/[MITgcm]/manual/s_overview/continuous_eqns.tex
ViewVC logotype

Diff of /manual/s_overview/continuous_eqns.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.3 by cnh, Wed Sep 26 14:53:10 2001 UTC revision 1.4 by cnh, Thu Sep 27 01:57:17 2001 UTC
# Line 5  Line 5 
5    
6  To render atmosphere and ocean models from one dynamical core we exploit  To render atmosphere and ocean models from one dynamical core we exploit
7  `isomorphisms' between equation sets that govern the evolution of the  `isomorphisms' between equation sets that govern the evolution of the
8  respective fluids - see fig.4%  respective fluids - see fig.4
9  \marginpar{  \marginpar{
10  Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down  Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down
11  and encoded. The model variables have different interpretations depending on  and encoded. The model variables have different interpretations depending on
12  whether the atmosphere or ocean is being studied. Thus, for example, the  whether the atmosphere or ocean is being studied. Thus, for example, the
13  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are  vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
14  modeling the atmosphere and height, $z$, if we are modeling the ocean. A  modeling the atmosphere and height, $z$, if we are modeling the ocean. A
15  complete list of the isomorphisms is given in table 1.%  complete list of the isomorphisms is given in table 1.
16  \marginpar{  \marginpar{
17  Table 1. Isomorphisms}  Table 1. Isomorphisms}
18    
# Line 22  velocity $\vec{\mathbf{v}}$, active trac Line 22  velocity $\vec{\mathbf{v}}$, active trac
22  depend on $\theta $, $S$, and $p$. The equations that govern the evolution  depend on $\theta $, $S$, and $p$. The equations that govern the evolution
23  of these fields, obtained by applying the laws of classical mechanics and  of these fields, obtained by applying the laws of classical mechanics and
24  thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of  thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
25  a generic vertical coordinate, $r$, see fig.5%  a generic vertical coordinate, $r$, see fig.5
26  \marginpar{  \marginpar{
27  Fig.5 The vertical coordinate of model}:  Fig.5 The vertical coordinate of model}:
28    
29  \[  \[
30  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}%  \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}
31  \right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}}%  \right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}}
32  \mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm}  \mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm}
33  \]  \]
34    
35  \[  \[
36  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{%  \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{
37  v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{%  v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{
38  \mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm}  \mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm}
39  \]  \]
40    
41  \begin{equation}  \begin{equation}
42  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{%  \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{
43  \partial r}=0\text{ continuity}  \label{incompressible}  \partial r}=0\text{ continuity}  \label{incompressible}
44  \end{equation}  \end{equation}
45    
# Line 53  potential temperature} Line 53  potential temperature}
53  \]  \]
54    
55  \[  \[
56  \frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity%  \frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity
57  }  }
58  \]  \]
59    
# Line 69  is the total derivative} Line 69  is the total derivative}
69  \]  \]
70    
71  \[  \[
72  \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}%  \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}
73  \text{ is the `grad' operator}  \text{ is the `grad' operator}
74  \]  \]
75  with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}%  with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}
76  \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$  \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
77  is a unit vector in the vertical  is a unit vector in the vertical
78    
# Line 106  S\text{ is specific humidity in the atmo Line 106  S\text{ is specific humidity in the atmo
106  \]  \]
107    
108  \[  \[
109  \mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}}%  \mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}}
110  \text{ are forcing and dissipation of }\vec{\mathbf{v}}  \text{ are forcing and dissipation of }\vec{\mathbf{v}}
111  \]  \]
112    
# Line 237  At the bottom of the ocean: $R_{fixed}(x Line 237  At the bottom of the ocean: $R_{fixed}(x
237    
238  The surface of the ocean is given by: $R_{moving}=\eta $  The surface of the ocean is given by: $R_{moving}=\eta $
239    
240  The position of the resting free surface of the ocean is given by $%  The position of the resting free surface of the ocean is given by $
