| 202 |
The boundary conditions at top and bottom are given by: |
The boundary conditions at top and bottom are given by: |
| 203 |
|
|
| 204 |
\begin{eqnarray*} |
\begin{eqnarray*} |
| 205 |
&&\omega =0~\text{at }r=R_{fixed}\text{ (top of the atmosphere)} \\ |
&&\omega =0~\text{at }r=R_{fixed} \label{eq:fixed-bc-atmos} |
| 206 |
|
\text{ (top of the atmosphere)} \\ |
| 207 |
\omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the |
\omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the |
| 208 |
atmosphere)} |
atmosphere)} |
| 209 |
|
\label{eq:moving-bc-atmos} |
| 210 |
\end{eqnarray*} |
\end{eqnarray*} |
| 211 |
|
|
| 212 |
Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent |
Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent |
| 218 |
|
|
| 219 |
In the ocean we interpret: |
In the ocean we interpret: |
| 220 |
\begin{eqnarray} |
\begin{eqnarray} |
| 221 |
r &=&z\text{ is the height} \\ |
r &=&z\text{ is the height} |
| 222 |
\dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} \\ |
\label{eq:ocean-z}\\ |
| 223 |
\phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \\ |
\dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} |
| 224 |
|
\label{eq:ocean-w}\\ |
| 225 |
|
\phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} |
| 226 |
|
\label{eq:ocean-p}\\ |
| 227 |
b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho |
b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho |
| 228 |
_{c}\right) \text{ is the buoyancy} |
_{c}\right) \text{ is the buoyancy} |
| 229 |
|
\label{eq:ocean-b} |
| 230 |
\end{eqnarray} |
\end{eqnarray} |
| 231 |
where $\rho _{c}$ is a fixed reference density of water and $g$ is the |
where $\rho _{c}$ is a fixed reference density of water and $g$ is the |
| 232 |
acceleration due to gravity.\noindent |
acceleration due to gravity.\noindent |
| 243 |
Boundary conditions are: |
Boundary conditions are: |
| 244 |
|
|
| 245 |
\begin{eqnarray*} |
\begin{eqnarray*} |
| 246 |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \\ |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} |
| 247 |
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)} |
\label{eq:fixed-bc-ocean}\\ |
| 248 |
|
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) |
| 249 |
|
\label{eq:moving-bc-ocean}} |
| 250 |
\end{eqnarray*} |
\end{eqnarray*} |
| 251 |
where $\eta $ is the elevation of the free surface. |
where $\eta $ is the elevation of the free surface. |
| 252 |
|
|
| 260 |
|
|
| 261 |
\begin{equation} |
\begin{equation} |
| 262 |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
| 263 |
\label{pressuresplit} |
\label{eq:phi-split} |
| 264 |
\end{equation} |
\end{equation} |
| 265 |
and write eq(\ref{incompressible}a) in the form: |
and write eq(\ref{incompressible}a) in the form: |
| 266 |
|
|
| 267 |
\begin{equation} |
\begin{equation} |
| 268 |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
| 269 |
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi |
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi |
| 270 |
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{hor-mtm} |
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h} |
| 271 |
\end{equation} |
\end{equation} |
| 272 |
|
|
| 273 |
\begin{equation} |
\begin{equation} |
| 274 |
\frac{\partial \phi _{hyd}}{\partial r}=-b \label{hydro} |
\frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic} |
| 275 |
\end{equation} |
\end{equation} |
| 276 |
|
|
| 277 |
\begin{equation} |
\begin{equation} |
| 278 |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{% |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{% |
| 279 |
\partial r}=G_{\dot{r}} \label{vertmtm} |
\partial r}=G_{\dot{r}} \label{eq:mom-w} |
| 280 |
\end{equation} |
\end{equation} |
| 281 |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
| 282 |
|
|
| 306 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
| 307 |
\textit{\ Forcing/Dissipation} |
\textit{\ Forcing/Dissipation} |
| 308 |
\end{tabular} |
\end{tabular} |
| 309 |
\right. \qquad \label{Gu} |
\right. \qquad \label{eq:gu-speherical} |
| 310 |
\end{equation} |
