5 |
|
|
6 |
To render atmosphere and ocean models from one dynamical core we exploit |
To render atmosphere and ocean models from one dynamical core we exploit |
7 |
`isomorphisms' between equation sets that govern the evolution of the |
`isomorphisms' between equation sets that govern the evolution of the |
8 |
respective fluids - see fig.4% |
respective fluids - see fig.4 |
9 |
\marginpar{ |
\marginpar{ |
10 |
Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down |
Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down |
11 |
and encoded. The model variables have different interpretations depending on |
and encoded. The model variables have different interpretations depending on |
12 |
whether the atmosphere or ocean is being studied. Thus, for example, the |
whether the atmosphere or ocean is being studied. Thus, for example, the |
13 |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
14 |
modeling the atmosphere and height, $z$, if we are modeling the ocean. A |
modeling the atmosphere and height, $z$, if we are modeling the ocean. A |
15 |
complete list of the isomorphisms is given in table 1.% |
complete list of the isomorphisms is given in table 1. |
16 |
\marginpar{ |
\marginpar{ |
17 |
Table 1. Isomorphisms} |
Table 1. Isomorphisms} |
18 |
|
|
22 |
depend on $\theta $, $S$, and $p$. The equations that govern the evolution |
depend on $\theta $, $S$, and $p$. The equations that govern the evolution |
23 |
of these fields, obtained by applying the laws of classical mechanics and |
of these fields, obtained by applying the laws of classical mechanics and |
24 |
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of |
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of |
25 |
a generic vertical coordinate, $r$, see fig.5% |
a generic vertical coordinate, $r$, see fig.5 |
26 |
\marginpar{ |
\marginpar{ |
27 |
Fig.5 The vertical coordinate of model}: |
Fig.5 The vertical coordinate of model}: |
28 |
|
|
29 |
\[ |
\[ |
30 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
31 |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}}% |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}} |
32 |
\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm} |
\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm} |
33 |
\] |
\] |
34 |
|
|
35 |
\[ |
\[ |
36 |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{% |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
37 |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{% |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{ |
38 |
\mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm} |
\mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm} |
39 |
\] |
\] |
40 |
|
|
41 |
\begin{equation} |
\begin{equation} |
42 |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{% |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ |
43 |
\partial r}=0\text{ continuity} \label{incompressible} |
\partial r}=0\text{ continuity} \label{incompressible} |
44 |
\end{equation} |
\end{equation} |
45 |
|
|
53 |
\] |
\] |
54 |
|
|
55 |
\[ |
\[ |
56 |
\frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity% |
\frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity |
57 |
} |
} |
58 |
\] |
\] |
59 |
|
|
69 |
\] |
\] |
70 |
|
|
71 |
\[ |
\[ |
72 |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}% |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r} |
73 |
\text{ is the `grad' operator} |
\text{ is the `grad' operator} |
74 |
\] |
\] |
75 |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}% |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k} |
76 |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
77 |
is a unit vector in the vertical |
is a unit vector in the vertical |
78 |
|
|
106 |
\] |
\] |
107 |
|
|
108 |
\[ |
\[ |
109 |
\mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}}% |
\mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}} |
110 |
\text{ are forcing and dissipation of }\vec{\mathbf{v}} |
\text{ are forcing and dissipation of }\vec{\mathbf{v}} |
111 |
\] |
\] |
112 |
|
|
201 |
|
|
202 |
The boundary conditions at top and bottom are given by: |
The boundary conditions at top and bottom are given by: |
203 |
|
|
204 |
\begin{eqnarray*} |
\begin{eqnarray} |
205 |
&&\omega =0~\text{at }r=R_{fixed}\text{ (top of the atmosphere)} \\ |
&&\omega =0~\text{at }r=R_{fixed} \label{eq:fixed-bc-atmos} |
206 |
|
\text{ (top of the atmosphere)} \\ |
207 |
\omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the |
\omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the |
208 |
atmosphere)} |
