| 1 |
cnh |
1.4 |
% $Header: /u/gcmpack/mitgcmdoc/part1/continuous_eqns.tex,v 1.3 2001/09/26 14:53:10 cnh Exp $ |
| 2 |
cnh |
1.2 |
% $Name: $ |
| 3 |
adcroft |
1.1 |
|
| 4 |
|
|
\section{Continuous equations in `r' coordinates} |
| 5 |
|
|
|
| 6 |
|
|
To render atmosphere and ocean models from one dynamical core we exploit |
| 7 |
|
|
`isomorphisms' between equation sets that govern the evolution of the |
| 8 |
cnh |
1.4 |
respective fluids - see fig.4 |
| 9 |
adcroft |
1.1 |
\marginpar{ |
| 10 |
|
|
Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down |
| 11 |
|
|
and encoded. The model variables have different interpretations depending on |
| 12 |
|
|
whether the atmosphere or ocean is being studied. Thus, for example, the |
| 13 |
|
|
vertical coordinate `$r$' is interpreted as pressure, $p$, if we are |
| 14 |
|
|
modeling the atmosphere and height, $z$, if we are modeling the ocean. A |
| 15 |
cnh |
1.4 |
complete list of the isomorphisms is given in table 1. |
| 16 |
adcroft |
1.1 |
\marginpar{ |
| 17 |
|
|
Table 1. Isomorphisms} |
| 18 |
|
|
|
| 19 |
|
|
The state of the fluid at any time is characterized by the distribution of |
| 20 |
|
|
velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a |
| 21 |
|
|
`geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may |
| 22 |
|
|
depend on $\theta $, $S$, and $p$. The equations that govern the evolution |
| 23 |
|
|
of these fields, obtained by applying the laws of classical mechanics and |
| 24 |
|
|
thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of |
| 25 |
cnh |
1.4 |
a generic vertical coordinate, $r$, see fig.5 |
| 26 |
adcroft |
1.1 |
\marginpar{ |
| 27 |
|
|
Fig.5 The vertical coordinate of model}: |
| 28 |
|
|
|
| 29 |
|
|
\[ |
| 30 |
cnh |
1.4 |
\frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}} |
| 31 |
|
|
\right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}} |
| 32 |
adcroft |
1.1 |
\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm} |
| 33 |
|
|
\] |
| 34 |
|
|
|
| 35 |
|
|
\[ |
| 36 |
cnh |
1.4 |
\frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{ |
| 37 |
|
|
v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{ |
| 38 |
adcroft |
1.1 |
\mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm} |
| 39 |
|
|
\] |
| 40 |
|
|
|
| 41 |
|
|
\begin{equation} |
| 42 |
cnh |
1.4 |
\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{ |
| 43 |
adcroft |
1.1 |
\partial r}=0\text{ continuity} \label{incompressible} |
| 44 |
|
|
\end{equation} |
| 45 |
|
|
|
| 46 |
|
|
\[ |
| 47 |
|
|
b=b(\theta ,S,r)\text{ equation of state} |
| 48 |
|
|
\] |
| 49 |
|
|
|
| 50 |
|
|
\[ |
| 51 |
|
|
\frac{D\theta }{Dt}=\mathcal{F}_{\theta }\text{ }\mathcal{+D}_{\theta }\text{ |
| 52 |
|
|
potential temperature} |
| 53 |
|
|
\] |
| 54 |
|
|
|
| 55 |
|
|
\[ |
| 56 |
cnh |
1.4 |
\frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity |
| 57 |
adcroft |
1.1 |
} |
| 58 |
|
|
\] |
| 59 |
|
|
|
| 60 |
|
|
Here: |
| 61 |
|
|
|
| 62 |
|
|
\[ |
| 63 |
|
|