241  R_{o}=Z_{o}=0$.  R_{o}=Z_{o}=0$.
242    
243  Boundary conditions are:  Boundary conditions are:
# Line 275  _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}  \l Line 275  _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}  \l
275  \end{equation}  \end{equation}
276    
277  \begin{equation}  \begin{equation}
278  \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{%  \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{
279  \partial r}=G_{\dot{r}}  \label{eq:mom-w}  \partial r}=G_{\dot{r}}  \label{eq:mom-w}
280  \end{equation}  \end{equation}
281  Here $\epsilon _{nh}$ is a non-hydrostatic parameter.  Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
282    
283  The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref  The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
284  {hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis  {hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis
285  terms in the momentum equations. In spherical coordinates they take the form%  terms in the momentum equations. In spherical coordinates they take the form
286  \footnote{%  \footnote{
287  In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms  In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
288  in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined  in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined
289  terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully  terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully
# Line 293  non-hydrostatic model (\textbf{NH}) incl Line 293  non-hydrostatic model (\textbf{NH}) incl
293  \left.  \left.
294  \begin{tabular}{l}  \begin{tabular}{l}
295  $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\  $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
296  $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}%  $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}
297  \right\} $ \\  \right\} $ \\
298  $-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}}%  $-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}}
299  \right\} $ \\  \right\} $ \\
300  $+\mathcal{F}_{u}\mathcal{+D}_{u}$%  $+\mathcal{F}_{u}\mathcal{+D}_{u}$
301  \end{tabular}  \end{tabular}
302  \right\} \left\{  \right\} \left\{
303  \begin{tabular}{l}  \begin{tabular}{l}
# Line 313  $+\mathcal{F}_{u}\mathcal{+D}_{u}$% Line 313  $+\mathcal{F}_{u}\mathcal{+D}_{u}$%
313  \left.  \left.
314  \begin{tabular}{l}  \begin{tabular}{l}
315  $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\  $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
316  $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}%  $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}
317  }\right\} $ \\  }\right\} $ \\
318  $-\left\{ -2\Omega u\sin lat\right\} $ \\  $-\left\{ -2\Omega u\sin lat\right\} $ \\
319  $+\mathcal{F}_{v}\mathcal{+D}_{v}$%  $+\mathcal{F}_{v}\mathcal{+D}_{v}$
320  \end{tabular}  \end{tabular}
321  \right\} \left\{  \right\} \left\{
322  \begin{tabular}{l}  \begin{tabular}{l}
# Line 333  $+\mathcal{F}_{v}\mathcal{+D}_{v}$% Line 333  $+\mathcal{F}_{v}\mathcal{+D}_{v}$%
333  \left.  \left.
334  \begin{tabular}{l}  \begin{tabular}{l}
335  $G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\  $G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\
336  $+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}}%  $+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}}
337  \right\} $ \\  \right\} $ \\
338  ${+2\Omega u\cos lat}$ \\  ${+2\Omega u\cos lat}$ \\
339  $\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$%  $\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$
340  \end{tabular}  \end{tabular}
341  \right\} \left\{  \right\} \left\{
342  \begin{tabular}{l}  \begin{tabular}{l}
# Line 349  $\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot Line 349  $\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot
349  \end{equation}  \end{equation}
350  \qquad \qquad \qquad \qquad \qquad  \qquad \qquad \qquad \qquad \qquad
351    
352  In the above `${r}$' is the distance from the center of the earth and `$%  In the above `${r}$' is the distance from the center of the earth and `$
353  lat$' is latitude.  lat$' is latitude.
