| 5 |
|
|
| 6 |
To render atmosphere and ocean models from one dynamical core we exploit |
To render atmosphere and ocean models from one dynamical core we exploit |
| 7 |
`isomorphisms' between equation sets that govern the evolution of the |
`isomorphisms' between equation sets that govern the evolution of the |
| 8 |
respective fluids - see fig.4% |
respective fluids - see fig.4 |
| 9 |
\marginpar{ |
\marginpar{ |
| 10 |
Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down |
Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down |
| 11 |
and encoded. The model variables have different interpretations depending on |
and encoded. The model variables have different interpretations depending on |
| 12 |
whether the atmosphere or ocean is being studied. Thus, for example, the |
whether the atmosphere or ocean is being studied. Thus, for example, the |
| 13 |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
| 14 |
modeling the atmosphere and height, $z$, if we are modeling the ocean. A |
modeling the atmosphere and height, $z$, if we are modeling the ocean. A |
| 15 |
complete list of the isomorphisms is given in table 1.% |
complete list of the isomorphisms is given in table 1. |
| 16 |
\marginpar{ |
\marginpar{ |
| 17 |
Table 1. Isomorphisms} |
Table 1. Isomorphisms} |
| 18 |
|
|
| 22 |
depend on $\theta $, $S$, and $p$. The equations that govern the evolution |
depend on $\theta $, $S$, and $p$. The equations that govern the evolution |
| 23 |
of these fields, obtained by applying the laws of classical mechanics and |
of these fields, obtained by applying the laws of classical mechanics and |
| 24 |
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of |
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of |
| 25 |
a generic vertical coordinate, $r$, see fig.5% |
a generic vertical coordinate, $r$, see fig.5 |
| 26 |
\marginpar{ |
\marginpar{ |
| 27 |
Fig.5 The vertical coordinate of model}: |
Fig.5 The vertical coordinate of model}: |
| 28 |
|
|
| 29 |
\[ |
\[ |
| 30 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
| 31 |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}}% |
\right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}} |
| 32 |
\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm} |
\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm} |
| 33 |
\] |
\] |
| 34 |
|
|
| 35 |
\[ |
\[ |
| 36 |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{% |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
| 37 |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{% |
v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{ |
| 38 |
\mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm} |
\mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm} |
| 39 |
\] |
\] |
| 40 |
|
|
| 41 |
\begin{equation} |
\begin{equation} |
| 42 |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{% |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ |
| 43 |
\partial r}=0\text{ continuity} \label{incompressible} |
\partial r}=0\text{ continuity} \label{incompressible} |
| 44 |
\end{equation} |
\end{equation} |
| 45 |
|
|
| 53 |
\] |
\] |
| 54 |
|
|
| 55 |
\[ |
\[ |
| 56 |
\frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity% |
\frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity |
| 57 |
} |
} |
| 58 |
\] |
\] |
| 59 |
|
|
| 69 |
\] |
\] |
| 70 |
|
|
| 71 |
\[ |
\[ |
| 72 |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}% |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r} |
| 73 |
\text{ is the `grad' operator} |
\text{ is the `grad' operator} |
| 74 |
\] |
\] |
| 75 |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}% |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k} |
| 76 |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
| 77 |
is a unit vector in the vertical |
is a unit vector in the vertical |
| 78 |
|
|
| 106 |
\] |
\] |
| 107 |
|
|
| 108 |
\[ |
\[ |
| 109 |
\mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}}% |
\mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}} |
| 110 |
\text{ are forcing and dissipation of }\vec{\mathbf{v}} |
\text{ are forcing and dissipation of }\vec{\mathbf{v}} |
| 111 |
\] |
\] |
| 112 |
|
|
| 237 |
|
|
| 238 |
The surface of the ocean is given by: $R_{moving}=\eta $ |
The surface of the ocean is given by: $R_{moving}=\eta $ |
| 239 |
|
|
| 240 |
The position of the resting free surface of the ocean is given by $% |
The position of the resting free surface of the ocean is given by $ |
| 241 |
R_{o}=Z_{o}=0$. |
R_{o}=Z_{o}=0$. |
| 242 |
|
|
| 243 |
Boundary conditions are: |
Boundary conditions are: |
| 275 |
\end{equation} |
\end{equation} |
| 276 |
|
|
| 277 |