r\text{ is the vertical coordinate} |
| 64 |
|
|
\] |
| 65 |
|
|
|
| 66 |
|
|
\[ |
| 67 |
|
|
\frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{ |
| 68 |
|
|
is the total derivative} |
| 69 |
|
|
\] |
| 70 |
|
|
|
| 71 |
|
|
\[ |
| 72 |
cnh |
1.4 |
\mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r} |
| 73 |
adcroft |
1.1 |
\text{ is the `grad' operator} |
| 74 |
|
|
\] |
| 75 |
cnh |
1.4 |
with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k} |
| 76 |
adcroft |
1.1 |
\frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$ |
| 77 |
|
|
is a unit vector in the vertical |
| 78 |
|
|
|
| 79 |
|
|
\[ |
| 80 |
|
|
t\text{ is time} |
| 81 |
|
|
\] |
| 82 |
|
|
|
| 83 |
|
|
\[ |
| 84 |
|
|
\vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the |
| 85 |
|
|
velocity} |
| 86 |
|
|
\] |
| 87 |
|
|
|
| 88 |
|
|
\[ |
| 89 |
|
|
\phi \text{ is the `pressure'/`geopotential'} |
| 90 |
|
|
\] |
| 91 |
|
|
|
| 92 |
|
|
\[ |
| 93 |
|
|
\vec{\Omega}\text{ is the Earth's rotation} |
| 94 |
|
|
\] |
| 95 |
|
|
|
| 96 |
|
|
\[ |
| 97 |
|
|
b\text{ is the `buoyancy'} |
| 98 |
|
|
\] |
| 99 |
|
|
|
| 100 |
|
|
\[ |
| 101 |
|
|
\theta \text{ is potential temperature} |
| 102 |
|
|
\] |
| 103 |
|
|
|
| 104 |
|
|
\[ |
| 105 |
|
|
S\text{ is specific humidity in the atmosphere; salinity in the ocean} |
| 106 |
|
|
\] |
| 107 |
|
|
|
| 108 |
|
|
\[ |
| 109 |
cnh |
1.4 |
\mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}} |
| 110 |
adcroft |
1.1 |
\text{ are forcing and dissipation of }\vec{\mathbf{v}} |
| 111 |
|
|
\] |
| 112 |
|
|
|
| 113 |
|
|
\[ |
| 114 |
|
|
\mathcal{F}_{\theta }\mathcal{\ }\text{and }\mathcal{D}_{\theta }\text{ are |
| 115 |
|
|
forcing and dissipation of }\theta |
| 116 |
|
|
\] |
| 117 |
|
|
|
| 118 |
|
|
\[ |
| 119 |
|
|
\mathcal{F}_{S}\mathcal{\ }\text{and }\mathcal{D}_{S}\text{ are forcing and |
| 120 |
|
|
dissipation of }S |
| 121 |
|
|
\] |
| 122 |
|
|
|
| 123 |
|
|
The $\mathcal{F}^{\prime }s$ and $\mathcal{D}^{\prime }s$ are provided by |
| 124 |
|
|
extensive `physics' packages for atmosphere and ocean described in section |
| 125 |
|
|
?.?. |
| 126 |
|
|
|
| 127 |
|
|
\subsection{Kinematic Boundary conditions} |
| 128 |
|
|
|
| 129 |
|
|
\subsubsection{vertical} |
| 130 |
|
|
|
| 131 |
|
|
at fixed and moving $r$ surfaces we set (see fig.4): |
| 132 |
|
|
|
| 133 |
|
|
\begin{eqnarray*} |
| 134 |
|
|
\dot{r} &=&0\text{ at }r=R_{fixed}(x,y):\text{(ocean bottom, top of the |
| 135 |
|
|
atmosphere)} \\ |
| 136 |
|
|
\dot{r} &=&\frac{Dr}{Dt}\text{ at }r=R_{moving}\text{ (ocean surface, bottom |
| 137 |
|
|
of the atmosphere)} |
| 138 |
|
|
\end{eqnarray*} |
| 139 |
|
|
Here |
| 140 |
|
|
|
| 141 |
|
|
\[ |
| 142 |
|
|
R_{moving}=R_{o}+\eta |
| 143 |
|
|
\] |
| 144 |
|
|
where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on |
| 145 |
|
|
whether we are in the atmosphere or ocean) of the `moving surface' in the |
| 146 |
|
|
resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence |
| 147 |
|
|
of motion. |
| 148 |
|
|
|
