| 1 | 
cnh | 
1.4 | 
% $Header: /u/gcmpack/mitgcmdoc/part1/continuous_eqns.tex,v 1.3 2001/09/26 14:53:10 cnh Exp $ | 
| 2 | 
cnh | 
1.2 | 
% $Name:  $ | 
| 3 | 
adcroft | 
1.1 | 
 | 
| 4 | 
  | 
  | 
\section{Continuous equations in `r' coordinates} | 
| 5 | 
  | 
  | 
 | 
| 6 | 
  | 
  | 
To render atmosphere and ocean models from one dynamical core we exploit | 
| 7 | 
  | 
  | 
`isomorphisms' between equation sets that govern the evolution of the | 
| 8 | 
cnh | 
1.4 | 
respective fluids - see fig.4 | 
| 9 | 
adcroft | 
1.1 | 
\marginpar{ | 
| 10 | 
  | 
  | 
Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down | 
| 11 | 
  | 
  | 
and encoded. The model variables have different interpretations depending on | 
| 12 | 
  | 
  | 
whether the atmosphere or ocean is being studied. Thus, for example, the | 
| 13 | 
  | 
  | 
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are | 
| 14 | 
  | 
  | 
modeling the atmosphere and height, $z$, if we are modeling the ocean. A | 
| 15 | 
cnh | 
1.4 | 
complete list of the isomorphisms is given in table 1. | 
| 16 | 
adcroft | 
1.1 | 
\marginpar{ | 
| 17 | 
  | 
  | 
Table 1. Isomorphisms} | 
| 18 | 
  | 
  | 
 | 
| 19 | 
  | 
  | 
The state of the fluid at any time is characterized by the distribution of | 
| 20 | 
  | 
  | 
velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a | 
| 21 | 
  | 
  | 
`geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may | 
| 22 | 
  | 
  | 
depend on $\theta $, $S$, and $p$. The equations that govern the evolution | 
| 23 | 
  | 
  | 
of these fields, obtained by applying the laws of classical mechanics and | 
| 24 | 
  | 
  | 
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of | 
| 25 | 
cnh | 
1.4 | 
a generic vertical coordinate, $r$, see fig.5 | 
| 26 | 
adcroft | 
1.1 | 
\marginpar{ | 
| 27 | 
  | 
  | 
Fig.5 The vertical coordinate of model}: | 
| 28 | 
  | 
  | 
 | 
| 29 | 
  | 
  | 
\[ | 
| 30 | 
cnh | 
1.4 | 
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} | 
| 31 | 
  | 
  | 
\right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}} | 
| 32 | 
adcroft | 
1.1 | 
\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm}  | 
| 33 | 
  | 
  | 
\] | 
| 34 | 
  | 
  | 
 | 
| 35 | 
  | 
  | 
\[ | 
| 36 | 
cnh | 
1.4 | 
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ | 
| 37 | 
  | 
  | 
v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{ | 
| 38 | 
adcroft | 
1.1 | 
\mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm}  | 
| 39 | 
  | 
  | 
\] | 
| 40 | 
  | 
  | 
 | 
| 41 | 
  | 
  | 
\begin{equation} | 
| 42 | 
cnh | 
1.4 | 
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ | 
| 43 | 
adcroft | 
1.1 | 
\partial r}=0\text{ continuity}  \label{incompressible} | 
| 44 | 
  | 
  | 
\end{equation} | 
| 45 | 
  | 
  | 
 | 
| 46 | 
  | 
  | 
\[ | 
| 47 | 
  | 
  | 
b=b(\theta ,S,r)\text{ equation of state}  | 
| 48 | 
  | 
  | 
\] | 
| 49 | 
  | 
  | 
 | 
| 50 | 
  | 
  | 
\[ | 
| 51 | 
  | 
  | 
\frac{D\theta }{Dt}=\mathcal{F}_{\theta }\text{ }\mathcal{+D}_{\theta }\text{ | 
| 52 | 
  | 
  | 
potential temperature}  | 
| 53 | 
  | 
  | 
\] | 
| 54 | 
  | 
  | 
 | 
| 55 | 
  | 
  | 
\[ | 
| 56 | 
cnh | 
1.4 | 
\frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity | 
| 57 | 
adcroft | 
1.1 | 
}  | 
| 58 | 
  | 
  | 
\] | 
| 59 | 
  | 
  | 
 | 
| 60 | 
  | 
  | 
Here: | 
| 61 | 
  | 
  | 
 | 
| 62 | 
  | 
  | 
\[ | 
| 63 | 
  | 
  | 
r\text{ is the vertical coordinate}  | 
| 64 | 
  | 
  | 
\] | 
| 65 | 
  | 
  | 
 | 
| 66 | 
  | 
  | 
\[ | 
| 67 | 
  | 
  | 
\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ | 
| 68 | 
  | 
  | 
is the total derivative}  | 
| 69 | 
  | 
  | 
\] | 
| 70 | 
  | 
  | 
 | 
| 71 | 
  | 
  | 
\[ | 
| 72 | 
cnh | 
1.4 | 
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r} | 
| 73 | 
adcroft | 
1.1 | 
\text{ is the `grad' operator}  | 
| 74 | 
  | 
  | 
\] | 
| 75 | 
cnh | 
1.4 | 
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k} | 
| 76 | 
adcroft | 
1.1 | 
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ | 
| 77 | 
  | 
  | 
is a unit vector in the vertical | 
| 78 | 
  | 
  | 
 | 
| 79 | 
  | 
  | 
\[ | 
| 80 | 
  | 
  | 
t\text{ is time}  | 
| 81 | 
  | 
  | 
\] | 
| 82 | 
  | 
  | 
 | 
| 83 | 
  | 
  | 
\[ | 
| 84 | 
  | 
  | 
\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the | 
| 85 | 
  | 
  | 
velocity}  | 
| 86 | 
  | 
  | 
\] | 
| 87 | 
  | 
  | 
 | 
| 88 | 
  | 
  | 
\[ | 
| 89 | 
  | 
  | 
\phi \text{ is the `pressure'/`geopotential'}  | 
| 90 | 
  | 
  | 
\] | 
| 91 | 
  | 
  | 
 | 
| 92 | 
  | 
  | 
\[ | 
| 93 | 
  | 
  | 
\vec{\Omega}\text{ is the Earth's rotation}  | 
| 94 | 
  | 
  | 
\] | 
| 95 | 
  | 
  | 
 | 
| 96 | 
  | 