\end{equation} |
| 311 |
|
|
| 312 |
\begin{equation} |
\begin{equation} |
| 325 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
| 326 |
\textit{\ Forcing/Dissipation} |
\textit{\ Forcing/Dissipation} |
| 327 |
\end{tabular} |
\end{tabular} |
| 328 |
\right. \qquad \label{Gv} |
\right. \qquad \label{eq:gv-spherical} |
| 329 |
\end{equation} |
\end{equation} |
| 330 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
| 331 |
|
|
| 345 |
\textit{Coriolis} \\ |
\textit{Coriolis} \\ |
| 346 |
\textit{\ Forcing/Dissipation} |
\textit{\ Forcing/Dissipation} |
| 347 |
\end{tabular} |
\end{tabular} |
| 348 |
\right. \label{Gw} |
\right. \label{eq:gw-spherical} |
| 349 |
\end{equation} |
\end{equation} |
| 350 |
\qquad \qquad \qquad \qquad \qquad |
\qquad \qquad \qquad \qquad \qquad |
| 351 |
|
|
| 417 |
here) by: |
here) by: |
| 418 |
|
|
| 419 |
\begin{equation} |
\begin{equation} |
| 420 |
\dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt} \label{quasinonhydro} |
\dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt} \label{eq:quasi-nh-w} |
| 421 |
\end{equation} |
\end{equation} |
| 422 |
where $p_{hy}$ is the hydrostatic pressure. |
where $p_{hy}$ is the hydrostatic pressure. |
| 423 |
|
|
| 477 |
dividing the total (pressure/geo) potential in to three parts, a surface |
dividing the total (pressure/geo) potential in to three parts, a surface |
| 478 |
part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a |
part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a |
| 479 |
non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and |
non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and |
| 480 |
writing the momentum equation in the form |
writing the momentum equation |
| 481 |
\begin{equation} |
as in (\ref{eq:mom-h}). |
|
\frac{\partial }{\partial t}\vec{\mathbf{v}_{h}}+\mathbf{\nabla }_{h}\phi |
|
|
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }\phi |
|
|
_{nh}=\vec{\mathbf{G}}_{\vec{v}} \label{mtm-split} |
|
|
\end{equation} |
|
|
as in (\ref{hor-mtm}). |
|
| 482 |
|
|
| 483 |
\subsubsection{Hydrostatic pressure} |
\subsubsection{Hydrostatic pressure} |
| 484 |
|
|
| 491 |
\] |
\] |
| 492 |
and so |
and so |
| 493 |
|
|
| 494 |
\[ |
\begin{equation} |
| 495 |
\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr |
\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr |
| 496 |
\] |
\label{eq:hydro-phi} |
| 497 |
|
\end{equation} |
| 498 |
|
|
| 499 |
\subsubsection{Surface pressure} |
\subsubsection{Surface pressure} |
| 500 |
|
|
| 519 |
\begin{equation} |
\begin{equation} |
| 520 |
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
| 521 |
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0 |
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0 |
| 522 |
\label{integralcontinuity} |
\label{eq:free-surface} |
| 523 |
\end{equation} |
\end{equation} |
| 524 |
|
|
| 525 |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
| 526 |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
| 527 |
be written |
be written |
| 528 |
\begin{equation} |
\begin{equation} |
| 529 |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta \label{link} |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta |
| 530 |
|
\label{eq:phi-surf} |
| 531 |
\end{equation} |
\end{equation} |
| 532 |
where $b$ is the buoyancy. |
where $b$ is the buoyancy. |
| 533 |
|
|
| 545 |
\begin{equation} |
\begin{equation} |
| 546 |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{% |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{% |
| 547 |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .% |
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .% |
| 548 |
\vec{\mathbf{F}} \label{3dinvert} |
\vec{\mathbf{F}} \label{eq:3d-invert} |
| 549 |
\end{equation} |
\end{equation} |
| 550 |
|
|
| 551 |
For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$ |
For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$ |
| 574 |
|
|
| 575 |
\begin{equation} |
\begin{equation} |
| 576 |
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} |
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} |