| 149 |
|
|
\subsubsection{horizontal} |
| 150 |
|
|
|
| 151 |
|
|
\[ |
| 152 |
|
|
\vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0 |
| 153 |
|
|
\] |
| 154 |
|
|
where $\vec{\mathbf{n}}$ is the normal to a solid boundary. |
| 155 |
|
|
|
| 156 |
|
|
\subsection{Atmosphere} |
| 157 |
|
|
|
| 158 |
|
|
In the atmosphere, see fig. we interpret: |
| 159 |
|
|
\begin{eqnarray} |
| 160 |
|
|
r &=&p\text{ is the pressure} \\ |
| 161 |
|
|
\dot{r} &=&\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{ |
| 162 |
|
|
coordinates} \\ |
| 163 |
|
|
\phi &=&g\,z\text{ is the geopotential height} \\ |
| 164 |
|
|
b &=&\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy} \\ |
| 165 |
|
|
\theta &=&T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature} \\ |
| 166 |
|
|
S &=&q\text{, the specific humidity} |
| 167 |
|
|
\end{eqnarray} |
| 168 |
|
|
where |
| 169 |
|
|
|
| 170 |
|
|
\[ |
| 171 |
|
|
T\text{is absolute temperature} |
| 172 |
|
|
\] |
| 173 |
|
|
\[ |
| 174 |
|
|
p\text{ is the pressure} |
| 175 |
|
|
\] |
| 176 |
|
|
\begin{eqnarray*} |
| 177 |
|
|
&&z\text{ is the height of the pressure surface} \\ |
| 178 |
|
|
&&g\text{ is the acceleration due to gravity} |
| 179 |
|
|
\end{eqnarray*} |
| 180 |
|
|
|
| 181 |
|
|
In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of |
| 182 |
|
|
the Exner function $\Pi (p)$ given by (see Appendix Atmosphere) |
| 183 |
|
|
\[ |
| 184 |
|
|
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } |
| 185 |
|
|
\] |
| 186 |
|
|
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas |
| 187 |
|
|
constant and $c_{p}$ the specific heat of air at constant pressure. |
| 188 |
|
|
|
| 189 |
|
|
At the top of the atmosphere (which is `fixed' in our $r$ coordinate): |
| 190 |
|
|
|
| 191 |
|
|
\[ |
| 192 |
|
|
R_{fixed}=p_{top}=0 |
| 193 |
|
|
\] |
| 194 |
|
|
In a resting atmosphere the elevation of the mountains at the bottom is |
| 195 |
|
|
given by |
| 196 |
|
|
\[ |
| 197 |
|
|
R_{moving}=R_{o}(x,y)=p_{o}(x,y) |
| 198 |
|
|
\] |
| 199 |
|
|
i.e. the (hydrostatic) pressure at the top of the mountains in a resting |
| 200 |
|
|
atmosphere. |
| 201 |
|
|
|
| 202 |
|
|
The boundary conditions at top and bottom are given by: |
| 203 |
|
|
|
| 204 |
cnh |
1.3 |
\begin{eqnarray} |
| 205 |
cnh |
1.2 |
&&\omega =0~\text{at }r=R_{fixed} \label{eq:fixed-bc-atmos} |
| 206 |
|
|
\text{ (top of the atmosphere)} \\ |
| 207 |
adcroft |
1.1 |
\omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the |
| 208 |
|
|
atmosphere)} |
| 209 |
cnh |
1.2 |
\label{eq:moving-bc-atmos} |
| 210 |
cnh |
1.3 |
\end{eqnarray} |
| 211 |
adcroft |
1.1 |
|
| 212 |
|
|
Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent |
| 213 |
|
|
set of atmospheric equations which, for convenience, are written out in $p$ |
| 214 |
|
|
coordinates in Appendix Atmosphere - see eqs(\ref{eq-p-hmom}) to (\ref |
| 215 |
|
|
{eq-p-heat}). |
| 216 |
|
|
|
| 217 |
|
|
\subsection{Ocean} |
| 218 |
|
|
|
| 219 |
|
|
In the ocean we interpret: |
| 220 |
