1 |
% $Header: $ |
2 |
% $Name: $ |
3 |
|
4 |
\section{Continuous equations in `r' coordinates} |
5 |
|
6 |
To render atmosphere and ocean models from one dynamical core we exploit |
7 |
`isomorphisms' between equation sets that govern the evolution of the |
8 |
respective fluids - see fig.4% |
9 |
\marginpar{ |
10 |
Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down |
11 |
and encoded. The model variables have different interpretations depending on |
12 |
whether the atmosphere or ocean is being studied. Thus, for example, the |
13 |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
14 |
modeling the atmosphere and height, $z$, if we are modeling the ocean. A |
15 |
complete list of the isomorphisms is given in table 1.% |
16 |
\marginpar{ |
17 |
Table 1. Isomorphisms} |
18 |
|
19 |
The state of the fluid at any time is characterized by the distribution of |
20 |
velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a |
21 |
`geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may |
22 |
depend on $\theta $, $S$, and $p$. The equations that govern the evolution |
23 |
of these fields, obtained by applying the laws of classical mechanics and |
24 |
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of |
25 |
a generic vertical coordinate, $r$, see fig.5% |
26 |
\marginpar{ |
27 |
Fig.5 The vertical coordinate of model}: |
28 |
|
29 |
\[ |
30 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}% |
31 |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}}% |
32 |
\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm} |
33 |
\] |
34 |
|
35 |
\[ |
36 |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{% |
37 |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{% |
38 |
\mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm} |
39 |
\] |
40 |
|
41 |
\begin{equation} |
42 |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{% |
43 |
\partial r}=0\text{ continuity} \label{incompressible} |
44 |
\end{equation} |
45 |
|
46 |
\[ |
47 |
b=b(\theta ,S,r)\text{ equation of state} |
48 |
\] |
49 |
|
50 |
\[ |
51 |
\frac{D\theta }{Dt}=\mathcal{F}_{\theta }\text{ }\mathcal{+D}_{\theta }\text{ |
52 |
potential temperature} |
53 |
\] |
54 |
|
55 |
\[ |
56 |
\frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity% |
57 |
} |
58 |
\] |
59 |
|
60 |
Here: |
61 |
|
62 |
\[ |
63 |
r\text{ is the vertical coordinate} |
64 |
\] |
65 |
|
66 |
\[ |
67 |
\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ |
68 |
is the total derivative} |
69 |
\] |
70 |
|
71 |
\[ |
72 |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}% |
73 |
\text{ is the `grad' operator} |
74 |
\] |
75 |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}% |
76 |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
77 |
is a unit vector in the vertical |
78 |
|
79 |
\[ |
80 |
t\text{ is time} |
81 |
\] |
82 |
|
83 |
\[ |
84 |
\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the |
85 |
velocity} |
86 |
\] |
87 |
|
88 |
\[ |
89 |
\phi \text{ is the `pressure'/`geopotential'} |
90 |
\] |
91 |
|
92 |
\[ |
93 |
\vec{\Omega}\text{ is the Earth's rotation} |
94 |
\] |
95 |
|
96 |
\[ |
97 |
b\text{ is the `buoyancy'} |
98 |
\] |
99 |
|
100 |
\[ |
101 |
\theta \text{ is potential temperature} |
102 |
\] |
103 |
|
104 |
\[ |
105 |
S\text{ is specific humidity in the atmosphere; salinity in the ocean} |
106 |
\] |
107 |
|
108 |
\[ |
109 |
\mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}}% |
110 |
\text{ are forcing and dissipation of }\vec{\mathbf{v}} |
111 |
\] |
112 |
|
113 |
\[ |
114 |
\mathcal{F}_{\theta }\mathcal{\ }\text{and }\mathcal{D}_{\theta }\text{ are |
115 |
forcing and dissipation of }\theta |
116 |
\] |
117 |
|
118 |
\[ |
119 |
\mathcal{F}_{S}\mathcal{\ }\text{and }\mathcal{D}_{S}\text{ are forcing and |
120 |
dissipation of }S |
121 |
\] |
122 |
|
123 |
The $\mathcal{F}^{\prime }s$ and $\mathcal{D}^{\prime }s$ are provided by |
124 |
extensive `physics' packages for atmosphere and ocean described in section |
125 |
?.?. |
126 |
|
127 |
\subsection{Kinematic Boundary conditions} |
128 |
|
129 |
\subsubsection{vertical} |
130 |
|
131 |
at fixed and moving $r$ surfaces we set (see fig.4): |
132 |
|
133 |
\begin{eqnarray*} |
134 |
\dot{r} &=&0\text{ at }r=R_{fixed}(x,y):\text{(ocean bottom, top of the |
135 |
atmosphere)} \\ |
136 |
\dot{r} &=&\frac{Dr}{Dt}\text{ at }r=R_{moving}\text{ (ocean surface, bottom |
137 |
of the atmosphere)} |