  | 
\[ | 
| 97 | 
  | 
  | 
b\text{ is the `buoyancy'}  | 
| 98 | 
  | 
  | 
\] | 
| 99 | 
  | 
  | 
 | 
| 100 | 
  | 
  | 
\[ | 
| 101 | 
  | 
  | 
\theta \text{ is potential temperature}  | 
| 102 | 
  | 
  | 
\] | 
| 103 | 
  | 
  | 
 | 
| 104 | 
  | 
  | 
\[ | 
| 105 | 
  | 
  | 
S\text{ is specific humidity in the atmosphere; salinity in the ocean}  | 
| 106 | 
  | 
  | 
\] | 
| 107 | 
  | 
  | 
 | 
| 108 | 
  | 
  | 
\[ | 
| 109 | 
cnh | 
1.4 | 
\mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}} | 
| 110 | 
adcroft | 
1.1 | 
\text{ are forcing and dissipation of }\vec{\mathbf{v}}  | 
| 111 | 
  | 
  | 
\] | 
| 112 | 
  | 
  | 
 | 
| 113 | 
  | 
  | 
\[ | 
| 114 | 
  | 
  | 
\mathcal{F}_{\theta }\mathcal{\ }\text{and }\mathcal{D}_{\theta }\text{ are | 
| 115 | 
  | 
  | 
forcing and dissipation of }\theta  | 
| 116 | 
  | 
  | 
\] | 
| 117 | 
  | 
  | 
 | 
| 118 | 
  | 
  | 
\[ | 
| 119 | 
  | 
  | 
\mathcal{F}_{S}\mathcal{\ }\text{and }\mathcal{D}_{S}\text{ are forcing and | 
| 120 | 
  | 
  | 
dissipation of }S  | 
| 121 | 
  | 
  | 
\] | 
| 122 | 
  | 
  | 
 | 
| 123 | 
  | 
  | 
The $\mathcal{F}^{\prime }s$ and $\mathcal{D}^{\prime }s$ are provided by | 
| 124 | 
  | 
  | 
extensive `physics' packages for atmosphere and ocean described in section | 
| 125 | 
  | 
  | 
?.?. | 
| 126 | 
  | 
  | 
 | 
| 127 | 
  | 
  | 
\subsection{Kinematic Boundary conditions} | 
| 128 | 
  | 
  | 
 | 
| 129 | 
  | 
  | 
\subsubsection{vertical} | 
| 130 | 
  | 
  | 
 | 
| 131 | 
  | 
  | 
at fixed and moving $r$ surfaces we set (see fig.4): | 
| 132 | 
  | 
  | 
 | 
| 133 | 
  | 
  | 
\begin{eqnarray*} | 
| 134 | 
  | 
  | 
\dot{r} &=&0\text{ at }r=R_{fixed}(x,y):\text{(ocean bottom, top of the | 
| 135 | 
  | 
  | 
atmosphere)} \\ | 
| 136 | 
  | 
  | 
\dot{r} &=&\frac{Dr}{Dt}\text{ at }r=R_{moving}\text{ (ocean surface, bottom | 
| 137 | 
  | 
  | 
of the atmosphere)} | 
| 138 | 
  | 
  | 
\end{eqnarray*} | 
| 139 | 
  | 
  | 
Here | 
| 140 | 
  | 
  | 
 | 
| 141 | 
  | 
  | 
\[ | 
| 142 | 
  | 
  | 
R_{moving}=R_{o}+\eta  | 
| 143 | 
  | 
  | 
\] | 
| 144 | 
  | 
  | 
where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on | 
| 145 | 
  | 
  | 
whether we are in the atmosphere or ocean) of the `moving surface' in the | 
| 146 | 
  | 
  | 
resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence | 
| 147 | 
  | 
  | 
of motion. | 
| 148 | 
  | 
  | 
 | 
| 149 | 
  | 
  | 
\subsubsection{horizontal} | 
| 150 | 
  | 
  | 
 | 
| 151 | 
  | 
  | 
\[ | 
| 152 | 
  | 
  | 
\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0  | 
| 153 | 
  | 
  | 
\] | 
| 154 | 
  | 
  | 
where $\vec{\mathbf{n}}$ is the normal to a solid boundary. | 
| 155 | 
  | 
  | 
 | 
| 156 | 
  | 
  | 
\subsection{Atmosphere} | 
| 157 | 
  | 
  | 
 | 
| 158 | 
  | 
  | 
In the atmosphere, see fig. we interpret:  | 
| 159 | 
  | 
  | 
\begin{eqnarray} | 
| 160 | 
  | 
  | 
r &=&p\text{ is the pressure} \\ | 
| 161 | 
  | 
  | 
\dot{r} &=&\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{ | 
| 162 | 
  | 
  | 
coordinates} \\ | 
| 163 | 
  | 
  | 
\phi  &=&g\,z\text{ is the geopotential height} \\ | 
| 164 | 
  | 
  | 
b &=&\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy} \\ | 
| 165 | 
  | 
  | 
\theta  &=&T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature} \\ | 
| 166 | 
  | 
  | 
S &=&q\text{, the specific humidity} | 
| 167 | 
  | 
  | 
\end{eqnarray} | 
| 168 | 
  | 
  | 
where | 
| 169 | 
  | 
  | 
 | 
| 170 | 
  | 
  | 
\[ | 
| 171 | 
  | 
  | 
T\text{is absolute temperature} | 
| 172 | 
  | 
  | 
\] | 
| 173 | 
  | 
  | 
\[ | 
| 174 | 
  | 
  | 
p\text{ is the pressure} | 
| 175 | 
  | 
  | 
\] | 
| 176 | 
  | 
  | 
\begin{eqnarray*} | 
| 177 | 
  | 
  | 
&&z\text{ is the height of the pressure surface} \\ | 
| 178 | 
  | 
  | 
&&g\text{ is the acceleration due to gravity} | 
| 179 | 
  | 
  | 
\end{eqnarray*} | 
| 180 | 
  | 
  | 
 | 
| 181 | 
  | 
  | 
In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of | 
| 182 | 
  | 
  | 
the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)  | 
| 183 | 
  | 
  | 
\[ | 
| 184 | 
  | 
  | 
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  | 
| 185 | 
  | 
  | 
\] | 
| 186 | 
  | 
  | 
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas | 
| 187 | 
  | 
  | 
constant and $c_{p}$ the specific heat of air at constant pressure. | 
| 188 | 
  | 
  | 
 | 
| 189 | 
  | 
  | 
At the top of the atmosphere (which is `fixed' in our $r$ coordinate): | 
| 190 | 
  | 
  | 
 | 
| 191 | 
  | 
  | 
\[ | 
| 192 | 
  | 
  | 
R_{fixed}=p_{top}=0  | 
| 193 | 
  | 
  | 
\] | 
| 194 | 
  | 
  | 
In a resting atmosphere the elevation of the mountains at the bottom is | 
| 195 | 