|
|
\begin{eqnarray} |
| 221 |
cnh |
1.2 |
r &=&z\text{ is the height} |
| 222 |
|
|
\label{eq:ocean-z}\\ |
| 223 |
|
|
\dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} |
| 224 |
|
|
\label{eq:ocean-w}\\ |
| 225 |
|
|
\phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} |
| 226 |
|
|
\label{eq:ocean-p}\\ |
| 227 |
adcroft |
1.1 |
b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho |
| 228 |
|
|
_{c}\right) \text{ is the buoyancy} |
| 229 |
cnh |
1.2 |
\label{eq:ocean-b} |
| 230 |
adcroft |
1.1 |
\end{eqnarray} |
| 231 |
|
|
where $\rho _{c}$ is a fixed reference density of water and $g$ is the |
| 232 |
|
|
acceleration due to gravity.\noindent |
| 233 |
|
|
|
| 234 |
|
|
In the above |
| 235 |
|
|
|
| 236 |
|
|
At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$. |
| 237 |
|
|
|
| 238 |
|
|
The surface of the ocean is given by: $R_{moving}=\eta $ |
| 239 |
|
|
|
| 240 |
cnh |
1.4 |
The position of the resting free surface of the ocean is given by $ |
| 241 |
adcroft |
1.1 |
R_{o}=Z_{o}=0$. |
| 242 |
|
|
|
| 243 |
|
|
Boundary conditions are: |
| 244 |
|
|
|
| 245 |
cnh |
1.3 |
\begin{eqnarray} |
| 246 |
cnh |
1.2 |
w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} |
| 247 |
|
|
\label{eq:fixed-bc-ocean}\\ |
| 248 |
|
|
w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface) |
| 249 |
|
|
\label{eq:moving-bc-ocean}} |
| 250 |
cnh |
1.3 |
\end{eqnarray} |
| 251 |
adcroft |
1.1 |
where $\eta $ is the elevation of the free surface. |
| 252 |
|
|
|
| 253 |
|
|
Then eq(\ref{incompressible}) yields a consistent set of oceanic equations |
| 254 |
|
|
which, for convenience, are written out in $z$ coordinates in Appendix Ocean. |
| 255 |
|
|
|
| 256 |
|
|
\subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and |
| 257 |
|
|
Non-hydrostatic forms} |
| 258 |
|
|
|
| 259 |
|
|
Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms: |
| 260 |
|
|
|
| 261 |
|
|
\begin{equation} |
| 262 |
|
|
\phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r) |
| 263 |
cnh |
1.2 |
\label{eq:phi-split} |
| 264 |
adcroft |
1.1 |
\end{equation} |
| 265 |
|
|
and write eq(\ref{incompressible}a) in the form: |
| 266 |
|
|
|
| 267 |
|
|
\begin{equation} |
| 268 |
|
|
\frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi |
| 269 |
|
|
_{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi |
| 270 |
cnh |
1.2 |
_{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{eq:mom-h} |
| 271 |
adcroft |
1.1 |
\end{equation} |
| 272 |
|
|
|
| 273 |
|
|
\begin{equation} |
| 274 |
cnh |
1.2 |
\frac{\partial \phi _{hyd}}{\partial r}=-b \label{eq:hydrostatic} |
| 275 |
adcroft |
1.1 |
\end{equation} |
| 276 |
|
|
|
| 277 |
|
|
\begin{equation} |
| 278 |
cnh |
1.4 |
\epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{ |
| 279 |
cnh |
1.2 |
\partial r}=G_{\dot{r}} \label{eq:mom-w} |
| 280 |
adcroft |
1.1 |
\end{equation} |
| 281 |
|
|
Here $\epsilon _{nh}$ is a non-hydrostatic parameter. |
| 282 |
|
|
|
| 283 |
|
|