138 |
\end{eqnarray*} |
139 |
Here |
140 |
|
141 |
\[ |
142 |
R_{moving}=R_{o}+\eta |
143 |
\] |
144 |
where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on |
145 |
whether we are in the atmosphere or ocean) of the `moving surface' in the |
146 |
resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence |
147 |
of motion. |
148 |
|
149 |
\subsubsection{horizontal} |
150 |
|
151 |
\[ |
152 |
\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 |
153 |
\] |
154 |
where $\vec{\mathbf{n}}$ is the normal to a solid boundary. |
155 |
|
156 |
\subsection{Atmosphere} |
157 |
|
158 |
In the atmosphere, see fig. we interpret: |
159 |
\begin{eqnarray} |
160 |
r &=&p\text{ is the pressure} \\ |
161 |
\dot{r} &=&\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{ |
162 |
coordinates} \\ |
163 |
\phi &=&g\,z\text{ is the geopotential height} \\ |
164 |
b &=&\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy} \\ |
165 |
\theta &=&T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature} \\ |
166 |
S &=&q\text{, the specific humidity} |
167 |
\end{eqnarray} |
168 |
where |
169 |
|
170 |
\[ |
171 |
T\text{is absolute temperature} |
172 |
\] |
173 |
\[ |
174 |
p\text{ is the pressure} |
175 |
\] |
176 |
\begin{eqnarray*} |
177 |
&&z\text{ is the height of the pressure surface} \\ |
178 |
&&g\text{ is the acceleration due to gravity} |
179 |
\end{eqnarray*} |
180 |
|
181 |
In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of |
182 |
the Exner function $\Pi (p)$ given by (see Appendix Atmosphere) |
183 |
\[ |
184 |
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } |
185 |
\] |
186 |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas |
187 |
constant and $c_{p}$ the specific heat of air at constant pressure. |
188 |
|
189 |
At the top of the atmosphere (which is `fixed' in our $r$ coordinate): |
190 |
|
191 |
\[ |
192 |
R_{fixed}=p_{top}=0 |
193 |
\] |
194 |
In a resting atmosphere the elevation of the mountains at the bottom is |
195 |
given by |
196 |
\[ |
197 |
R_{moving}=R_{o}(x,y)=p_{o}(x,y) |
198 |
\] |
199 |
i.e. the (hydrostatic) pressure at the top of the mountains in a resting |
200 |
atmosphere. |
201 |
|
202 |
The boundary conditions at top and bottom are given by: |
203 |
|
204 |
\begin{eqnarray*} |
205 |
&&\omega =0~\text{at }r=R_{fixed}\text{ (top of the atmosphere)} \\ |
206 |
\omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the |
207 |
atmosphere)} |
208 |
\end{eqnarray*} |
209 |
|
210 |
Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent |
211 |
set of atmospheric equations which, for convenience, are written out in $p$ |
212 |
coordinates in Appendix Atmosphere - see eqs(\ref{eq-p-hmom}) to (\ref |
213 |
{eq-p-heat}). |
214 |
|
215 |
\subsection{Ocean} |
216 |
|
217 |
In the ocean we interpret: |
218 |
\begin{eqnarray} |
219 |
r &=&z\text{ is the height} \\ |
220 |
\dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} \\ |
221 |
\phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \\ |
222 |
b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho |
223 |
_{c}\right) \text{ is the buoyancy} |
224 |
\end{eqnarray} |
225 |
where $\rho _{c}$ is a fixed reference density of water and $g$ is the |
226 |
acceleration due to gravity.\noindent |
227 |
|
228 |
In the above |
229 |
|
230 |
At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$. |
231 |
|
232 |
The surface of the ocean is given by: $R_{moving}=\eta $ |
233 |
|
234 |
The position of the resting free surface of the ocean is given by $% |
235 |
R_{o}=Z_{o}=0$. |
236 |
|
237 |
Boundary conditions are: |
238 |
|
239 |
\begin{eqnarray*} |
240 |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \\ |
241 |
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)} |
242 |
\end{eqnarray*} |
243 |
where $\eta $ is the elevation of the free surface. |
244 |
|
245 |
Then eq(\ref{incompressible}) yields a consistent set of oceanic equations |
246 |
which, for convenience, are written out in $z$ coordinates in Appendix Ocean. |
247 |
|
248 |
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
249 |
Non-hydrostatic forms} |
250 |
|
251 |
Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms: |
252 |
|
253 |
\begin{equation} |
254 |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
255 |
\label{pressuresplit} |
256 |
\end{equation} |
257 |
and write eq(\ref{incompressible}a) in the form: |
258 |
|
259 |
\begin{equation} |