atmosphere)} |
209 |
\end{eqnarray*} |
\label{eq:moving-bc-atmos} |
210 |
|
\end{eqnarray} |
211 |
|
|
212 |
Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent |
Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent |
213 |
set of atmospheric equations which, for convenience, are written out in $p$ |
set of atmospheric equations which, for convenience, are written out in $p$ |
218 |
|
|
219 |
In the ocean we interpret: |
In the ocean we interpret: |
220 |
\begin{eqnarray} |
\begin{eqnarray} |
221 |
r &=&z\text{ is the height} \\ |
r &=&z\text{ is the height} |
222 |
\dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} \\ |
\label{eq:ocean-z}\\ |
223 |
\phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \\ |
\dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} |
224 |
|
\label{eq:ocean-w}\\ |
225 |
|
\phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} |
226 |
|
\label{eq:ocean-p}\\ |
227 |
b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho |
b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho |
228 |
_{c}\right) \text{ is the buoyancy} |
_{c}\right) \text{ is the buoyancy} |
229 |
|
\label{eq:ocean-b} |
230 |
\end{eqnarray} |
\end{eqnarray} |
231 |
where $\rho _{c}$ is a fixed reference density of water and $g$ is the |
where $\rho _{c}$ is a fixed reference density of water and $g$ is the |
232 |
acceleration due to gravity.\noindent |
acceleration due to gravity.\noindent |
237 |
|
|
238 |
The surface of the ocean is given by: $R_{moving}=\eta $ |
The surface of the ocean is given by: $R_{moving}=\eta $ |
239 |
|
|
240 |
The position of the resting free surface of the ocean is given by $% |
The position of the resting free surface of the ocean is given by $ |
241 |
R_{o}=Z_{o}=0$. |
R_{o}=Z_{o}=0$. |
242 |
|
|
243 |
Boundary conditions are: |
Boundary conditions are: |
244 |
|
|
245 |
\begin{eqnarray*} |
\begin{eqnarray} |
246 |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \\ |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} |
247 |
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)} |
\label{eq:fixed-bc-ocean}\\ |
248 |
\end{eqnarray*} |
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) |
249 |
|
\label{eq:moving-bc-ocean}} |
250 |
|
\end{eqnarray} |
251 |
where $\eta $ is the elevation of the free surface. |
where $\eta $ is the elevation of the free surface. |
252 |
|
|
253 |
Then eq(\ref{incompressible}) yields a consistent set of oceanic equations |
Then eq(\ref{incompressible}) yields a consistent set of oceanic equations |
260 |
|
|
261 |
\begin{equation} |
\begin{equation} |
262 |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
263 |
\label{pressuresplit} |
\label{eq:phi-split} |
264 |
\end{equation} |
\end{equation} |
265 |
and write eq(\ref{incompressible}a) in the form: |
and write eq(\ref{incompressible}a) in the form: |
266 |
|
|
267 |
\begin{equation} |
\begin{equation} |
268 |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
269 |
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi |
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi |
270 |
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{hor-mtm} |
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h} |
271 |
\end{equation} |
\end{equation} |
272 |
|
|
273 |
\begin{equation} |
\begin{equation} |
274 |
\frac{\partial \phi _{hyd}}{\partial r}=-b \label{hydro} |
\frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic} |
275 |
\end{equation} |
\end{equation} |
276 |
|
|
277 |
\begin{equation} |
\begin{equation} |
278 |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{% |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{ |
279 |
\partial r}=G_{\dot{r}} \label{vertmtm} |
\partial r}=G_{\dot{r}} \label{eq:mom-w} |
280 |
\end{equation} |
\end{equation} |
281 |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
282 |
|
|
283 |
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref |
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref |
284 |
{hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis |
{hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis |
285 |
terms in the momentum equations. In spherical coordinates they take the form% |
terms in the momentum equations. In spherical coordinates they take the form |
286 |
\footnote{% |
\footnote{ |
287 |
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms |
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms |
288 |
in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined |
in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined |
289 |
terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully |
terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully |
293 |
\left. |
\left. |
294 |
\begin{tabular}{l} |
\begin{tabular}{l} |
295 |
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\ |
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\ |
296 |
$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}% |
$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}} |
297 |
\right\} $ \\ |
\right\} $ \\ |
298 |
$-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}}% |
$-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}} |
299 |
\right\} $ \\ |
\right\} $ \\ |
300 |
$+\mathcal{F}_{u}\mathcal{+D}_{u}$% |
$+\mathcal{F}_{u}\mathcal{+D}_{u}$ |
301 |
\end{tabular} |
\end{tabular} |
302 |
\right\} \left\{ |
\right\} \left\{ |
303 |
\begin{tabular}{l} |
\begin{tabular}{l} |
306 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
307 |
\textit{\ Forcing/Dissipation} |
\textit{\ Forcing/Dissipation} |
308 |
\end{tabular} |
\end{tabular} |
309 |
\right. \qquad \label{Gu} |
\right. \qquad \label{eq:gu-speherical} |
310 |
\end{equation} |
\end{equation} |
311 |
|
|
312 |
\begin{equation} |
\begin{equation} |
313 |
\left. |
\left. |
314 |
\begin{tabular}{l} |
\begin{tabular}{l} |
315 |
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\ |
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\ |
316 |
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}% |
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r} |
317 |
}\right\} $ \\ |
}\right\} $ \\ |
318 |
$-\left\{ -2\Omega u\sin lat\right\} $ \\ |
$-\left\{ -2\Omega u\sin lat\right\} $ \\ |
319 |
$+\mathcal{F}_{v}\mathcal{+D}_{v}$% |
$+\mathcal{F}_{v}\mathcal{+D}_{v}$ |
320 |
\end{tabular} |
\end{tabular} |
321 |
\right\} \left\{ |
\right\} \left\{ |
322 |
\begin{tabular}{l} |
\begin{tabular}{l} |
325 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
326 |
\textit{\ Forcing/Dissipation} |
\textit{\ Forcing/Dissipation} |
327 |
\end{tabular} |
\end{tabular} |
328 |
\right. \qquad \label{Gv} |
\right. \qquad \label{eq:gv-spherical} |
329 |
\end{equation} |
\end{equation} |
330 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
331 |
|
|
333 |
\left. |
\left. |
334 |
\begin{tabular}{l} |
\begin{tabular}{l} |
335 |
$G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\ |
$G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\ |
336 |
$+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}}% |
$+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}} |
337 |
\right\} $ \\ |
\right\} $ \\ |
338 |
${+2\Omega u\cos lat}$ \\ |
${+2\Omega u\cos lat}$ \\ |
339 |
$\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$% |
$\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$ |
340 |
\end{tabular} |
\end{tabular} |
341 |
\right\} \left\{ |
\right\} \left\{ |
342 |
\begin{tabular}{l} |
\begin{tabular}{l} |
345 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
346 |
\textit{\ Forcing/Dissipation} |
\textit{\ Forcing/Dissipation} |
347 |
\end{tabular} |
\end{tabular} |
348 |
\right. \label{Gw} |
\right. \label{eq:gw-spherical} |
349 |
\end{equation} |
\end{equation} |
350 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
351 |
|
|
352 |
In the above `${r}$' is the distance from the center of the earth and `$% |
In the above `${r}$' is the distance from the center of the earth and `$ |
353 |
lat$' is latitude. |
lat$' is latitude. |
354 |
|
|
355 |
Grad and div operators in spherical coordinates are defined in appendix |
Grad and div operators in spherical coordinates are defined in appendix |
356 |
OPERATORS.% |
OPERATORS. |
357 |
\marginpar{ |
\marginpar{ |
358 |
Fig.6 Spherical polar coordinate system.} |
Fig.6 Spherical polar coordinate system.} |
359 |
|
|
366 |
These are discussed at length in Marshall et al (1997a). |
These are discussed at length in Marshall et al (1997a). |
367 |
|
|
368 |
In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined |
In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined |
369 |
terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r% |
terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r |
370 |
}$' is replaced by `$a$', the mean radius of the earth. Once the pressure is |
}$' is replaced by `$a$', the mean radius of the earth. Once the pressure is |
371 |
found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi |
found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi |
372 |
_{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels |
_{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels |
375 |