The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref |
| 284 |
|
|
{hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis |
| 285 |
cnh |
1.4 |
terms in the momentum equations. In spherical coordinates they take the form |
| 286 |
|
|
\footnote{ |
| 287 |
adcroft |
1.1 |
In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms |
| 288 |
|
|
in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined |
| 289 |
|
|
terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully |
| 290 |
|
|
non-hydrostatic model (\textbf{NH}) includes all terms.}: |
| 291 |
|
|
|
| 292 |
|
|
\begin{equation} |
| 293 |
|
|
\left. |
| 294 |
|
|
\begin{tabular}{l} |
| 295 |
|
|
$G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\ |
| 296 |
cnh |
1.4 |
$-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}} |
| 297 |
adcroft |
1.1 |
\right\} $ \\ |
| 298 |
cnh |
1.4 |
$-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}} |
| 299 |
adcroft |
1.1 |
\right\} $ \\ |
| 300 |
cnh |
1.4 |
$+\mathcal{F}_{u}\mathcal{+D}_{u}$ |
| 301 |
adcroft |
1.1 |
\end{tabular} |
| 302 |
|
|
\right\} \left\{ |
| 303 |
|
|
\begin{tabular}{l} |
| 304 |
|
|
\textit{advection} \\ |
| 305 |
|
|
\textit{metric} \\ |
| 306 |
|
|
\textit{Coriolis} \\ |
| 307 |
|
|
\textit{\ Forcing/Dissipation} |
| 308 |
|
|
\end{tabular} |
| 309 |
cnh |
1.2 |
\right. \qquad \label{eq:gu-speherical} |
| 310 |
adcroft |
1.1 |
\end{equation} |
| 311 |
|
|
|
| 312 |
|
|
\begin{equation} |
| 313 |
|
|
\left. |
| 314 |
|
|
\begin{tabular}{l} |
| 315 |
|
|
$G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\ |
| 316 |
cnh |
1.4 |
$-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r} |
| 317 |
adcroft |
1.1 |
}\right\} $ \\ |
| 318 |
|
|
$-\left\{ -2\Omega u\sin lat\right\} $ \\ |
| 319 |
cnh |
1.4 |
$+\mathcal{F}_{v}\mathcal{+D}_{v}$ |
| 320 |
adcroft |
1.1 |
\end{tabular} |
| 321 |
|
|
\right\} \left\{ |
| 322 |
|
|
\begin{tabular}{l} |
| 323 |
|
|
\textit{advection} \\ |
| 324 |
|
|
\textit{metric} \\ |
| 325 |
|
|
\textit{Coriolis} \\ |
| 326 |
|
|
\textit{\ Forcing/Dissipation} |
| 327 |
|
|
\end{tabular} |
| 328 |
cnh |
1.2 |
\right. \qquad \label{eq:gv-spherical} |
| 329 |
adcroft |
1.1 |
\end{equation} |
| 330 |
|
|
\qquad \qquad \qquad \qquad \qquad |
| 331 |
|
|
|
| 332 |
|
|
\begin{equation} |
| 333 |
|
|
\left. |
| 334 |
|
|
\begin{tabular}{l} |
| 335 |
|
|
$G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\ |
| 336 |
cnh |
1.4 |
$+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}} |
| 337 |
adcroft |
1.1 |
\right\} $ \\ |
| 338 |
|
|
${+2\Omega u\cos lat}$ \\ |
| 339 |
cnh |
1.4 |
$\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$ |
| 340 |
adcroft |
1.1 |
\end{tabular} |
| 341 |
|
|
\right\} \left\{ |
| 342 |
|
|
\begin{tabular}{l} |
| 343 |
|
|
\textit{advection} \\ |
| 344 |
|
|
\textit{metric} \\ |
| 345 |
|
|
\textit{Coriolis} \\ |
| 346 |
|
|
\textit{\ Forcing/Dissipation} |
| 347 |
|
|
\end{tabular} |
| 348 |
cnh |
1.2 |
\right. \label{eq:gw-spherical} |
| 349 |
adcroft |
1.1 |
\end{equation} |