  | 
  | 
given by  | 
| 196 | 
  | 
  | 
\[ | 
| 197 | 
  | 
  | 
R_{moving}=R_{o}(x,y)=p_{o}(x,y)  | 
| 198 | 
  | 
  | 
\] | 
| 199 | 
  | 
  | 
i.e. the (hydrostatic) pressure at the top of the mountains in a resting | 
| 200 | 
  | 
  | 
atmosphere. | 
| 201 | 
  | 
  | 
 | 
| 202 | 
  | 
  | 
The boundary conditions at top and bottom are given by: | 
| 203 | 
  | 
  | 
 | 
| 204 | 
cnh | 
1.3 | 
\begin{eqnarray} | 
| 205 | 
cnh | 
1.2 | 
&&\omega =0~\text{at }r=R_{fixed} \label{eq:fixed-bc-atmos} | 
| 206 | 
  | 
  | 
\text{ (top of the atmosphere)} \\ | 
| 207 | 
adcroft | 
1.1 | 
\omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the | 
| 208 | 
  | 
  | 
atmosphere)} | 
| 209 | 
cnh | 
1.2 | 
\label{eq:moving-bc-atmos} | 
| 210 | 
cnh | 
1.3 | 
\end{eqnarray} | 
| 211 | 
adcroft | 
1.1 | 
 | 
| 212 | 
  | 
  | 
Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent | 
| 213 | 
  | 
  | 
set of atmospheric equations which, for convenience, are written out in $p$ | 
| 214 | 
  | 
  | 
coordinates in Appendix Atmosphere - see eqs(\ref{eq-p-hmom}) to (\ref | 
| 215 | 
  | 
  | 
{eq-p-heat}). | 
| 216 | 
  | 
  | 
 | 
| 217 | 
  | 
  | 
\subsection{Ocean} | 
| 218 | 
  | 
  | 
 | 
| 219 | 
  | 
  | 
In the ocean we interpret:  | 
| 220 | 
  | 
  | 
\begin{eqnarray} | 
| 221 | 
cnh | 
1.2 | 
r &=&z\text{ is the height}  | 
| 222 | 
  | 
  | 
\label{eq:ocean-z}\\ | 
| 223 | 
  | 
  | 
\dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity}  | 
| 224 | 
  | 
  | 
\label{eq:ocean-w}\\ | 
| 225 | 
  | 
  | 
\phi &=&\frac{p}{\rho _{c}}\text{ is the pressure}  | 
| 226 | 
  | 
  | 
\label{eq:ocean-p}\\ | 
| 227 | 
adcroft | 
1.1 | 
b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho | 
| 228 | 
  | 
  | 
_{c}\right) \text{ is the buoyancy} | 
| 229 | 
cnh | 
1.2 | 
\label{eq:ocean-b} | 
| 230 | 
adcroft | 
1.1 | 
\end{eqnarray} | 
| 231 | 
  | 
  | 
where $\rho _{c}$ is a fixed reference density of water and $g$ is the | 
| 232 | 
  | 
  | 
acceleration due to gravity.\noindent | 
| 233 | 
  | 
  | 
 | 
| 234 | 
  | 
  | 
In the above | 
| 235 | 
  | 
  | 
 | 
| 236 | 
  | 
  | 
At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$. | 
| 237 | 
  | 
  | 
 | 
| 238 | 
  | 
  | 
The surface of the ocean is given by: $R_{moving}=\eta $ | 
| 239 | 
  | 
  | 
 | 
| 240 | 
cnh | 
1.4 | 
The position of the resting free surface of the ocean is given by $ | 
| 241 | 
adcroft | 
1.1 | 
R_{o}=Z_{o}=0$. | 
| 242 | 
  | 
  | 
 | 
| 243 | 
  | 
  | 
Boundary conditions are: | 
| 244 | 
  | 
  | 
 | 
| 245 | 
cnh | 
1.3 | 
\begin{eqnarray} | 
| 246 | 
cnh | 
1.2 | 
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)}  | 
| 247 | 
  | 
  | 
\label{eq:fixed-bc-ocean}\\ | 
| 248 | 
  | 
  | 
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) | 
| 249 | 
  | 
  | 
\label{eq:moving-bc-ocean}} | 
| 250 | 
cnh | 
1.3 | 
\end{eqnarray} | 
| 251 | 
adcroft | 
1.1 | 
where $\eta $ is the elevation of the free surface. | 
| 252 | 
  | 
  | 
 | 
| 253 | 
  | 
  | 
Then eq(\ref{incompressible}) yields a consistent set of oceanic equations | 
| 254 | 
  | 
  | 
which, for convenience, are written out in $z$ coordinates in Appendix Ocean. | 
| 255 | 
  | 
  | 
 | 
| 256 | 
  | 
  | 
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and | 
| 257 | 
  | 
  | 
Non-hydrostatic forms} | 
| 258 | 
  | 
  | 
 | 
| 259 | 
  | 
  | 
Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms: | 
| 260 | 
  | 
  | 
 | 
| 261 | 
  | 
  | 
\begin{equation} | 
| 262 | 
  | 
  | 
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) | 
| 263 | 
cnh | 
1.2 | 
\label{eq:phi-split} | 
| 264 | 
adcroft | 
1.1 | 
\end{equation} | 
| 265 | 
  | 
  | 
and write eq(\ref{incompressible}a) in the form: | 
| 266 | 
  | 
  | 
 | 
| 267 | 
  | 
  | 
\begin{equation} | 
| 268 | 
  | 
  | 
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi | 
| 269 | 
  | 
  | 
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi | 
| 270 | 
cnh | 
1.2 | 
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}}  \label{eq:mom-h} | 
| 271 | 
adcroft | 
1.1 | 
\end{equation} | 
| 272 | 
  | 
  | 
 | 
| 273 | 
  | 
  | 
\begin{equation} | 
| 274 | 
cnh | 
1.2 | 
\frac{\partial \phi _{hyd}}{\partial r}=-b  \label{eq:hydrostatic} | 
| 275 | 
adcroft | 
1.1 | 
\end{equation} | 
| 276 | 
  | 
  | 
 | 
| 277 | 
  | 
  | 
\begin{equation} | 
| 278 | 
cnh | 
1.4 | 
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{ | 
| 279 | 
cnh | 
1.2 | 
\partial r}=G_{\dot{r}}  \label{eq:mom-w} | 
| 280 | 
adcroft | 
1.1 | 
\end{equation} | 
| 281 | 
  | 
  | 
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. | 
| 282 | 
  | 
  | 
 | 
| 283 | 
  | 
  | 