| 577 |
\label{inhomneumann} |
\label{eq:inhom-neumann-nh} |
| 578 |
\end{equation} |
\end{equation} |
| 579 |
where |
where |
| 580 |
|
|
| 603 |
{inhomneumann}) the modified boundary condition becomes: |
{inhomneumann}) the modified boundary condition becomes: |
| 604 |
|
|
| 605 |
\begin{equation} |
\begin{equation} |
| 606 |
\widehat{n}.\nabla \phi _{nh}=0 \label{homneuman} |
\widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh} |
| 607 |
\end{equation} |
\end{equation} |
| 608 |
|
|
| 609 |
If the flow is `close' to hydrostatic balance then the 3-d inversion |
If the flow is `close' to hydrostatic balance then the 3-d inversion |
| 627 |
Many forms of momentum dissipation are available in the model. Laplacian and |
Many forms of momentum dissipation are available in the model. Laplacian and |
| 628 |
biharmonic frictions are commonly used: |
biharmonic frictions are commonly used: |
| 629 |
|
|
| 630 |
\[ |
\begin{equation} |
| 631 |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}% |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}% |
| 632 |
+A_{4}\nabla _{h}^{4}v |
+A_{4}\nabla _{h}^{4}v |
| 633 |
\] |
\label{eq:dissipation} |
| 634 |
|
\end{equation} |
| 635 |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
| 636 |
coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic |
coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic |
| 637 |
friction. These coefficients are the same for all velocity components. |
friction. These coefficients are the same for all velocity components. |
| 641 |
The mixing terms for the temperature and salinity equations have a similar |
The mixing terms for the temperature and salinity equations have a similar |
| 642 |
form to that of momentum except that the diffusion tensor can be |
form to that of momentum except that the diffusion tensor can be |
| 643 |
non-diagonal and have varying coefficients. $\qquad $% |
non-diagonal and have varying coefficients. $\qquad $% |
| 644 |
\[ |
\begin{equation} |
| 645 |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
| 646 |
_{h}^{4}(T,S) |
_{h}^{4}(T,S) |
| 647 |
\] |
\label{eq:diffusion} |
| 648 |
|
\end{equation} |
| 649 |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $% |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $% |
| 650 |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
| 651 |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
the subgrid-scale fluxes of heat and salt are parameterized with constant |
| 652 |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
| 653 |
reduces to a diagonal matrix with constant coefficients: |
reduces to a diagonal matrix with constant coefficients: |
| 654 |
|
|
| 655 |
\[ |
\begin{equation} |
| 656 |
\qquad \qquad \qquad \qquad K=\left( |
\qquad \qquad \qquad \qquad K=\left( |
| 657 |
\begin{array}{ccc} |
\begin{array}{ccc} |
| 658 |
K_{h} & 0 & 0 \\ |
K_{h} & 0 & 0 \\ |
| 660 |
0 & 0 & K_{v} |
0 & 0 & K_{v} |
| 661 |
\end{array} |
\end{array} |
| 662 |
\right) \qquad \qquad \qquad |
\right) \qquad \qquad \qquad |
| 663 |
\] |
\label{eq:diagonal-diffusion-tensor} |
| 664 |
|
\end{equation} |
| 665 |
where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion |
where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion |
| 666 |
coefficients. These coefficients are the same for all tracers (temperature, |
coefficients. These coefficients are the same for all tracers (temperature, |
| 667 |
salinity ... ). |
salinity ... ). |
| 675 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}% |
| 676 |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
| 677 |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
| 678 |
\label{vecinvariant} |
\label{eq:vi-identity} |
| 679 |
\end{equation} |
\end{equation} |
| 680 |
This permits alternative numerical treatments of the non-linear terms based |
This permits alternative numerical treatments of the non-linear terms based |
| 681 |
on their representation as a vorticity flux. Because gradients of coordinate |
on their representation as a vorticity flux. Because gradients of coordinate |