| 350 |
|
|
\qquad \qquad \qquad \qquad \qquad |
| 351 |
|
|
|
| 352 |
cnh |
1.4 |
In the above `${r}$' is the distance from the center of the earth and `$ |
| 353 |
adcroft |
1.1 |
lat$' is latitude. |
| 354 |
|
|
|
| 355 |
|
|
Grad and div operators in spherical coordinates are defined in appendix |
| 356 |
cnh |
1.4 |
OPERATORS. |
| 357 |
adcroft |
1.1 |
\marginpar{ |
| 358 |
|
|
Fig.6 Spherical polar coordinate system.} |
| 359 |
|
|
|
| 360 |
|
|
\subsubsection{Shallow atmosphere approximation} |
| 361 |
|
|
|
| 362 |
|
|
............................ |
| 363 |
|
|
|
| 364 |
|
|
\subsubsection{Hydrostatic and quasi-hydrostatic forms} |
| 365 |
|
|
|
| 366 |
|
|
These are discussed at length in Marshall et al (1997a). |
| 367 |
|
|
|
| 368 |
|
|
In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined |
| 369 |
cnh |
1.4 |
terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r |
| 370 |
adcroft |
1.1 |
}$' is replaced by `$a$', the mean radius of the earth. Once the pressure is |
| 371 |
|
|
found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi |
| 372 |
|
|
_{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels |
| 373 |
|
|
by integration of the hydrostatic relation, eq(\ref{hydro}). |
| 374 |
|
|
|
| 375 |
|
|
In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between |
| 376 |
|
|
gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos |
| 377 |
|
|
\phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic |
| 378 |
cnh |
1.4 |
contribution to the pressure field: only the terms underlined twice in Eqs. ( |
| 379 |
adcroft |
1.1 |
\ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the |
| 380 |
|
|
shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all} |
| 381 |
|
|
the metric terms are retained and the full variation of the radial position |
| 382 |
|
|
of a particle monitored. The \textbf{QH}\ vertical momentum equation (\ref |
| 383 |
|
|
{vertmtm}) becomes: |
| 384 |
|
|
|
| 385 |
|
|
\[ |
| 386 |
|
|
\frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat |
| 387 |
|
|
\] |
| 388 |
|
|
making a small correction to the hydrostatic pressure. |
| 389 |
|
|
|
| 390 |
|
|
\textbf{QH} has good energetic credentials - they are the same as for |
| 391 |
|
|
\textbf{HPE}. Importantly, however, it has the same angular momentum |
| 392 |
|
|
principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall |
| 393 |
|
|
et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved. |
| 394 |
|
|
|
| 395 |
|
|
\subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms} |
| 396 |
|
|
|
| 397 |
|
|
The MIT model presently supports a full non-hydrostatic ocean isomorph, but |
| 398 |
|
|
only a quasi-non-hydrostatic atmospheric isomorph. |
| 399 |
|
|
|
| 400 |
|
|
\paragraph{Non-hydrostatic Ocean} |
| 401 |
|
|
|
| 402 |
cnh |
1.4 |
In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $ |
| 403 |
adcroft |
1.1 |
\rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation |
| 404 |
|
|
must be solved subject to Neumann boundary conditions (see below). It is |