260 |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
261 |
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi |
262 |
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{hor-mtm} |
263 |
\end{equation} |
264 |
|
265 |
\begin{equation} |
266 |
\frac{\partial \phi _{hyd}}{\partial r}=-b \label{hydro} |
267 |
\end{equation} |
268 |
|
269 |
\begin{equation} |
270 |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{% |
271 |
\partial r}=G_{\dot{r}} \label{vertmtm} |
272 |
\end{equation} |
273 |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
274 |
|
275 |
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref |
276 |
{hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis |
277 |
terms in the momentum equations. In spherical coordinates they take the form% |
278 |
\footnote{% |
279 |
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms |
280 |
in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined |
281 |
terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully |
282 |
non-hydrostatic model (\textbf{NH}) includes all terms.}: |
283 |
|
284 |
\begin{equation} |
285 |
\left. |
286 |
\begin{tabular}{l} |
287 |
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\ |
288 |
$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}% |
289 |
\right\} $ \\ |
290 |
$-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}}% |
291 |
\right\} $ \\ |
292 |
$+\mathcal{F}_{u}\mathcal{+D}_{u}$% |
293 |
\end{tabular} |
294 |
\right\} \left\{ |
295 |
\begin{tabular}{l} |
296 |
\textit{advection} \\ |
297 |
\textit{metric} \\ |
298 |
\textit{Coriolis} \\ |
299 |
\textit{\ Forcing/Dissipation} |
300 |
\end{tabular} |
301 |
\right. \qquad \label{Gu} |
302 |
\end{equation} |
303 |
|
304 |
\begin{equation} |
305 |
\left. |
306 |
\begin{tabular}{l} |
307 |
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\ |
308 |
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}% |
309 |
}\right\} $ \\ |
310 |
$-\left\{ -2\Omega u\sin lat\right\} $ \\ |
311 |
$+\mathcal{F}_{v}\mathcal{+D}_{v}$% |
312 |
\end{tabular} |
313 |
\right\} \left\{ |
314 |
\begin{tabular}{l} |
315 |
\textit{advection} \\ |
316 |
\textit{metric} \\ |
317 |
\textit{Coriolis} \\ |
318 |
\textit{\ Forcing/Dissipation} |
319 |
\end{tabular} |
320 |
\right. \qquad \label{Gv} |
321 |
\end{equation} |
322 |
\qquad \qquad \qquad \qquad \qquad |
323 |
|
324 |
\begin{equation} |
325 |
\left. |
326 |
\begin{tabular}{l} |
327 |
$G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\ |
328 |
$+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}}% |
329 |
\right\} $ \\ |
330 |
${+2\Omega u\cos lat}$ \\ |
331 |
$\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$% |
332 |
\end{tabular} |
333 |
\right\} \left\{ |
334 |
\begin{tabular}{l} |
335 |
\textit{advection} \\ |
336 |
\textit{metric} \\ |
337 |
\textit{Coriolis} \\ |
338 |
\textit{\ Forcing/Dissipation} |
339 |
\end{tabular} |
340 |
\right. \label{Gw} |
341 |
\end{equation} |
342 |
\qquad \qquad \qquad \qquad \qquad |
343 |
|
344 |
In the above `${r}$' is the distance from the center of the earth and `$% |
345 |
lat$' is latitude. |
346 |
|
347 |
Grad and div operators in spherical coordinates are defined in appendix |
348 |
OPERATORS.% |
349 |
\marginpar{ |
350 |
Fig.6 Spherical polar coordinate system.} |
351 |
|
352 |
\subsubsection{Shallow atmosphere approximation} |
353 |
|
354 |
............................ |
355 |
|
356 |
\subsubsection{Hydrostatic and quasi-hydrostatic forms} |
357 |
|
358 |
These are discussed at length in Marshall et al (1997a). |
359 |
|
360 |
In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined |
361 |
terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r% |
362 |
}$' is replaced by `$a$', the mean radius of the earth. Once the pressure is |
363 |
found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi |
364 |
_{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels |
365 |
by integration of the hydrostatic relation, eq(\ref{hydro}). |
366 |
|
367 |
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between |
368 |
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos |
369 |
\phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic |
370 |
contribution to the pressure field: only the terms underlined twice in Eqs. (% |
371 |
\ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the |
372 |
shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all} |
