/[MITgcm]/manual/s_overview/continuous_eqns.tex
ViewVC logotype

Diff of /manual/s_overview/continuous_eqns.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.1 by adcroft, Wed Aug 8 16:16:18 2001 UTC revision 1.2 by cnh, Tue Sep 11 14:03:33 2001 UTC
# Line 202  atmosphere. Line 202  atmosphere.
202  The boundary conditions at top and bottom are given by:  The boundary conditions at top and bottom are given by:
203    
204  \begin{eqnarray*}  \begin{eqnarray*}
205  &&\omega =0~\text{at }r=R_{fixed}\text{ (top of the atmosphere)} \\  &&\omega =0~\text{at }r=R_{fixed} \label{eq:fixed-bc-atmos}
206    \text{ (top of the atmosphere)} \\
207  \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the  \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
208  atmosphere)}  atmosphere)}
209    \label{eq:moving-bc-atmos}
210  \end{eqnarray*}  \end{eqnarray*}
211    
212  Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent  Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent
# Line 216  coordinates in Appendix Atmosphere - see Line 218  coordinates in Appendix Atmosphere - see
218    
219  In the ocean we interpret:  In the ocean we interpret:
220  \begin{eqnarray}  \begin{eqnarray}
221  r &=&z\text{ is the height} \\  r &=&z\text{ is the height}
222  \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} \\  \label{eq:ocean-z}\\
223  \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \\  \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}
224    \label{eq:ocean-w}\\
225    \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure}
226    \label{eq:ocean-p}\\
227  b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho  b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
228  _{c}\right) \text{ is the buoyancy}  _{c}\right) \text{ is the buoyancy}
229    \label{eq:ocean-b}
230  \end{eqnarray}  \end{eqnarray}
231  where $\rho _{c}$ is a fixed reference density of water and $g$ is the  where $\rho _{c}$ is a fixed reference density of water and $g$ is the
232  acceleration due to gravity.\noindent  acceleration due to gravity.\noindent
# Line 237  R_{o}=Z_{o}=0$. Line 243  R_{o}=Z_{o}=0$.
243  Boundary conditions are:  Boundary conditions are:
244    
245  \begin{eqnarray*}  \begin{eqnarray*}
246  w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \\  w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)}
247  w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)}  \label{eq:fixed-bc-ocean}\\
248    w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)
249    \label{eq:moving-bc-ocean}}
250  \end{eqnarray*}  \end{eqnarray*}
251  where $\eta $ is the elevation of the free surface.  where $\eta $ is the elevation of the free surface.
252    
# Line 252  Let us separate $\phi $ in to surface, h Line 260  Let us separate $\phi $ in to surface, h
260    
261  \begin{equation}  \begin{equation}
262  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)  \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
263  \label{pressuresplit}  \label{eq:phi-split}
264  \end{equation}  \end{equation}
265  and write eq(\ref{incompressible}a) in the form:  and write eq(\ref{incompressible}a) in the form:
266    
267  \begin{equation}  \begin{equation}
268  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi  \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
269  _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi  _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
270  _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}  \label{hor-mtm}  _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}  \label{eq:mom-h}
271  \end{equation}  \end{equation}
272    
273  \begin{equation}  \begin{equation}
274  \frac{\partial \phi _{hyd}}{\partial r}=-b  \label{hydro}  \frac{\partial \phi _{hyd}}{\partial r}=-b  \label{eq:hydrostatic}
275  \end{equation}  \end{equation}
276    
277  \begin{equation}  \begin{equation}
278  \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{%  \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{%
279  \partial r}=G_{\dot{r}}  \label{vertmtm}  \partial r}=G_{\dot{r}}  \label{eq:mom-w}
280  \end{equation}  \end{equation}
281  Here $\epsilon _{nh}$ is a non-hydrostatic parameter.  Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