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref | 
| 284 | 
  | 
  | 
{hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis | 
| 285 | 
cnh | 
1.4 | 
terms in the momentum equations. In spherical coordinates they take the form | 
| 286 | 
  | 
  | 
\footnote{ | 
| 287 | 
adcroft | 
1.1 | 
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms | 
| 288 | 
  | 
  | 
in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined | 
| 289 | 
  | 
  | 
terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully | 
| 290 | 
  | 
  | 
non-hydrostatic model (\textbf{NH}) includes all terms.}: | 
| 291 | 
  | 
  | 
 | 
| 292 | 
  | 
  | 
\begin{equation} | 
| 293 | 
  | 
  | 
\left.  | 
| 294 | 
  | 
  | 
\begin{tabular}{l} | 
| 295 | 
  | 
  | 
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\  | 
| 296 | 
cnh | 
1.4 | 
$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}} | 
| 297 | 
adcroft | 
1.1 | 
\right\} $ \\  | 
| 298 | 
cnh | 
1.4 | 
$-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}} | 
| 299 | 
adcroft | 
1.1 | 
\right\} $ \\  | 
| 300 | 
cnh | 
1.4 | 
$+\mathcal{F}_{u}\mathcal{+D}_{u}$ | 
| 301 | 
adcroft | 
1.1 | 
\end{tabular} | 
| 302 | 
  | 
  | 
\right\} \left\{  | 
| 303 | 
  | 
  | 
\begin{tabular}{l} | 
| 304 | 
  | 
  | 
\textit{advection} \\  | 
| 305 | 
  | 
  | 
\textit{metric} \\  | 
| 306 | 
  | 
  | 
\textit{Coriolis} \\  | 
| 307 | 
  | 
  | 
\textit{\ Forcing/Dissipation} | 
| 308 | 
  | 
  | 
\end{tabular} | 
| 309 | 
cnh | 
1.2 | 
\right. \qquad  \label{eq:gu-speherical} | 
| 310 | 
adcroft | 
1.1 | 
\end{equation} | 
| 311 | 
  | 
  | 
 | 
| 312 | 
  | 
  | 
\begin{equation} | 
| 313 | 
  | 
  | 
\left.  | 
| 314 | 
  | 
  | 
\begin{tabular}{l} | 
| 315 | 
  | 
  | 
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\  | 
| 316 | 
cnh | 
1.4 | 
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r} | 
| 317 | 
adcroft | 
1.1 | 
}\right\} $ \\  | 
| 318 | 
  | 
  | 
$-\left\{ -2\Omega u\sin lat\right\} $ \\  | 
| 319 | 
cnh | 
1.4 | 
$+\mathcal{F}_{v}\mathcal{+D}_{v}$ | 
| 320 | 
adcroft | 
1.1 | 
\end{tabular} | 
| 321 | 
  | 
  | 
\right\} \left\{  | 
| 322 | 
  | 
  | 
\begin{tabular}{l} | 
| 323 | 
  | 
  | 
\textit{advection} \\  | 
| 324 | 
  | 
  | 
\textit{metric} \\  | 
| 325 | 
  | 
  | 
\textit{Coriolis} \\  | 
| 326 | 
  | 
  | 
\textit{\ Forcing/Dissipation} | 
| 327 | 
  | 
  | 
\end{tabular} | 
| 328 | 
cnh | 
1.2 | 
\right. \qquad  \label{eq:gv-spherical} | 
| 329 | 
adcroft | 
1.1 | 
\end{equation} | 
| 330 | 
  | 
  | 
\qquad \qquad \qquad \qquad \qquad | 
| 331 | 
  | 
  | 
 | 
| 332 | 
  | 
  | 
\begin{equation} | 
| 333 | 
  | 
  | 
\left.  | 
| 334 | 
  | 
  | 
\begin{tabular}{l} | 
| 335 | 
  | 
  | 
$G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\  | 
| 336 | 
cnh | 
1.4 | 
$+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}} | 
| 337 | 
adcroft | 
1.1 | 
\right\} $ \\  | 
| 338 | 
  | 
  | 
${+2\Omega u\cos lat}$ \\  | 
| 339 | 
cnh | 
1.4 | 
$\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$ | 
| 340 | 
adcroft | 
1.1 | 
\end{tabular} | 
| 341 | 
  | 
  | 
\right\} \left\{  | 
| 342 | 
  | 
  | 
\begin{tabular}{l} | 
| 343 | 
  | 
  | 
\textit{advection} \\  | 
| 344 | 
  | 
  | 
\textit{metric} \\  | 
| 345 | 
  | 
  | 
\textit{Coriolis} \\  | 
| 346 | 
  | 
  | 
\textit{\ Forcing/Dissipation} | 
| 347 | 
  | 
  | 
\end{tabular} | 
| 348 | 
cnh | 
1.2 | 
\right.  \label{eq:gw-spherical} | 
| 349 | 
adcroft | 
1.1 | 
\end{equation} | 
| 350 | 
  | 
  | 
\qquad \qquad \qquad \qquad \qquad | 
| 351 | 
  | 
  | 
 | 
| 352 | 
cnh | 
1.4 | 
In the above `${r}$' is the distance from the center of the earth and `$ | 
| 353 | 
adcroft | 
1.1 | 
lat$' is latitude. | 
| 354 | 
  | 
  | 
 | 
| 355 | 
  | 
  | 
Grad and div operators in spherical coordinates are defined in appendix | 
| 356 | 
cnh | 
1.4 | 
OPERATORS. | 
| 357 | 
adcroft | 
1.1 | 
\marginpar{ | 
| 358 | 
  | 
  | 
Fig.6 Spherical polar coordinate system.} | 
| 359 | 
  | 
  | 
 | 
| 360 | 
  | 
  | 
\subsubsection{Shallow atmosphere approximation} | 
| 361 | 
  | 
  | 
 | 
| 362 | 
  | 
  | 
............................ | 
| 363 | 
  | 
  | 
 | 
| 364 | 
  | 
  | 
\subsubsection{Hydrostatic and quasi-hydrostatic forms} | 
| 365 | 
  | 
  | 
 | 
| 366 | 
  | 
  | 
These are discussed at length in Marshall et al (1997a). | 
| 367 | 
  | 
  | 
 | 
| 368 | 
  | 
  | 
In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined | 
| 369 | 
cnh | 
1.4 | 
terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r | 
| 370 | 
adcroft | 
1.1 | 
}$' is replaced by `$a$', the mean radius of the earth. Once the pressure is | 
| 371 | 
  | 
  | 
found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi | 