373 |
the metric terms are retained and the full variation of the radial position |
374 |
of a particle monitored. The \textbf{QH}\ vertical momentum equation (\ref |
375 |
{vertmtm}) becomes: |
376 |
|
377 |
\[ |
378 |
\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat |
379 |
\] |
380 |
making a small correction to the hydrostatic pressure. |
381 |
|
382 |
\textbf{QH} has good energetic credentials - they are the same as for |
383 |
\textbf{HPE}. Importantly, however, it has the same angular momentum |
384 |
principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall |
385 |
et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved. |
386 |
|
387 |
\subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms} |
388 |
|
389 |
The MIT model presently supports a full non-hydrostatic ocean isomorph, but |
390 |
only a quasi-non-hydrostatic atmospheric isomorph. |
391 |
|
392 |
\paragraph{Non-hydrostatic Ocean} |
393 |
|
394 |
In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $% |
395 |
\rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation |
396 |
must be solved subject to Neumann boundary conditions (see below). It is |
397 |
important to note that use of the full \textbf{NH} does not admit any new |
398 |
`fast' waves in to the system - the incompressible condition (\ref |
399 |
{incompressible}) has already filtered out acoustic modes. It does, however, |
400 |
ensure that the gravity waves are treated accurately with an exact |
401 |
dispersion relation. The \textbf{NH} set has a complete angular momentum |
402 |
principle and consistent energetics - see White and Bromley, 1995; Marshall |
403 |
et.al.\ 1997a. |
404 |
|
405 |
\paragraph{Quasi-nonhydrostatic Atmosphere} |
406 |
|
407 |
In the non-hydrostatic version of our atmospheric model we approximate $\dot{% |
408 |
r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only |
409 |
here) by: |
410 |
|
411 |
\begin{equation} |
412 |
\dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt} \label{quasinonhydro} |
413 |
\end{equation} |
414 |
where $p_{hy}$ is the hydrostatic pressure. |
415 |
|
416 |
........................................ |
417 |
|
418 |
\subsubsection{Summary of equation sets supported by model} |
419 |
|
420 |
The key equation sets and isomorphisms are summarised in fig.4. |
421 |
|
422 |
\paragraph{Atmosphere} |
423 |
|
424 |
\subparagraph{Hydrostatic and quasi-hydrostatic} |
425 |
|
426 |
Hydrostatic, and quasi-hydrostatic forms of the compressible non-Boussinesq |
427 |
equations in $p-$coordinates are supported\ref{eq-p} - see appendix |
428 |
Atmosphere, where they are written out in $p-$coordinates. |
429 |
|
430 |
\subparagraph{Quasi-nonhydrostatic} |
431 |
|
432 |
A quasi-nonhydrostatic form is also supported - see appendix Ocean. |
433 |
|
434 |
\paragraph{Ocean} |
435 |
|
436 |
\subparagraph{Hydrostatic and quasi-hydrostatic} |
437 |
|
438 |
Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq |
439 |
equations in $z-$coordinates are supported |
440 |
|
441 |
\subparagraph{Non-hydrostatic } |
442 |
|
443 |
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$% |
444 |
coordinates are supported. |
445 |
|
446 |
\subsection{Solution strategy} |
447 |
|
448 |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{% |
449 |
NH} models are summarized in Fig.7.% |
450 |
\marginpar{ |
451 |
Fig.7 Solution strategy} |
452 |
|
453 |
Overview paragraph...... |
454 |
|
455 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
456 |
course, some complication that goes with the inclusion of $\cos \phi \ $% |
457 |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
458 |
But this leads to negligible increase in computation. In \textbf{NH}, in |
459 |
contrast, one additional elliptic equation - a three-dimensional one - must |
460 |
be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is |
461 |
essentially negligible in the hydrostatic limit (see detailed discussion in |
462 |
Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the |
463 |
hydrostatic limit, is as computationally economic as the \textbf{HPEs}. |
464 |
|
465 |
\subsection{Finding the pressure field} |
466 |
|
467 |
Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the |
468 |
pressure field must be obtained diagnostically. We proceed, as before, by |
469 |
dividing the total (pressure/geo) potential in to three parts, a surface |
470 |