\begin{equation} |
\begin{equation} |
| 278 |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{% |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{ |
| 279 |
\partial r}=G_{\dot{r}} \label{eq:mom-w} |
\partial r}=G_{\dot{r}} \label{eq:mom-w} |
| 280 |
\end{equation} |
\end{equation} |
| 281 |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
| 282 |
|
|
| 283 |
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref |
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref |
| 284 |
{hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis |
{hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis |
| 285 |
terms in the momentum equations. In spherical coordinates they take the form% |
terms in the momentum equations. In spherical coordinates they take the form |
| 286 |
\footnote{% |
\footnote{ |
| 287 |
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms |
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms |
| 288 |
in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined |
in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined |
| 289 |
terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully |
terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully |
| 293 |
\left. |
\left. |
| 294 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 295 |
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\ |
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\ |
| 296 |
$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}% |
$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}} |
| 297 |
\right\} $ \\ |
\right\} $ \\ |
| 298 |
$-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}}% |
$-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}} |
| 299 |
\right\} $ \\ |
\right\} $ \\ |
| 300 |
$+\mathcal{F}_{u}\mathcal{+D}_{u}$% |
$+\mathcal{F}_{u}\mathcal{+D}_{u}$ |
| 301 |
\end{tabular} |
\end{tabular} |
| 302 |
\right\} \left\{ |
\right\} \left\{ |
| 303 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 313 |
\left. |
\left. |
| 314 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 315 |
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\ |
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\ |
| 316 |
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}% |
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r} |
| 317 |
}\right\} $ \\ |
}\right\} $ \\ |
| 318 |
$-\left\{ -2\Omega u\sin lat\right\} $ \\ |
$-\left\{ -2\Omega u\sin lat\right\} $ \\ |
| 319 |
$+\mathcal{F}_{v}\mathcal{+D}_{v}$% |
$+\mathcal{F}_{v}\mathcal{+D}_{v}$ |
| 320 |
\end{tabular} |
\end{tabular} |
| 321 |
\right\} \left\{ |
\right\} \left\{ |
| 322 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 333 |
\left. |
\left. |
| 334 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 335 |
$G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\ |
$G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\ |
| 336 |
$+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}}% |
$+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}} |
| 337 |
\right\} $ \\ |
\right\} $ \\ |
| 338 |
${+2\Omega u\cos lat}$ \\ |
${+2\Omega u\cos lat}$ \\ |
| 339 |
$\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$% |
$\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$ |
| 340 |
\end{tabular} |
\end{tabular} |
| 341 |
\right\} \left\{ |
\right\} \left\{ |
| 342 |
\begin{tabular}{l} |
\begin{tabular}{l} |
| 349 |
\end{equation} |
\end{equation} |
| 350 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
| 351 |
|
|
| 352 |
In the above `${r}$' is the distance from the center of the earth and `$% |
In the above `${r}$' is the distance from the center of the earth and `$ |
| 353 |
lat$' is latitude. |
lat$' is latitude. |
| 354 |
|
|
| 355 |
Grad and div operators in spherical coordinates are defined in appendix |
Grad and div operators in spherical coordinates are defined in appendix |
| 356 |
OPERATORS.% |
OPERATORS. |
| 357 |
\marginpar{ |
\marginpar{ |
| 358 |
Fig.6 Spherical polar coordinate system.} |
Fig.6 Spherical polar coordinate system.} |
| 359 |
|
|
| 366 |
These are discussed at length in Marshall et al (1997a). |
These are discussed at length in Marshall et al (1997a). |
| 367 |
|
|
| 368 |
In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined |
In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined |
| 369 |
terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r% |
terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r |
| 370 |
}$' is replaced by `$a$', the mean radius of the earth. Once the pressure is |
}$' is replaced by `$a$', the mean radius of the earth. Once the pressure is |
| 371 |
found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi |