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between |
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between |
376 |
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos |
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos |
377 |
\phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic |
\phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic |
378 |
contribution to the pressure field: only the terms underlined twice in Eqs. (% |
contribution to the pressure field: only the terms underlined twice in Eqs. ( |
379 |
\ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the |
\ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the |
380 |
shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all} |
shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all} |
381 |
the metric terms are retained and the full variation of the radial position |
the metric terms are retained and the full variation of the radial position |
399 |
|
|
400 |
\paragraph{Non-hydrostatic Ocean} |
\paragraph{Non-hydrostatic Ocean} |
401 |
|
|
402 |
In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $% |
In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $ |
403 |
\rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation |
\rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation |
404 |
must be solved subject to Neumann boundary conditions (see below). It is |
must be solved subject to Neumann boundary conditions (see below). It is |
405 |
important to note that use of the full \textbf{NH} does not admit any new |
important to note that use of the full \textbf{NH} does not admit any new |
412 |
|
|
413 |
\paragraph{Quasi-nonhydrostatic Atmosphere} |
\paragraph{Quasi-nonhydrostatic Atmosphere} |
414 |
|
|
415 |
In the non-hydrostatic version of our atmospheric model we approximate $\dot{% |
In the non-hydrostatic version of our atmospheric model we approximate $\dot{ |
416 |
r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only |
r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only |
417 |
here) by: |
here) by: |
418 |
|
|
419 |
\begin{equation} |
\begin{equation} |
420 |
\dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt} \label{quasinonhydro} |
\dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt} \label{eq:quasi-nh-w} |
421 |
\end{equation} |
\end{equation} |
422 |
where $p_{hy}$ is the hydrostatic pressure. |
where $p_{hy}$ is the hydrostatic pressure. |
423 |
|
|
448 |
|
|
449 |
\subparagraph{Non-hydrostatic } |
\subparagraph{Non-hydrostatic } |
450 |
|
|
451 |
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$% |
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$ |
452 |
coordinates are supported. |
coordinates are supported. |
453 |
|
|
454 |
\subsection{Solution strategy} |
\subsection{Solution strategy} |
455 |
|
|
456 |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{% |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ |
457 |
NH} models are summarized in Fig.7.% |
NH} models are summarized in Fig.7. |
458 |
\marginpar{ |
\marginpar{ |
459 |
Fig.7 Solution strategy} |
Fig.7 Solution strategy} |
460 |
|
|
461 |
Overview paragraph...... |
Overview paragraph...... |
462 |
|
|
463 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
464 |
course, some complication that goes with the inclusion of $\cos \phi \ $% |
course, some complication that goes with the inclusion of $\cos \phi \ $ |
465 |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
466 |
But this leads to negligible increase in computation. In \textbf{NH}, in |
But this leads to negligible increase in computation. In \textbf{NH}, in |
467 |
contrast, one additional elliptic equation - a three-dimensional one - must |
contrast, one additional elliptic equation - a three-dimensional one - must |
477 |
dividing the total (pressure/geo) potential in to three parts, a surface |
dividing the total (pressure/geo) potential in to three parts, a surface |
478 |
part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a |
part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a |
479 |
non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and |
non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and |
480 |
writing the momentum equation in the form |
writing the momentum equation |
481 |
\begin{equation} |
as in (\ref{eq:mom-h}). |
|
\frac{\partial }{\partial t}\vec{\mathbf{v}_{h}}+\mathbf{\nabla }_{h}\phi |
|
|
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }\phi |
|
|
_{nh}=\vec{\mathbf{G}}_{\vec{v}} \label{mtm-split} |
|
|
\end{equation} |
|
|
as in (\ref{hor-mtm}). |
|
482 |
|