| 372 | 
  | 
  | 
_{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels | 
| 373 | 
  | 
  | 
by integration of the hydrostatic relation, eq(\ref{hydro}). | 
| 374 | 
  | 
  | 
 | 
| 375 | 
  | 
  | 
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between | 
| 376 | 
  | 
  | 
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos | 
| 377 | 
  | 
  | 
\phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic | 
| 378 | 
cnh | 
1.4 | 
contribution to the pressure field: only the terms underlined twice in Eqs. ( | 
| 379 | 
adcroft | 
1.1 | 
\ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the | 
| 380 | 
  | 
  | 
shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all} | 
| 381 | 
  | 
  | 
the metric terms are retained and the full variation of the radial position | 
| 382 | 
  | 
  | 
of a particle monitored. The \textbf{QH}\ vertical momentum equation (\ref | 
| 383 | 
  | 
  | 
{vertmtm}) becomes: | 
| 384 | 
  | 
  | 
 | 
| 385 | 
  | 
  | 
\[ | 
| 386 | 
  | 
  | 
\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat | 
| 387 | 
  | 
  | 
\] | 
| 388 | 
  | 
  | 
making a small correction to the hydrostatic pressure. | 
| 389 | 
  | 
  | 
 | 
| 390 | 
  | 
  | 
\textbf{QH} has good energetic credentials - they are the same as for  | 
| 391 | 
  | 
  | 
\textbf{HPE}. Importantly, however, it has the same angular momentum | 
| 392 | 
  | 
  | 
principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall | 
| 393 | 
  | 
  | 
et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved. | 
| 394 | 
  | 
  | 
 | 
| 395 | 
  | 
  | 
\subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms} | 
| 396 | 
  | 
  | 
 | 
| 397 | 
  | 
  | 
The MIT model presently supports a full non-hydrostatic ocean isomorph, but | 
| 398 | 
  | 
  | 
only a quasi-non-hydrostatic atmospheric isomorph. | 
| 399 | 
  | 
  | 
 | 
| 400 | 
  | 
  | 
\paragraph{Non-hydrostatic Ocean} | 
| 401 | 
  | 
  | 
 | 
| 402 | 
cnh | 
1.4 | 
In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $ | 
| 403 | 
adcroft | 
1.1 | 
\rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation | 
| 404 | 
  | 
  | 
must be solved subject to Neumann boundary conditions (see below). It is | 
| 405 | 
  | 
  | 
important to note that use of the full \textbf{NH} does not admit any new | 
| 406 | 
  | 
  | 
`fast' waves in to the system - the incompressible condition (\ref | 
| 407 | 
  | 
  | 
{incompressible}) has already filtered out acoustic modes. It does, however, | 
| 408 | 
  | 
  | 
ensure that the gravity waves are treated accurately with an exact | 
| 409 | 
  | 
  | 
dispersion relation. The \textbf{NH} set has a complete angular momentum | 
| 410 | 
  | 
  | 
principle and consistent energetics - see White and Bromley, 1995; Marshall | 
| 411 | 
  | 
  | 
et.al.\ 1997a. | 
| 412 | 
  | 
  | 
 | 
| 413 | 
  | 
  | 
\paragraph{Quasi-nonhydrostatic Atmosphere} | 
| 414 | 
  | 
  | 
 | 
| 415 | 
cnh | 
1.4 | 
In the non-hydrostatic version of our atmospheric model we approximate $\dot{ | 
| 416 | 
adcroft | 
1.1 | 
r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only | 
| 417 | 
  | 
  | 
here) by: | 
| 418 | 
  | 
  | 
 | 
| 419 | 
  | 
  | 
\begin{equation} | 
| 420 | 
cnh | 
1.2 | 
\dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt}  \label{eq:quasi-nh-w} | 
| 421 | 
adcroft | 
1.1 | 
\end{equation} | 
| 422 | 
  | 
  | 
where $p_{hy}$ is the hydrostatic pressure. | 
| 423 | 
  | 
  | 
 | 
| 424 | 
  | 
  | 
........................................ | 
| 425 | 
  | 
  | 
 | 
| 426 | 
  | 
  | 
\subsubsection{Summary of equation sets supported by model} | 
| 427 | 
  | 
  | 
 | 
| 428 | 
  | 
  | 
The key equation sets and isomorphisms are summarised in fig.4. | 
| 429 | 
  | 
  | 
 | 
| 430 | 
  | 
  | 
\paragraph{Atmosphere} | 
| 431 | 
  | 
  | 
 | 
| 432 | 
  | 
  | 
\subparagraph{Hydrostatic and quasi-hydrostatic} | 
| 433 | 
  | 
  | 
 | 
| 434 | 
  | 
  | 
Hydrostatic, and quasi-hydrostatic forms of the compressible non-Boussinesq | 
| 435 | 
  | 
  | 
equations in $p-$coordinates are supported\ref{eq-p} - see appendix | 
| 436 | 
  | 
  | 
Atmosphere, where they are written out in $p-$coordinates. | 
| 437 | 
  | 
  | 
 | 
| 438 | 
  | 
  | 
\subparagraph{Quasi-nonhydrostatic} | 
| 439 | 
  | 
  | 
 | 
| 440 | 
  | 
  | 
A quasi-nonhydrostatic form is also supported - see appendix Ocean. | 
| 441 | 
  | 
  | 
 | 
| 442 | 
  | 
  | 
\paragraph{Ocean} | 
| 443 | 
  | 
  | 
 | 
| 444 | 
  | 
  | 
\subparagraph{Hydrostatic and quasi-hydrostatic} | 
| 445 | 
  | 
  | 
 | 
| 446 | 
  | 
  | 
Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq | 
| 447 | 
  | 
  | 
equations in $z-$coordinates are supported | 
| 448 | 