part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a |
471 |
non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and |
472 |
writing the momentum equation in the form |
473 |
\begin{equation} |
474 |
\frac{\partial }{\partial t}\vec{\mathbf{v}_{h}}+\mathbf{\nabla }_{h}\phi |
475 |
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }\phi |
476 |
_{nh}=\vec{\mathbf{G}}_{\vec{v}} \label{mtm-split} |
477 |
\end{equation} |
478 |
as in (\ref{hor-mtm}). |
479 |
|
480 |
\subsubsection{Hydrostatic pressure} |
481 |
|
482 |
Hydrostatic pressure is obtained by integrating (\ref{hydro}) vertically |
483 |
from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield: |
484 |
|
485 |
\[ |
486 |
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi |
487 |
_{hyd}\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr |
488 |
\] |
489 |
and so |
490 |
|
491 |
\[ |
492 |
\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr |
493 |
\] |
494 |
|
495 |
\subsubsection{Surface pressure} |
496 |
|
497 |
The surface pressure equation can be obtained by integrating continuity, (% |
498 |
\ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
499 |
|
500 |
\[ |
501 |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}% |
502 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
503 |
\] |
504 |
|
505 |
Thus: |
506 |
|
507 |
\[ |
508 |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
509 |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}% |
510 |
_{h}dr=0 |
511 |
\] |
512 |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $% |
513 |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
514 |
|
515 |
\begin{equation} |
516 |
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
517 |
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0 |
518 |
\label{integralcontinuity} |
519 |
\end{equation} |
520 |
|
521 |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
522 |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
523 |
be written |
524 |
\begin{equation} |
525 |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta \label{link} |
526 |
\end{equation} |
527 |
where $b$ is the buoyancy. |
528 |
|
529 |
In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{mtm-split}), (\ref |
530 |
{integralcontinuity}) and (\ref{link}) can be solved by inverting a 2-d |
531 |
elliptic equation for $\phi _{s}$ as described in section ?.?. Both `free |
532 |
surface' and `rigid lid' approaches are available. |
533 |
|
534 |
\subsubsection{Non-hydrostatic pressure} |
535 |
|
536 |
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{% |
537 |
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation |
538 |
(\ref{incompressible}), we deduce that: |
539 |
|
540 |
\begin{equation} |
541 |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{% |
542 |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .% |
543 |
\vec{\mathbf{F}} \label{3dinvert} |
544 |
\end{equation} |
545 |
|
546 |
For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$ |
547 |
subject to appropriate choice of boundary conditions. This method is usually |
548 |
called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969; |
549 |
Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}), |
550 |
the 3-d problem does not need to be solved. |
551 |
|
552 |
\paragraph{Boundary Conditions} |
553 |
|
554 |
We apply the condition of no normal flow through all solid boundaries - the |
555 |
coasts (in the ocean) and the bottom: |
556 |
|
557 |
\begin{equation} |
558 |
\vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow} |
559 |
\end{equation} |
560 |
where $\widehat{n}$ is a vector of unit length normal to the boundary. The |
561 |
kinematic condition (\ref{nonormalflow}) is also applied to the vertical |
562 |
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $% |
563 |
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the |
564 |
tangential component of velocity, $v_{T}$, at all solid boundaries, |
565 |
depending on the form chosen for the dissipative terms in the momentum |
566 |
equations - see below. |
567 |
|
568 |
Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that: |
569 |
|
570 |
\begin{equation} |
571 |
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} |
572 |
\label{inhomneumann} |
573 |
\end{equation} |
574 |
where |
575 |
|
576 |
\[ |
577 |
\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi |
578 |
_{s}+\mathbf{\nabla }\phi _{hyd}\right) |
579 |