|
483 |
\subsubsection{Hydrostatic pressure} |
\subsubsection{Hydrostatic pressure} |
484 |
|
|
491 |
\] |
\] |
492 |
and so |
and so |
493 |
|
|
494 |
\[ |
\begin{equation} |
495 |
\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr |
\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr |
496 |
\] |
\label{eq:hydro-phi} |
497 |
|
\end{equation} |
498 |
|
|
499 |
\subsubsection{Surface pressure} |
\subsubsection{Surface pressure} |
500 |
|
|
501 |
The surface pressure equation can be obtained by integrating continuity, (% |
The surface pressure equation can be obtained by integrating continuity, ( |
502 |
\ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
\ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
503 |
|
|
504 |
\[ |
\[ |
505 |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}% |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} |
506 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
507 |
\] |
\] |
508 |
|
|
510 |
|
|
511 |
\[ |
\[ |
512 |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
513 |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}% |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}} |
514 |
_{h}dr=0 |
_{h}dr=0 |
515 |
\] |
\] |
516 |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $% |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $ |
517 |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
518 |
|
|
519 |
\begin{equation} |
\begin{equation} |
520 |
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
521 |
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0 |
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0 |
522 |
\label{integralcontinuity} |
\label{eq:free-surface} |
523 |
\end{equation} |
\end{equation} |
524 |
|
|
525 |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
526 |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
527 |
be written |
be written |
528 |
\begin{equation} |
\begin{equation} |
529 |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta \label{link} |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta |
530 |
|
\label{eq:phi-surf} |
531 |
\end{equation} |
\end{equation} |
532 |
where $b$ is the buoyancy. |
where $b$ is the buoyancy. |
533 |
|
|
538 |
|
|
539 |
\subsubsection{Non-hydrostatic pressure} |
\subsubsection{Non-hydrostatic pressure} |
540 |
|
|
541 |
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{% |
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{ |
542 |
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation |
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation |
543 |
(\ref{incompressible}), we deduce that: |
(\ref{incompressible}), we deduce that: |
544 |
|
|
545 |
\begin{equation} |
\begin{equation} |
546 |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{% |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ |
547 |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .% |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla . |
548 |
\vec{\mathbf{F}} \label{3dinvert} |
\vec{\mathbf{F}} \label{eq:3d-invert} |
549 |
\end{equation} |
\end{equation} |
550 |
|
|
551 |
For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$ |
For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$ |
564 |
\end{equation} |
\end{equation} |
565 |
where $\widehat{n}$ is a vector of unit length normal to the boundary. The |
where $\widehat{n}$ is a vector of unit length normal to the boundary. The |
566 |
kinematic condition (\ref{nonormalflow}) is also applied to the vertical |
kinematic condition (\ref{nonormalflow}) is also applied to the vertical |
567 |
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $% |
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $ |
568 |
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the |
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the |
569 |
tangential component of velocity, $v_{T}$, at all solid boundaries, |
tangential component of velocity, $v_{T}$, at all solid boundaries, |
570 |
depending on the form chosen for the dissipative terms in the momentum |
depending on the form chosen for the dissipative terms in the momentum |
574 |
|
|
575 |
\begin{equation} |
\begin{equation} |
576 |
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} |
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} |
577 |
\label{inhomneumann} |
\label{eq:inhom-neumann-nh} |
578 |
\end{equation} |
\end{equation} |
579 |
where |
where |
580 |
|
|
584 |
\] |
\] |
585 |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
586 |
(\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit |
(\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit |
587 |
classical 3D potential theory and, by introducing an appropriately chosen $% |
classical 3D potential theory and, by introducing an appropriately chosen $ |
588 |
\delta $-function sheet of `source-charge', replace the inhomogenous |
\delta $-function sheet of `source-charge', replace the inhomogenous |
589 |
boundary condition on pressure by a homogeneous one. The source term $rhs$ |
boundary condition on pressure by a homogeneous one. The source term $rhs$ |
590 |
in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By |
in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By |
603 |
{inhomneumann}) the modified boundary condition becomes: |
{inhomneumann}) the modified boundary condition becomes: |
604 |
|
|
605 |
\begin{equation} |
\begin{equation} |
606 |
\widehat{n}.\nabla \phi _{nh}=0 \label{homneuman} |
\widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh} |
607 |
\end{equation} |
\end{equation} |
608 |
|
|
609 |
If the flow is `close' to hydrostatic balance then the 3-d inversion |
If the flow is `close' to hydrostatic balance then the 3-d inversion |
627 |
Many forms of momentum dissipation are available in the model. Laplacian and |
Many forms of momentum dissipation are available in the model. Laplacian and |
628 |
biharmonic frictions are commonly used: |
biharmonic frictions are commonly used: |
629 |
|
|
630 |
\[ |
\begin{equation} |
631 |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}% |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}} |
632 |
+A_{4}\nabla _{h}^{4}v |
+A_{4}\nabla _{h}^{4}v |
633 |
\] |
\label{eq:dissipation} |
634 |
|
\end{equation} |
635 |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
636 |
coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic |
coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic |
637 |
friction. These coefficients are the same for all velocity components. |
friction. These coefficients are the same for all velocity components. |
640 |
|
|
641 |
The mixing terms for the temperature and salinity equations have a similar |
The mixing terms for the temperature and salinity equations have a similar |
642 |
form to that of momentum except that the diffusion tensor can be |
form to that of momentum except that the diffusion tensor can be |
643 |
non-diagonal and have varying coefficients. $\qquad $% |
non-diagonal and have varying coefficients. $\qquad $ |
644 |
\[ |
\begin{equation} |
645 |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
646 |
_{h}^{4}(T,S) |
_{h}^{4}(T,S) |
647 |
\] |
\label{eq:diffusion} |
648 |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $% |
\end{equation} |
649 |
|
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $ |
650 |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
651 |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
652 |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
653 |
reduces to a diagonal matrix with constant coefficients: |
reduces to a diagonal matrix with constant coefficients: |
654 |
|
|
655 |
\[ |
\begin{equation} |
656 |
\qquad \qquad \qquad \qquad K=\left( |
\qquad \qquad \qquad \qquad K=\left( |
657 |
\begin{array}{ccc} |
\begin{array}{ccc} |
658 |
K_{h} & 0 & 0 \\ |
K_{h} & 0 & 0 \\ |
660 |
0 & 0 & K_{v} |
0 & 0 & K_{v} |
661 |
\end{array} |
\end{array} |
662 |
\right) \qquad \qquad \qquad |
\right) \qquad \qquad \qquad |
663 |
\] |
\label{eq:diagonal-diffusion-tensor} |
664 |
|
\end{equation} |
665 |
where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion |
where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion |
666 |
coefficients. These coefficients are the same for all tracers (temperature, |
coefficients. These coefficients are the same for all tracers (temperature, |
667 |
salinity ... ). |
salinity ... ). |
672 |
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: |
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: |
673 |
|
|
674 |
\begin{equation} |
\begin{equation} |
675 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
676 |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
677 |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
678 |
\label{vecinvariant} |
\label{eq:vi-identity} |
679 |
\end{equation} |
\end{equation} |
680 |
This permits alternative numerical treatments of the non-linear terms based |
This permits alternative numerical treatments of the non-linear terms based |
681 |
on their representation as a vorticity flux. Because gradients of coordinate |
on their representation as a vorticity flux. Because gradients of coordinate |