  | 
  | 
 | 
| 449 | 
  | 
  | 
\subparagraph{Non-hydrostatic } | 
| 450 | 
  | 
  | 
 | 
| 451 | 
cnh | 
1.4 | 
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$ | 
| 452 | 
adcroft | 
1.1 | 
coordinates are supported. | 
| 453 | 
  | 
  | 
 | 
| 454 | 
  | 
  | 
\subsection{Solution strategy} | 
| 455 | 
  | 
  | 
 | 
| 456 | 
cnh | 
1.4 | 
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ | 
| 457 | 
  | 
  | 
NH} models are summarized in Fig.7. | 
| 458 | 
adcroft | 
1.1 | 
\marginpar{ | 
| 459 | 
  | 
  | 
Fig.7 Solution strategy} | 
| 460 | 
  | 
  | 
 | 
| 461 | 
  | 
  | 
Overview paragraph...... | 
| 462 | 
  | 
  | 
 | 
| 463 | 
  | 
  | 
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of | 
| 464 | 
cnh | 
1.4 | 
course, some complication that goes with the inclusion of $\cos \phi \ $ | 
| 465 | 
adcroft | 
1.1 | 
Coriolis terms and the relaxation of the shallow atmosphere approximation. | 
| 466 | 
  | 
  | 
But this leads to negligible increase in computation. In \textbf{NH}, in | 
| 467 | 
  | 
  | 
contrast, one additional elliptic equation - a three-dimensional one - must | 
| 468 | 
  | 
  | 
be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is | 
| 469 | 
  | 
  | 
essentially negligible in the hydrostatic limit (see detailed discussion in | 
| 470 | 
  | 
  | 
Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the | 
| 471 | 
  | 
  | 
hydrostatic limit, is as computationally economic as the \textbf{HPEs}. | 
| 472 | 
  | 
  | 
 | 
| 473 | 
  | 
  | 
\subsection{Finding the pressure field} | 
| 474 | 
  | 
  | 
 | 
| 475 | 
  | 
  | 
Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the | 
| 476 | 
  | 
  | 
pressure field must be obtained diagnostically. We proceed, as before, by | 
| 477 | 
  | 
  | 
dividing the total (pressure/geo) potential in to three parts, a surface | 
| 478 | 
  | 
  | 
part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a | 
| 479 | 
  | 
  | 
non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and | 
| 480 | 
cnh | 
1.2 | 
writing the momentum equation | 
| 481 | 
  | 
  | 
as in (\ref{eq:mom-h}). | 
| 482 | 
adcroft | 
1.1 | 
 | 
| 483 | 
  | 
  | 
\subsubsection{Hydrostatic pressure} | 
| 484 | 
  | 
  | 
 | 
| 485 | 
  | 
  | 
Hydrostatic pressure is obtained by integrating (\ref{hydro}) vertically | 
| 486 | 
  | 
  | 
from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield: | 
| 487 | 
  | 
  | 
 | 
| 488 | 
  | 
  | 
\[ | 
| 489 | 
  | 
  | 
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi | 
| 490 | 
  | 
  | 
_{hyd}\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr  | 
| 491 | 
  | 
  | 
\] | 
| 492 | 
  | 
  | 
and so | 
| 493 | 
  | 
  | 
 | 
| 494 | 
cnh | 
1.2 | 
\begin{equation} | 
| 495 | 
adcroft | 
1.1 | 
\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr  | 
| 496 | 
cnh | 
1.2 | 
\label{eq:hydro-phi} | 
| 497 | 
  | 
  | 
\end{equation} | 
| 498 | 
adcroft | 
1.1 | 
 | 
| 499 | 
  | 
  | 
\subsubsection{Surface pressure} | 
| 500 | 
  | 
  | 
 | 
| 501 | 
cnh | 
1.4 | 
The surface pressure equation can be obtained by integrating continuity, ( | 
| 502 | 
adcroft | 
1.1 | 
\ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ | 
| 503 | 
  | 
  | 
 | 
| 504 | 
  | 
  | 
\[ | 
| 505 | 
cnh | 
1.4 | 
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} | 
| 506 | 
adcroft | 
1.1 | 
}_{h}+\partial _{r}\dot{r}\right) dr=0  | 
| 507 | 
  | 
  | 
\] | 
| 508 | 
  | 
  | 
 | 
| 509 | 
  | 
  | 
Thus: | 
| 510 | 
  | 
  | 
 | 
| 511 | 
  | 
  | 
\[ | 
| 512 | 
  | 
  | 
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta | 
| 513 | 
cnh | 
1.4 | 
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}} | 
| 514 | 
adcroft | 
1.1 | 
_{h}dr=0  | 
| 515 | 
  | 
  | 
\] | 
| 516 | 
cnh | 
1.4 | 
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $ | 
| 517 | 
adcroft | 
1.1 | 
r $. The above can be rearranged to yield, using Leibnitz's theorem: | 
| 518 | 
  | 
  | 
 | 
| 519 | 
  | 
  | 
\begin{equation} | 
| 520 | 
  | 
  | 
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot | 
| 521 | 
  | 
  | 
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0 | 
| 522 | 
cnh | 
1.2 | 
\label{eq:free-surface} | 
| 523 | 
adcroft | 
1.1 | 
\end{equation} | 
| 524 | 
  | 
  | 
 | 
| 525 | 
  | 
  | 
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential | 
| 526 | 
  | 
  | 
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can | 
| 527 | 
  | 
  | 
be written  | 
| 528 | 
  | 
  | 
\begin{equation} | 
| 529 | 
cnh | 
1.2 | 
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta    | 
| 530 | 
  | 
  | 
\label{eq:phi-surf} | 
| 531 | 
adcroft | 
1.1 | 
\end{equation} | 
| 532 | 
  | 
  | 