\] |
580 |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
581 |
(\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit |
582 |
classical 3D potential theory and, by introducing an appropriately chosen $% |
583 |
\delta $-function sheet of `source-charge', replace the inhomogenous |
584 |
boundary condition on pressure by a homogeneous one. The source term $rhs$ |
585 |
in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By |
586 |
simultaneously setting $ |
587 |
\begin{array}{l} |
588 |
\widehat{n}.\vec{\mathbf{F}} |
589 |
\end{array} |
590 |
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following |
591 |
self-consistent but simpler homogenised Elliptic problem is obtained: |
592 |
|
593 |
\[ |
594 |
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad |
595 |
\] |
596 |
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such |
597 |
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref |
598 |
{inhomneumann}) the modified boundary condition becomes: |
599 |
|
600 |
\begin{equation} |
601 |
\widehat{n}.\nabla \phi _{nh}=0 \label{homneuman} |
602 |
\end{equation} |
603 |
|
604 |
If the flow is `close' to hydrostatic balance then the 3-d inversion |
605 |
converges rapidly because $\phi _{nh}\ $is then only a small correction to |
606 |
the hydrostatic pressure field (see the discussion in Marshall et al, a,b). |
607 |
|
608 |
The solution $\phi _{nh}\ $to (\ref{3dinvert}) and (\ref{homneuman}) does |
609 |
not vanish at $r=R_{moving}$, and so refines the pressure there. |
610 |
|
611 |
\subsection{Forcing/dissipation} |
612 |
|
613 |
\subsubsection{Forcing} |
614 |
|
615 |
The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by |
616 |
`physics packages' described in detail in section ?.?. |
617 |
|
618 |
\subsubsection{Dissipation} |
619 |
|
620 |
\paragraph{Momentum} |
621 |
|
622 |
Many forms of momentum dissipation are available in the model. Laplacian and |
623 |
biharmonic frictions are commonly used: |
624 |
|
625 |
\[ |
626 |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}% |
627 |
+A_{4}\nabla _{h}^{4}v |
628 |
\] |
629 |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
630 |
coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic |
631 |
friction. These coefficients are the same for all velocity components. |
632 |
|
633 |
\paragraph{Tracers} |
634 |
|
635 |
The mixing terms for the temperature and salinity equations have a similar |
636 |
form to that of momentum except that the diffusion tensor can be |
637 |
non-diagonal and have varying coefficients. $\qquad $% |
638 |
\[ |
639 |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
640 |
_{h}^{4}(T,S) |
641 |
\] |
642 |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $% |
643 |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
644 |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
645 |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
646 |
reduces to a diagonal matrix with constant coefficients: |
647 |
|
648 |
\[ |
649 |
\qquad \qquad \qquad \qquad K=\left( |
650 |
\begin{array}{ccc} |
651 |
K_{h} & 0 & 0 \\ |
652 |
0 & K_{h} & 0 \\ |
653 |
0 & 0 & K_{v} |
654 |
\end{array} |
655 |
\right) \qquad \qquad \qquad |
656 |
\] |
657 |
where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion |
658 |
coefficients. These coefficients are the same for all tracers (temperature, |
659 |
salinity ... ). |
660 |
|
661 |
\subsection{Vector invariant form} |
662 |
|
663 |
For some purposes it is advantageous to write momentum advection in eq(\ref |
664 |
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: |
665 |
|
666 |
\begin{equation} |
667 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
668 |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
669 |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
670 |
\label{vecinvariant} |
671 |
\end{equation} |
672 |
This permits alternative numerical treatments of the non-linear terms based |
673 |
on their representation as a vorticity flux. Because gradients of coordinate |
674 |
vectors no longer appear on the rhs of (\ref{vecinvariant}) (???), explicit |
675 |
representation of the metric terms in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}), |
676 |
can be avoided: information about the geometry is contained in the areas and |
677 |
lengths of the volumes used to discretize the model. |
678 |
|
679 |
\subsection{Adjoint} |
680 |
|
681 |
...... |