282    
# Line 298  $+\mathcal{F}_{u}\mathcal{+D}_{u}$% Line 306  $+\mathcal{F}_{u}\mathcal{+D}_{u}$%
306  \textit{Coriolis} \\  \textit{Coriolis} \\
307  \textit{\ Forcing/Dissipation}  \textit{\ Forcing/Dissipation}
308  \end{tabular}  \end{tabular}
309  \right. \qquad  \label{Gu}  \right. \qquad  \label{eq:gu-speherical}
310  \end{equation}  \end{equation}
311    
312  \begin{equation}  \begin{equation}
# Line 317  $+\mathcal{F}_{v}\mathcal{+D}_{v}$% Line 325  $+\mathcal{F}_{v}\mathcal{+D}_{v}$%
325  \textit{Coriolis} \\  \textit{Coriolis} \\
326  \textit{\ Forcing/Dissipation}  \textit{\ Forcing/Dissipation}
327  \end{tabular}  \end{tabular}
328  \right. \qquad  \label{Gv}  \right. \qquad  \label{eq:gv-spherical}
329  \end{equation}  \end{equation}
330  \qquad \qquad \qquad \qquad \qquad  \qquad \qquad \qquad \qquad \qquad
331    
# Line 337  $\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot Line 345  $\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot
345  \textit{Coriolis} \\  \textit{Coriolis} \\
346  \textit{\ Forcing/Dissipation}  \textit{\ Forcing/Dissipation}
347  \end{tabular}  \end{tabular}
348  \right.  \label{Gw}  \right.  \label{eq:gw-spherical}
349  \end{equation}  \end{equation}
350  \qquad \qquad \qquad \qquad \qquad  \qquad \qquad \qquad \qquad \qquad
351    
# Line 409  r}$ in the vertical momentum eqs(\ref{ve Line 417  r}$ in the vertical momentum eqs(\ref{ve
417  here) by:  here) by:
418    
419  \begin{equation}  \begin{equation}
420  \dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt}  \label{quasinonhydro}  \dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt}  \label{eq:quasi-nh-w}
421  \end{equation}  \end{equation}
422  where $p_{hy}$ is the hydrostatic pressure.  where $p_{hy}$ is the hydrostatic pressure.
423    
# Line 469  pressure field must be obtained diagnost Line 477  pressure field must be obtained diagnost
477  dividing the total (pressure/geo) potential in to three parts, a surface  dividing the total (pressure/geo) potential in to three parts, a surface
478  part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a  part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
479  non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and  non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and
480  writing the momentum equation in the form  writing the momentum equation
481  \begin{equation}  as in (\ref{eq:mom-h}).
 \frac{\partial }{\partial t}\vec{\mathbf{v}_{h}}+\mathbf{\nabla }_{h}\phi  
 _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }\phi  
 _{nh}=\vec{\mathbf{G}}_{\vec{v}}  \label{mtm-split}  
 \end{equation}  
 as in (\ref{hor-mtm}).  
482    
483  \subsubsection{Hydrostatic pressure}  \subsubsection{Hydrostatic pressure}
484    
# Line 488  _{hyd}\right] _{r}^{R_{o}}=\int_{r}^{R_{ Line 491  _{hyd}\right] _{r}^{R_{o}}=\int_{r}^{R_{
491  \]  \]
492  and so  and so
493    
494  \[  \begin{equation}
495  \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr  \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr
496  \]  \label{eq:hydro-phi}
497    \end{equation}
498    
499  \subsubsection{Surface pressure}  \subsubsection{Surface pressure}
500    
# Line 515  r $. The above can be rearranged to yiel Line 519  r $. The above can be rearranged to yiel
519  \begin{equation}  \begin{equation}
520  \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot  \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
521  \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0  \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0
522  \label{integralcontinuity}  \label{eq:free-surface}
523  \end{equation}  \end{equation}
524    
525  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential  Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
526  (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can  (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can
527  be written  be written
528  \begin{equation}  \begin{equation}
529  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta   \label{link}  \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta  
530    \label{eq:phi-surf}
531  \end{equation}  \end{equation}
532  where $b$ is the buoyancy.  where $b$ is the buoyancy.
