202 |
The boundary conditions at top and bottom are given by: |
The boundary conditions at top and bottom are given by: |
203 |
|
|
204 |
\begin{eqnarray*} |
\begin{eqnarray*} |
205 |
&&\omega =0~\text{at }r=R_{fixed}\text{ (top of the atmosphere)} \\ |
&&\omega =0~\text{at }r=R_{fixed} \label{eq:fixed-bc-atmos} |
206 |
|
\text{ (top of the atmosphere)} \\ |
207 |
\omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the |
\omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the |
208 |
atmosphere)} |
atmosphere)} |
209 |
|
\label{eq:moving-bc-atmos} |
210 |
\end{eqnarray*} |
\end{eqnarray*} |
211 |
|
|
212 |
Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent |
Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent |
218 |
|
|
219 |
In the ocean we interpret: |
In the ocean we interpret: |
220 |
\begin{eqnarray} |
\begin{eqnarray} |
221 |
r &=&z\text{ is the height} \\ |
r &=&z\text{ is the height} |
222 |
\dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} \\ |
\label{eq:ocean-z}\\ |
223 |
\phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \\ |
\dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} |
224 |
|
\label{eq:ocean-w}\\ |
225 |
|
\phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} |
226 |
|
\label{eq:ocean-p}\\ |
227 |
b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho |
b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho |
228 |
_{c}\right) \text{ is the buoyancy} |
_{c}\right) \text{ is the buoyancy} |
229 |
|
\label{eq:ocean-b} |
230 |
\end{eqnarray} |
\end{eqnarray} |
231 |
where $\rho _{c}$ is a fixed reference density of water and $g$ is the |
where $\rho _{c}$ is a fixed reference density of water and $g$ is the |
232 |
acceleration due to gravity.\noindent |
acceleration due to gravity.\noindent |
243 |
Boundary conditions are: |
Boundary conditions are: |
244 |
|
|
245 |
\begin{eqnarray*} |
\begin{eqnarray*} |
246 |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \\ |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} |
247 |
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)} |
\label{eq:fixed-bc-ocean}\\ |
248 |
|
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) |
249 |
|
\label{eq:moving-bc-ocean}} |
250 |
\end{eqnarray*} |
\end{eqnarray*} |
251 |
where $\eta $ is the elevation of the free surface. |
where $\eta $ is the elevation of the free surface. |
252 |
|
|
260 |
|
|
261 |
\begin{equation} |
\begin{equation} |
262 |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
263 |
\label{pressuresplit} |
\label{eq:phi-split} |
264 |
\end{equation} |
\end{equation} |
265 |
and write eq(\ref{incompressible}a) in the form: |
and write eq(\ref{incompressible}a) in the form: |
266 |
|
|
267 |
\begin{equation} |
\begin{equation} |
268 |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
269 |
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi |
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi |
270 |
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{hor-mtm} |
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h} |
271 |
\end{equation} |
\end{equation} |
272 |
|
|
273 |
\begin{equation} |
\begin{equation} |
274 |
\frac{\partial \phi _{hyd}}{\partial r}=-b \label{hydro} |
\frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic} |
275 |
\end{equation} |
\end{equation} |
276 |
|
|
277 |
\begin{equation} |
\begin{equation} |
278 |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{% |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{% |
279 |
\partial r}=G_{\dot{r}} \label{vertmtm} |
\partial r}=G_{\dot{r}} \label{eq:mom-w} |
280 |
\end{equation} |
\end{equation} |
281 |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
282 |
|
|
306 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
307 |
\textit{\ Forcing/Dissipation} |
\textit{\ Forcing/Dissipation} |
308 |
\end{tabular} |
\end{tabular} |
309 |
\right. \qquad \label{Gu} |
\right. \qquad \label{eq:gu-speherical} |
310 |
\end{equation} |
\end{equation} |
311 |
|
|
312 |
\begin{equation} |
\begin{equation} |
325 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
326 |
\textit{\ Forcing/Dissipation} |
\textit{\ Forcing/Dissipation} |
327 |
\end{tabular} |
\end{tabular} |
328 |
\right. \qquad \label{Gv} |
\right. \qquad \label{eq:gv-spherical} |
329 |
\end{equation} |
\end{equation} |
330 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
331 |
|
|
345 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
346 |
\textit{\ Forcing/Dissipation} |
\textit{\ Forcing/Dissipation} |
347 |
\end{tabular} |
\end{tabular} |
348 |
\right. \label{Gw} |
\right. \label{eq:gw-spherical} |
349 |
\end{equation} |
\end{equation} |
350 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
351 |
|
|
417 |
here) by: |
here) by: |
418 |
|
|
419 |
\begin{equation} |
\begin{equation} |
420 |
\dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt} \label{quasinonhydro} |
\dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt} \label{eq:quasi-nh-w} |
421 |
\end{equation} |
\end{equation} |
422 |
where $p_{hy}$ is the hydrostatic pressure. |
where $p_{hy}$ is the hydrostatic pressure. |
423 |
|
|
477 |
dividing the total (pressure/geo) potential in to three parts, a surface |
dividing the total (pressure/geo) potential in to three parts, a surface |
478 |
part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a |
part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a |
479 |
non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and |
non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and |
480 |
writing the momentum equation in the form |
writing the momentum equation |
481 |
\begin{equation} |
as in (\ref{eq:mom-h}). |
|
\frac{\partial }{\partial t}\vec{\mathbf{v}_{h}}+\mathbf{\nabla }_{h}\phi |
|
|
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }\phi |
|
|
_{nh}=\vec{\mathbf{G}}_{\vec{v}} \label{mtm-split} |
|
|
\end{equation} |
|
|