where $b$ is the buoyancy. | 
| 533 | 
  | 
  | 
 | 
| 534 | 
  | 
  | 
In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{mtm-split}), (\ref | 
| 535 | 
  | 
  | 
{integralcontinuity}) and (\ref{link}) can be solved by inverting a 2-d | 
| 536 | 
  | 
  | 
elliptic equation for $\phi _{s}$ as described in section ?.?. Both `free | 
| 537 | 
  | 
  | 
surface' and `rigid lid' approaches are available. | 
| 538 | 
  | 
  | 
 | 
| 539 | 
  | 
  | 
\subsubsection{Non-hydrostatic pressure} | 
| 540 | 
  | 
  | 
 | 
| 541 | 
cnh | 
1.4 | 
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{ | 
| 542 | 
adcroft | 
1.1 | 
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation | 
| 543 | 
  | 
  | 
(\ref{incompressible}), we deduce that: | 
| 544 | 
  | 
  | 
 | 
| 545 | 
  | 
  | 
\begin{equation} | 
| 546 | 
cnh | 
1.4 | 
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ | 
| 547 | 
  | 
  | 
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla . | 
| 548 | 
cnh | 
1.2 | 
\vec{\mathbf{F}}  \label{eq:3d-invert} | 
| 549 | 
adcroft | 
1.1 | 
\end{equation} | 
| 550 | 
  | 
  | 
 | 
| 551 | 
  | 
  | 
For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$ | 
| 552 | 
  | 
  | 
subject to appropriate choice of boundary conditions. This method is usually | 
| 553 | 
  | 
  | 
called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969; | 
| 554 | 
  | 
  | 
Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}), | 
| 555 | 
  | 
  | 
the 3-d problem does not need to be solved. | 
| 556 | 
  | 
  | 
 | 
| 557 | 
  | 
  | 
\paragraph{Boundary Conditions} | 
| 558 | 
  | 
  | 
 | 
| 559 | 
  | 
  | 
We apply the condition of no normal flow through all solid boundaries - the | 
| 560 | 
  | 
  | 
coasts (in the ocean) and the bottom: | 
| 561 | 
  | 
  | 
 | 
| 562 | 
  | 
  | 
\begin{equation} | 
| 563 | 
  | 
  | 
\vec{\mathbf{v}}.\widehat{n}=0  \label{nonormalflow} | 
| 564 | 
  | 
  | 
\end{equation} | 
| 565 | 
  | 
  | 
where $\widehat{n}$ is a vector of unit length normal to the boundary. The | 
| 566 | 
  | 
  | 
kinematic condition (\ref{nonormalflow}) is also applied to the vertical | 
| 567 | 
cnh | 
1.4 | 
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $ | 
| 568 | 
adcroft | 
1.1 | 
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the | 
| 569 | 
  | 
  | 
tangential component of velocity, $v_{T}$, at all solid boundaries, | 
| 570 | 
  | 
  | 
depending on the form chosen for the dissipative terms in the momentum | 
| 571 | 
  | 
  | 
equations - see below. | 
| 572 | 
  | 
  | 
 | 
| 573 | 
  | 
  | 
Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that: | 
| 574 | 
  | 
  | 
 | 
| 575 | 
  | 
  | 
\begin{equation} | 
| 576 | 
  | 
  | 
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} | 
| 577 | 
cnh | 
1.2 | 
\label{eq:inhom-neumann-nh} | 
| 578 | 
adcroft | 
1.1 | 
\end{equation} | 
| 579 | 
  | 
  | 
where | 
| 580 | 
  | 
  | 
 | 
| 581 | 
  | 
  | 
\[ | 
| 582 | 
  | 
  | 
\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi | 
| 583 | 
  | 
  | 
_{s}+\mathbf{\nabla }\phi _{hyd}\right)  | 
| 584 | 
  | 
  | 
\] | 
| 585 | 
  | 
  | 
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem | 
| 586 | 
  | 
  | 
(\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit | 
| 587 | 
cnh | 
1.4 | 
classical 3D potential theory and, by introducing an appropriately chosen $ | 
| 588 | 
adcroft | 
1.1 | 
\delta $-function sheet of `source-charge', replace the inhomogenous | 
| 589 | 
  | 
  | 
boundary condition on pressure by a homogeneous one. The source term $rhs$ | 
| 590 | 
  | 
  | 
in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By | 
| 591 | 
  | 
  | 
simultaneously setting $ | 
| 592 | 
  | 
  | 
\begin{array}{l} | 
| 593 | 
  | 
  | 
\widehat{n}.\vec{\mathbf{F}} | 
| 594 | 
  | 
  | 
\end{array} | 
| 595 | 
  | 
  | 
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following | 
| 596 | 
  | 
  | 
self-consistent but simpler homogenised Elliptic problem is obtained: | 
| 597 | 
  | 
  | 
 | 
| 598 | 
  | 
  | 
\[ | 
| 599 | 
  | 
  | 
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad  | 
| 600 | 
  | 
  | 
\] | 
| 601 | 
  | 
  | 
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such | 
| 602 | 
  | 
  | 
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref | 
| 603 | 
  | 
  | 
{inhomneumann}) the modified boundary condition becomes: | 
| 604 | 
  | 
  | 
 | 
| 605 | 
  | 
  | 
\begin{equation} | 
| 606 | 
cnh | 
1.2 | 
\widehat{n}.\nabla \phi _{nh}=0  \label{eq:hom-neumann-nh} | 
| 607 | 
adcroft | 
1.1 | 
\end{equation} | 
| 608 | 
  | 
  | 
 | 
| 609 | 
  | 
  | 
If the flow is `close' to hydrostatic balance then the 3-d inversion | 
| 610 | 
  | 