533    
# Line 540  Taking the horizontal divergence of (\re Line 545  Taking the horizontal divergence of (\re
545  \begin{equation}  \begin{equation}
546  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{%  \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{%
547  \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .%  \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .%
548  \vec{\mathbf{F}}  \label{3dinvert}  \vec{\mathbf{F}}  \label{eq:3d-invert}
549  \end{equation}  \end{equation}
550    
551  For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$  For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
# Line 569  Eq.(\ref{nonormalflow}) implies, making Line 574  Eq.(\ref{nonormalflow}) implies, making
574    
575  \begin{equation}  \begin{equation}
576  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}  \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
577  \label{inhomneumann}  \label{eq:inhom-neumann-nh}
578  \end{equation}  \end{equation}
579  where  where
580    
# Line 598  that $\widetilde{\vec{\mathbf{F}}}.\wide Line 603  that $\widetilde{\vec{\mathbf{F}}}.\wide
603  {inhomneumann}) the modified boundary condition becomes:  {inhomneumann}) the modified boundary condition becomes:
604    
605  \begin{equation}  \begin{equation}
606  \widehat{n}.\nabla \phi _{nh}=0  \label{homneuman}  \widehat{n}.\nabla \phi _{nh}=0  \label{eq:hom-neumann-nh}
607  \end{equation}  \end{equation}
608    
609  If the flow is `close' to hydrostatic balance then the 3-d inversion  If the flow is `close' to hydrostatic balance then the 3-d inversion
# Line 622  The forcing terms $\mathcal{F}$ on the r Line 627  The forcing terms $\mathcal{F}$ on the r
627  Many forms of momentum dissipation are available in the model. Laplacian and  Many forms of momentum dissipation are available in the model. Laplacian and
628  biharmonic frictions are commonly used:  biharmonic frictions are commonly used:
629    
630  \[  \begin{equation}
631  D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}%  D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}%
632  +A_{4}\nabla _{h}^{4}v  +A_{4}\nabla _{h}^{4}v
633  \]  \label{eq:dissipation}
634    \end{equation}
635  where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity  where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
636  coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic  coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
637  friction. These coefficients are the same for all velocity components.  friction. These coefficients are the same for all velocity components.
# Line 635  friction. These coefficients are the sam Line 641  friction. These coefficients are the sam
641  The mixing terms for the temperature and salinity equations have a similar  The mixing terms for the temperature and salinity equations have a similar
642  form to that of momentum except that the diffusion tensor can be  form to that of momentum except that the diffusion tensor can be
643  non-diagonal and have varying coefficients. $\qquad $%  non-diagonal and have varying coefficients. $\qquad $%
644  \[  \begin{equation}
645  D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla  D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
646  _{h}^{4}(T,S)  _{h}^{4}(T,S)
647  \]  \label{eq:diffusion}
648    \end{equation}
649  where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $%  where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $%
650  horizontal coefficient for biharmonic diffusion. In the simplest case where  horizontal coefficient for biharmonic diffusion. In the simplest case where
651  the subgrid-scale fluxes of heat and salt are parameterized with constant  the subgrid-scale fluxes of heat and salt are parameterized with constant
652  horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,  horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
653  reduces to a diagonal matrix with constant coefficients:  reduces to a diagonal matrix with constant coefficients:
654    
655  \[  \begin{equation}
656  \qquad \qquad \qquad \qquad K=\left(  \qquad \qquad \qquad \qquad K=\left(
657  \begin{array}{ccc}  \begin{array}{ccc}
658  K_{h} & 0 & 0 \\  K_{h} & 0 & 0 \\
# Line 653  K_{h} & 0 & 0 \\ Line 660  K_{h} & 0 & 0 \\
660  0 & 0 & K_{v}  0 & 0 & K_{v}
661  \end{array}  \end{array}
662  \right) \qquad \qquad \qquad  \right) \qquad \qquad \qquad
663  \]  \label{eq:diagonal-diffusion-tensor}
664    \end{equation}
665  where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion  where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
666  coefficients. These coefficients are the same for all tracers (temperature,  coefficients. These coefficients are the same for all tracers (temperature,
667  salinity ... ).  salinity ... ).
# Line 667  For some purposes it is advantageous to Line 675  For some purposes it is advantageous to
675  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}%  \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}%
676  +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla  +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
677  \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]  \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
678  \label{vecinvariant}  \label{eq:vi-identity}
679  \end{equation}  \end{equation}
680  This permits alternative numerical treatments of the non-linear terms based  This permits alternative numerical treatments of the non-linear terms based
681  on their representation as a vorticity flux. Because gradients of coordinate  on their representation as a vorticity flux. Because gradients of coordinate

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.2

  ViewVC Help
Powered by ViewVC 1.1.22