639 D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
640 _{h}^{4}(T,S)
641 \]
642 where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $%
643 horizontal coefficient for biharmonic diffusion. In the simplest case where
644 the subgrid-scale fluxes of heat and salt are parameterized with constant
645 horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
646 reduces to a diagonal matrix with constant coefficients:
647
648 \[
649 \qquad \qquad \qquad \qquad K=\left(
650 \begin{array}{ccc}
651 K_{h} & 0 & 0 \\
652 0 & K_{h} & 0 \\
653 0 & 0 & K_{v}
654 \end{array}
655 \right) \qquad \qquad \qquad
656 \]
657 where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
658 coefficients. These coefficients are the same for all tracers (temperature,
659 salinity ... ).
660
661 \subsection{Vector invariant form}
662
663 For some purposes it is advantageous to write momentum advection in eq(\ref
664 {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:
665
666 \begin{equation}
667 \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}%
668 +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
669 \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
670 \label{vecinvariant}
671 \end{equation}
672 This permits alternative numerical treatments of the non-linear terms based
673 on their representation as a vorticity flux. Because gradients of coordinate
674 vectors no longer appear on the rhs of (\ref{vecinvariant}) (???), explicit
675 representation of the metric terms in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}),
676 can be avoided: information about the geometry is contained in the areas and
677 lengths of the volumes used to discretize the model.
678
679 \subsection{Adjoint}
680
681 ......

  ViewVC Help
Powered by ViewVC 1.1.22