  | 
converges rapidly because $\phi _{nh}\ $is then only a small correction to | 
| 611 | 
  | 
  | 
the hydrostatic pressure field (see the discussion in Marshall et al, a,b). | 
| 612 | 
  | 
  | 
 | 
| 613 | 
  | 
  | 
The solution $\phi _{nh}\ $to (\ref{3dinvert}) and (\ref{homneuman}) does | 
| 614 | 
  | 
  | 
not vanish at $r=R_{moving}$, and so refines the pressure there. | 
| 615 | 
  | 
  | 
 | 
| 616 | 
  | 
  | 
\subsection{Forcing/dissipation} | 
| 617 | 
  | 
  | 
 | 
| 618 | 
  | 
  | 
\subsubsection{Forcing} | 
| 619 | 
  | 
  | 
 | 
| 620 | 
  | 
  | 
The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by | 
| 621 | 
  | 
  | 
`physics packages' described in detail in section ?.?. | 
| 622 | 
  | 
  | 
 | 
| 623 | 
  | 
  | 
\subsubsection{Dissipation} | 
| 624 | 
  | 
  | 
 | 
| 625 | 
  | 
  | 
\paragraph{Momentum} | 
| 626 | 
  | 
  | 
 | 
| 627 | 
  | 
  | 
Many forms of momentum dissipation are available in the model. Laplacian and | 
| 628 | 
  | 
  | 
biharmonic frictions are commonly used: | 
| 629 | 
  | 
  | 
 | 
| 630 | 
cnh | 
1.2 | 
\begin{equation} | 
| 631 | 
cnh | 
1.4 | 
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}} | 
| 632 | 
adcroft | 
1.1 | 
+A_{4}\nabla _{h}^{4}v | 
| 633 | 
cnh | 
1.2 | 
\label{eq:dissipation} | 
| 634 | 
  | 
  | 
\end{equation} | 
| 635 | 
adcroft | 
1.1 | 
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity | 
| 636 | 
  | 
  | 
coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic | 
| 637 | 
  | 
  | 
friction. These coefficients are the same for all velocity components. | 
| 638 | 
  | 
  | 
 | 
| 639 | 
  | 
  | 
\paragraph{Tracers} | 
| 640 | 
  | 
  | 
 | 
| 641 | 
  | 
  | 
The mixing terms for the temperature and salinity equations have a similar | 
| 642 | 
  | 
  | 
form to that of momentum except that the diffusion tensor can be | 
| 643 | 
cnh | 
1.4 | 
non-diagonal and have varying coefficients. $\qquad $ | 
| 644 | 
cnh | 
1.2 | 
\begin{equation} | 
| 645 | 
adcroft | 
1.1 | 
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla | 
| 646 | 
  | 
  | 
_{h}^{4}(T,S) | 
| 647 | 
cnh | 
1.2 | 
\label{eq:diffusion} | 
| 648 | 
  | 
  | 
\end{equation} | 
| 649 | 
cnh | 
1.4 | 
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $ | 
| 650 | 
adcroft | 
1.1 | 
horizontal coefficient for biharmonic diffusion. In the simplest case where | 
| 651 | 
  | 
  | 
the subgrid-scale fluxes of heat and salt are parameterized with constant | 
| 652 | 
  | 
  | 
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, | 
| 653 | 
  | 
  | 
reduces to a diagonal matrix with constant coefficients: | 
| 654 | 
  | 
  | 
 | 
| 655 | 
cnh | 
1.2 | 
\begin{equation} | 
| 656 | 
adcroft | 
1.1 | 
\qquad \qquad \qquad \qquad K=\left(  | 
| 657 | 
  | 
  | 
\begin{array}{ccc} | 
| 658 | 
  | 
  | 
K_{h} & 0 & 0 \\  | 
| 659 | 
  | 
  | 
0 & K_{h} & 0 \\  | 
| 660 | 
  | 
  | 
0 & 0 & K_{v} | 
| 661 | 
  | 
  | 
\end{array} | 
| 662 | 
  | 
  | 
\right) \qquad \qquad \qquad  | 
| 663 | 
cnh | 
1.2 | 
\label{eq:diagonal-diffusion-tensor} | 
| 664 | 
  | 
  | 
\end{equation} | 
| 665 | 
adcroft | 
1.1 | 
where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion | 
| 666 | 
  | 
  | 
coefficients. These coefficients are the same for all tracers (temperature, | 
| 667 | 
  | 
  | 
salinity ... ). | 
| 668 | 
  | 
  | 
 | 
| 669 | 
  | 
  | 
\subsection{Vector invariant form} | 
| 670 | 
  | 
  | 
 | 
| 671 | 
  | 
  | 
For some purposes it is advantageous to write momentum advection in eq(\ref | 
| 672 | 
  | 
  | 
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: | 
| 673 | 
  | 
  | 
 | 
| 674 | 
  | 
  | 
\begin{equation} | 
| 675 | 
cnh | 
1.4 | 
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} | 
| 676 | 
adcroft | 
1.1 | 
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla | 
| 677 | 
  | 
  | 
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]  | 
| 678 | 
cnh | 
1.2 | 
\label{eq:vi-identity} | 
| 679 | 
adcroft | 
1.1 | 
\end{equation} | 
| 680 | 
  | 
  | 
This permits alternative numerical treatments of the non-linear terms based | 
| 681 | 
  | 
  | 
on their representation as a vorticity flux. Because gradients of coordinate | 
| 682 | 
  | 
  | 
vectors no longer appear on the rhs of (\ref{vecinvariant}) (???), explicit | 
| 683 | 
  | 
  | 
representation of the metric terms in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}), | 
| 684 | 
  | 
  | 
can be avoided: information about the geometry is contained in the areas and | 
| 685 | 
  | 
  | 
lengths of the volumes used to discretize the model. | 
| 686 | 
  | 
  | 
 | 
| 687 | 
  | 
  | 
\subsection{Adjoint} | 
| 688 | 
  | 
  | 
 | 
| 689 | 
  | 
  | 
...... |