found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi |
| 372 |
_{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels |
_{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels |
| 375 |
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between |
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between |
| 376 |
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos |
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos |
| 377 |
\phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic |
\phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic |
| 378 |
contribution to the pressure field: only the terms underlined twice in Eqs. (% |
contribution to the pressure field: only the terms underlined twice in Eqs. ( |
| 379 |
\ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the |
\ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the |
| 380 |
shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all} |
shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all} |
| 381 |
the metric terms are retained and the full variation of the radial position |
the metric terms are retained and the full variation of the radial position |
| 399 |
|
|
| 400 |
\paragraph{Non-hydrostatic Ocean} |
\paragraph{Non-hydrostatic Ocean} |
| 401 |
|
|
| 402 |
In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $% |
In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $ |
| 403 |
\rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation |
\rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation |
| 404 |
must be solved subject to Neumann boundary conditions (see below). It is |
must be solved subject to Neumann boundary conditions (see below). It is |
| 405 |
important to note that use of the full \textbf{NH} does not admit any new |
important to note that use of the full \textbf{NH} does not admit any new |
| 412 |
|
|
| 413 |
\paragraph{Quasi-nonhydrostatic Atmosphere} |
\paragraph{Quasi-nonhydrostatic Atmosphere} |
| 414 |
|
|
| 415 |
In the non-hydrostatic version of our atmospheric model we approximate $\dot{% |
In the non-hydrostatic version of our atmospheric model we approximate $\dot{ |
| 416 |
r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only |
r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only |
| 417 |
here) by: |
here) by: |
| 418 |
|
|
| 448 |
|
|
| 449 |
\subparagraph{Non-hydrostatic } |
\subparagraph{Non-hydrostatic } |
| 450 |
|
|
| 451 |
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$% |
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$ |
| 452 |
coordinates are supported. |
coordinates are supported. |
| 453 |
|
|
| 454 |
\subsection{Solution strategy} |
\subsection{Solution strategy} |
| 455 |
|
|
| 456 |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{% |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ |
| 457 |
NH} models are summarized in Fig.7.% |
NH} models are summarized in Fig.7. |
| 458 |
\marginpar{ |
\marginpar{ |
| 459 |
Fig.7 Solution strategy} |
Fig.7 Solution strategy} |
| 460 |
|
|
| 461 |
Overview paragraph...... |
Overview paragraph...... |
| 462 |
|
|
| 463 |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
| 464 |
course, some complication that goes with the inclusion of $\cos \phi \ $% |
course, some complication that goes with the inclusion of $\cos \phi \ $ |
| 465 |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
| 466 |
But this leads to negligible increase in computation. In \textbf{NH}, in |
But this leads to negligible increase in computation. In \textbf{NH}, in |
| 467 |
contrast, one additional elliptic equation - a three-dimensional one - must |
contrast, one additional elliptic equation - a three-dimensional one - must |
| 498 |
|
|
| 499 |
\subsubsection{Surface pressure} |
\subsubsection{Surface pressure} |
| 500 |
|
|
| 501 |
The surface pressure equation can be obtained by integrating continuity, (% |
The surface pressure equation can be obtained by integrating continuity, ( |
| 502 |
\ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
\ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
| 503 |
|
|
| 504 |
\[ |
\[ |
| 505 |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}% |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} |
| 506 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
| 507 |
\] |
\] |
| 508 |
|
|
| 510 |
|
|
| 511 |
\[ |
\[ |
| 512 |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
| 513 |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}% |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}} |
| 514 |
_{h}dr=0 |
_{h}dr=0 |
| 515 |
\] |
\] |