354    
355  Grad and div operators in spherical coordinates are defined in appendix  Grad and div operators in spherical coordinates are defined in appendix
356  OPERATORS.%  OPERATORS.
357  \marginpar{  \marginpar{
358  Fig.6 Spherical polar coordinate system.}  Fig.6 Spherical polar coordinate system.}
359    
# Line 366  Fig.6 Spherical polar coordinate system. Line 366  Fig.6 Spherical polar coordinate system.
366  These are discussed at length in Marshall et al (1997a).  These are discussed at length in Marshall et al (1997a).
367    
368  In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined  In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
369  terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r%  terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r
370  }$' is replaced by `$a$', the mean radius of the earth. Once the pressure is  }$' is replaced by `$a$', the mean radius of the earth. Once the pressure is
371  found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi  found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi
372  _{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels  _{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels
# Line 375  by integration of the hydrostatic relati Line 375  by integration of the hydrostatic relati
375  In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between  In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
376  gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos  gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
377  \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic  \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
378  contribution to the pressure field: only the terms underlined twice in Eqs. (%  contribution to the pressure field: only the terms underlined twice in Eqs. (
379  \ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the  \ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the
380  shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all}  shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all}
381  the metric terms are retained and the full variation of the radial position  the metric terms are retained and the full variation of the radial position
# Line 399  only a quasi-non-hydrostatic atmospheric Line 399  only a quasi-non-hydrostatic atmospheric
399    
400  \paragraph{Non-hydrostatic Ocean}  \paragraph{Non-hydrostatic Ocean}
401    
402  In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $%  In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $
403  \rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation  \rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation
404  must be solved subject to Neumann boundary conditions (see below). It is  must be solved subject to Neumann boundary conditions (see below). It is
405  important to note that use of the full \textbf{NH} does not admit any new  important to note that use of the full \textbf{NH} does not admit any new
# Line 412  et.al.\ 1997a. Line 412  et.al.\ 1997a.
412    
413  \paragraph{Quasi-nonhydrostatic Atmosphere}  \paragraph{Quasi-nonhydrostatic Atmosphere}
414    
415  In the non-hydrostatic version of our atmospheric model we approximate $\dot{%  In the non-hydrostatic version of our atmospheric model we approximate $\dot{
416  r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only  r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only
417  here) by:  here) by:
418    
# Line 448  equations in $z-$coordinates are support Line 448  equations in $z-$coordinates are support
448    
449  \subparagraph{Non-hydrostatic }  \subparagraph{Non-hydrostatic }
450    
451  Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$%  Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$
452  coordinates are supported.  coordinates are supported.
453    
454  \subsection{Solution strategy}  \subsection{Solution strategy}
455    
456  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{%  The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{
457  NH} models are summarized in Fig.7.%  NH} models are summarized in Fig.7.
458  \marginpar{  \marginpar{
459  Fig.7 Solution strategy}  Fig.7 Solution strategy}
460    
461  Overview paragraph......  Overview paragraph......
462    
463  There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of  There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
464  course, some complication that goes with the inclusion of $\cos \phi \ $%  course, some complication that goes with the inclusion of $\cos \phi \ $
465  Coriolis terms and the relaxation of the shallow atmosphere approximation.  Coriolis terms and the relaxation of the shallow atmosphere approximation.
466  But this leads to negligible increase in computation. In \textbf{NH}, in  But this leads to negligible increase in computation. In \textbf{NH}, in
467  contrast, one additional elliptic equation - a three-dimensional one - must  contrast, one additional elliptic equation - a three-dimensional one - must
# Line 498  and so Line 498  and so
498    
499  \subsubsection{Surface pressure}  \subsubsection{Surface pressure}
500    
501  The surface pressure equation can be obtained by integrating continuity, (%  The surface pressure equation can be obtained by integrating continuity, (
502  \ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$  \ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$
503    
504  \[  \[
505  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}%  \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}
506  }_{h}+\partial _{r}\dot{r}\right) dr=0  }_{h}+\partial _{r}\dot{r}\right) dr=0
507  \]  \]
508    
# Line 510  Thus: Line 510  Thus:
510    
511  \[  \[
512  \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta  \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
513  +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}%  +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}
514  _{h}dr=0  _{h}dr=0
515  \]  \]
516  where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $%  where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $
517  r $. The above can be rearranged to yield, using Leibnitz's theorem:  r $. The above can be rearranged to yield, using Leibnitz's theorem:
518    
519  \begin{equation}  \begin{equation}
# Line 538  surface' and `rigid lid' approaches are Line 538  surface' and `rigid lid' approaches are
538    
539  \subsubsection{Non-hydrostatic pressure}  \subsubsection{Non-hydrostatic pressure}
540    
541  Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{%  Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{
542  \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation  \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation
543  (\ref{incompressible}), we deduce that:  (\ref{incompressible}), we deduce that:
544    
545  \begin{equation}  \begin{equation}
546  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{%  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{
547  \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .%  \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .
548  \vec{\mathbf{F}}  \label{eq:3d-invert}  \vec{\mathbf{F}}  \label{eq:3d-invert}
549  \end{equation}  \end{equation}
550    
# Line 564  coasts (in the ocean) and the bottom: Line 564  coasts (in the ocean) and the bottom:
564  \end{equation}  \end{equation}
565  where $\widehat{n}$ is a vector of unit length normal to the boundary. The  where $\widehat{n}$ is a vector of unit length normal to the boundary. The
566  kinematic condition (\ref{nonormalflow}) is also applied to the vertical  kinematic condition (\ref{nonormalflow}) is also applied to the vertical
567  velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $%  velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $
568  \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the  \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
569  tangential component of velocity, $v_{T}$, at all solid boundaries,  tangential component of velocity, $v_{T}$, at all solid boundaries,
570  depending on the form chosen for the dissipative terms in the momentum  depending on the form chosen for the dissipative terms in the momentum
# Line 584  _{s}+\mathbf{\nabla }\phi _{hyd}\right) Line 584  _{s}+\mathbf{\nabla }\phi _{hyd}\right)
584  \]  \]
585  presenting inhomogeneous Neumann boundary conditions to the Elliptic problem  presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
586  (\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit  (\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit
587  classical 3D potential theory and, by introducing an appropriately chosen $%  classical 3D potential theory and, by introducing an appropriately chosen $
588  \delta $-function sheet of `source-charge', replace the inhomogenous  \delta $-function sheet of `source-charge', replace the inhomogenous
589  boundary condition on pressure by a homogeneous one. The source term $rhs$  boundary condition on pressure by a homogeneous one. The source term $rhs$
590  in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By  in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By
# Line 628  Many forms of momentum dissipation are a Line 628  Many forms of momentum dissipation are a
628  biharmonic frictions are commonly used:  biharmonic frictions are commonly used:
629    
630  \begin{equation}  \begin{equation}
631  D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}%  D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}
632  +A_{4}\nabla _{h}^{4}v  +A_{4}\nabla _{h}^{4}v
633  \label{eq:dissipation}  \label{eq:dissipation}
634  \end{equation}  \end{equation}
# Line 640  friction. These coefficients are the sam Line 640  friction. These coefficients are the sam
640    
641  The mixing terms for the temperature and salinity equations have a similar  The mixing terms for the temperature and salinity equations have a similar
642  form to that of momentum except that the diffusion tensor can be  form to that of momentum except that the diffusion tensor can be
643  non-diagonal and have varying coefficients. $\qquad $%  non-diagonal and have varying coefficients. $\qquad $
644  \begin{equation}  \begin{equation}
645  D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla  D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
646  _{h}^{4}(T,S)  _{h}^{4}(T,S)
647  \label{eq:diffusion}  \label{eq:diffusion}
648  \end{equation}  \end{equation}
649  where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $%  where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $
650  horizontal coefficient for biharmonic diffusion. In the simplest case where  horizontal coefficient for biharmonic diffusion. In the simplest case where
651  the subgrid-scale fluxes of heat and salt are parameterized with constant  the subgrid-scale fluxes of heat and salt are parameterized with constant
652  horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,  horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
# Line 672  For some purposes it is advantageous to Line 672  For some purposes it is advantageous to
672  {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:  {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:
673    
674  \begin{equation}  \begin{equation}
675  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}%  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}
676  +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla  +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
677  \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]  \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
678  \label{eq:vi-identity}  \label{eq:vi-identity}

Legend:
Removed from v.1.3  
changed lines
  Added in v.1.4

  ViewVC Help
Powered by ViewVC 1.1.22