as in (\ref{hor-mtm}). |
|
482 |
|
|
483 |
\subsubsection{Hydrostatic pressure} |
\subsubsection{Hydrostatic pressure} |
484 |
|
|
491 |
\] |
\] |
492 |
and so |
and so |
493 |
|
|
494 |
\[ |
\begin{equation} |
495 |
\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr |
\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr |
496 |
\] |
\label{eq:hydro-phi} |
497 |
|
\end{equation} |
498 |
|
|
499 |
\subsubsection{Surface pressure} |
\subsubsection{Surface pressure} |
500 |
|
|
519 |
\begin{equation} |
\begin{equation} |
520 |
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
521 |
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0 |
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0 |
522 |
\label{integralcontinuity} |
\label{eq:free-surface} |
523 |
\end{equation} |
\end{equation} |
524 |
|
|
525 |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
526 |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
527 |
be written |
be written |
528 |
\begin{equation} |
\begin{equation} |
529 |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta \label{link} |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta |
530 |
|
\label{eq:phi-surf} |
531 |
\end{equation} |
\end{equation} |
532 |
where $b$ is the buoyancy. |
where $b$ is the buoyancy. |
533 |
|
|
545 |
\begin{equation} |
\begin{equation} |
546 |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{% |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{% |
547 |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .% |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .% |
548 |
\vec{\mathbf{F}} \label{3dinvert} |
\vec{\mathbf{F}} \label{eq:3d-invert} |
549 |
\end{equation} |
\end{equation} |
550 |
|
|
551 |
For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$ |
For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$ |
574 |
|
|
575 |
\begin{equation} |
\begin{equation} |
576 |
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} |
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} |
577 |
\label{inhomneumann} |
\label{eq:inhom-neumann-nh} |
578 |
\end{equation} |
\end{equation} |
579 |
where |
where |
580 |
|
|
603 |
{inhomneumann}) the modified boundary condition becomes: |
{inhomneumann}) the modified boundary condition becomes: |
604 |
|
|
605 |
\begin{equation} |
\begin{equation} |
606 |
\widehat{n}.\nabla \phi _{nh}=0 \label{homneuman} |
\widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh} |
607 |
\end{equation} |
\end{equation} |
608 |
|
|
609 |
If the flow is `close' to hydrostatic balance then the 3-d inversion |
If the flow is `close' to hydrostatic balance then the 3-d inversion |
627 |
Many forms of momentum dissipation are available in the model. Laplacian and |
Many forms of momentum dissipation are available in the model. Laplacian and |
628 |
biharmonic frictions are commonly used: |
biharmonic frictions are commonly used: |
629 |
|
|
630 |
\[ |
\begin{equation} |
631 |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}% |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}% |
632 |
+A_{4}\nabla _{h}^{4}v |
+A_{4}\nabla _{h}^{4}v |
633 |
\] |
\label{eq:dissipation} |
634 |
|
\end{equation} |
635 |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
636 |
coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic |
coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic |
637 |
friction. These coefficients are the same for all velocity components. |
friction. These coefficients are the same for all velocity components. |
641 |
The mixing terms for the temperature and salinity equations have a similar |
The mixing terms for the temperature and salinity equations have a similar |
642 |
form to that of momentum except that the diffusion tensor can be |
form to that of momentum except that the diffusion tensor can be |
643 |
non-diagonal and have varying coefficients. $\qquad $% |
non-diagonal and have varying coefficients. $\qquad $% |
644 |
\[ |
\begin{equation} |
645 |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
646 |
_{h}^{4}(T,S) |
_{h}^{4}(T,S) |
647 |
\] |
\label{eq:diffusion} |
648 |
|
\end{equation} |
649 |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $% |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $% |
650 |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
651 |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
652 |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
653 |
reduces to a diagonal matrix with constant coefficients: |
reduces to a diagonal matrix with constant coefficients: |
654 |
|
|
655 |
\[ |
\begin{equation} |
656 |
\qquad \qquad \qquad \qquad K=\left( |
\qquad \qquad \qquad \qquad K=\left( |
657 |
\begin{array}{ccc} |
\begin{array}{ccc} |
658 |
K_{h} & 0 & 0 \\ |
K_{h} & 0 & 0 \\ |
660 |
0 & 0 & K_{v} |
0 & 0 & K_{v} |
661 |
\end{array} |
\end{array} |
662 |
\right) \qquad \qquad \qquad |
\right) \qquad \qquad \qquad |
663 |
\] |
\label{eq:diagonal-diffusion-tensor} |
664 |
|
\end{equation} |
665 |
where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion |
where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion |
666 |
coefficients. These coefficients are the same for all tracers (temperature, |
coefficients. These coefficients are the same for all tracers (temperature, |
667 |
salinity ... ). |
salinity ... ). |
675 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
676 |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
677 |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
678 |
\label{vecinvariant} |
\label{eq:vi-identity} |
679 |
\end{equation} |
\end{equation} |
680 |
This permits alternative numerical treatments of the non-linear terms based |
This permits alternative numerical treatments of the non-linear terms based |
681 |
on their representation as a vorticity flux. Because gradients of coordinate |
on their representation as a vorticity flux. Because gradients of coordinate |