| 516 |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $% |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $ |
| 517 |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
| 518 |
|
|
| 519 |
\begin{equation} |
\begin{equation} |
| 538 |
|
|
| 539 |
\subsubsection{Non-hydrostatic pressure} |
\subsubsection{Non-hydrostatic pressure} |
| 540 |
|
|
| 541 |
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{% |
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{ |
| 542 |
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation |
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation |
| 543 |
(\ref{incompressible}), we deduce that: |
(\ref{incompressible}), we deduce that: |
| 544 |
|
|
| 545 |
\begin{equation} |
\begin{equation} |
| 546 |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{% |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ |
| 547 |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .% |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla . |
| 548 |
\vec{\mathbf{F}} \label{eq:3d-invert} |
\vec{\mathbf{F}} \label{eq:3d-invert} |
| 549 |
\end{equation} |
\end{equation} |
| 550 |
|
|
| 564 |
\end{equation} |
\end{equation} |
| 565 |
where $\widehat{n}$ is a vector of unit length normal to the boundary. The |
where $\widehat{n}$ is a vector of unit length normal to the boundary. The |
| 566 |
kinematic condition (\ref{nonormalflow}) is also applied to the vertical |
kinematic condition (\ref{nonormalflow}) is also applied to the vertical |
| 567 |
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $% |
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $ |
| 568 |
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the |
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the |
| 569 |
tangential component of velocity, $v_{T}$, at all solid boundaries, |
tangential component of velocity, $v_{T}$, at all solid boundaries, |
| 570 |
depending on the form chosen for the dissipative terms in the momentum |
depending on the form chosen for the dissipative terms in the momentum |
| 584 |
\] |
\] |
| 585 |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
| 586 |
(\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit |
(\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit |
| 587 |
classical 3D potential theory and, by introducing an appropriately chosen $% |
classical 3D potential theory and, by introducing an appropriately chosen $ |
| 588 |
\delta $-function sheet of `source-charge', replace the inhomogenous |
\delta $-function sheet of `source-charge', replace the inhomogenous |
| 589 |
boundary condition on pressure by a homogeneous one. The source term $rhs$ |
boundary condition on pressure by a homogeneous one. The source term $rhs$ |
| 590 |
in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By |
in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By |
| 628 |
biharmonic frictions are commonly used: |
biharmonic frictions are commonly used: |
| 629 |
|
|
| 630 |
\begin{equation} |
\begin{equation} |
| 631 |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}% |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}} |
| 632 |
+A_{4}\nabla _{h}^{4}v |
+A_{4}\nabla _{h}^{4}v |
| 633 |
\label{eq:dissipation} |
\label{eq:dissipation} |
| 634 |
\end{equation} |
\end{equation} |
| 640 |
|
|
| 641 |
The mixing terms for the temperature and salinity equations have a similar |
The mixing terms for the temperature and salinity equations have a similar |
| 642 |
form to that of momentum except that the diffusion tensor can be |
form to that of momentum except that the diffusion tensor can be |
| 643 |
non-diagonal and have varying coefficients. $\qquad $% |
non-diagonal and have varying coefficients. $\qquad $ |
| 644 |
\begin{equation} |
\begin{equation} |
| 645 |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
| 646 |
_{h}^{4}(T,S) |
_{h}^{4}(T,S) |
| 647 |
\label{eq:diffusion} |
\label{eq:diffusion} |
| 648 |
\end{equation} |
\end{equation} |
| 649 |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $% |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $ |
| 650 |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
| 651 |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
| 652 |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
| 672 |
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: |
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: |
| 673 |
|
|
| 674 |
\begin{equation} |
\begin{equation} |
| 675 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
| 676 |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
| 677 |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
| 678 |
\label{eq:vi-identity} |
\label{eq:vi-identity} |