| 405 |
|
|
important to note that use of the full \textbf{NH} does not admit any new |
| 406 |
|
|
`fast' waves in to the system - the incompressible condition (\ref |
| 407 |
|
|
{incompressible}) has already filtered out acoustic modes. It does, however, |
| 408 |
|
|
ensure that the gravity waves are treated accurately with an exact |
| 409 |
|
|
dispersion relation. The \textbf{NH} set has a complete angular momentum |
| 410 |
|
|
principle and consistent energetics - see White and Bromley, 1995; Marshall |
| 411 |
|
|
et.al.\ 1997a. |
| 412 |
|
|
|
| 413 |
|
|
\paragraph{Quasi-nonhydrostatic Atmosphere} |
| 414 |
|
|
|
| 415 |
cnh |
1.4 |
In the non-hydrostatic version of our atmospheric model we approximate $\dot{ |
| 416 |
adcroft |
1.1 |
r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only |
| 417 |
|
|
here) by: |
| 418 |
|
|
|
| 419 |
|
|
\begin{equation} |
| 420 |
cnh |
1.2 |
\dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt} \label{eq:quasi-nh-w} |
| 421 |
adcroft |
1.1 |
\end{equation} |
| 422 |
|
|
where $p_{hy}$ is the hydrostatic pressure. |
| 423 |
|
|
|
| 424 |
|
|
........................................ |
| 425 |
|
|
|
| 426 |
|
|
\subsubsection{Summary of equation sets supported by model} |
| 427 |
|
|
|
| 428 |
|
|
The key equation sets and isomorphisms are summarised in fig.4. |
| 429 |
|
|
|
| 430 |
|
|
\paragraph{Atmosphere} |
| 431 |
|
|
|
| 432 |
|
|
\subparagraph{Hydrostatic and quasi-hydrostatic} |
| 433 |
|
|
|
| 434 |
|
|
Hydrostatic, and quasi-hydrostatic forms of the compressible non-Boussinesq |
| 435 |
|
|
equations in $p-$coordinates are supported\ref{eq-p} - see appendix |
| 436 |
|
|
Atmosphere, where they are written out in $p-$coordinates. |
| 437 |
|
|
|
| 438 |
|
|
\subparagraph{Quasi-nonhydrostatic} |
| 439 |
|
|
|
| 440 |
|
|
A quasi-nonhydrostatic form is also supported - see appendix Ocean. |
| 441 |
|
|
|
| 442 |
|
|
\paragraph{Ocean} |
| 443 |
|
|
|
| 444 |
|
|
\subparagraph{Hydrostatic and quasi-hydrostatic} |
| 445 |
|
|
|
| 446 |
|
|
Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq |
| 447 |
|
|
equations in $z-$coordinates are supported |
| 448 |
|
|
|
| 449 |
|
|
\subparagraph{Non-hydrostatic } |
| 450 |
|
|
|
| 451 |
cnh |
1.4 |
Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$ |
| 452 |
adcroft |
1.1 |
coordinates are supported. |
| 453 |
|
|
|
| 454 |
|
|
\subsection{Solution strategy} |
| 455 |
|
|
|
| 456 |
cnh |
1.4 |
The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{ |
| 457 |
|
|
NH} models are summarized in Fig.7. |
| 458 |
adcroft |
1.1 |
\marginpar{ |
| 459 |
|
|
Fig.7 Solution strategy} |
| 460 |
|
|
|
| 461 |
|
|
Overview paragraph...... |
| 462 |
|
|
|
| 463 |
|
|
There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of |
| 464 |
cnh |
1.4 |
course, some complication that goes with the inclusion of $\cos \phi \ $ |
| 465 |
adcroft |
1.1 |
Coriolis terms and the relaxation of the shallow atmosphere approximation. |
| 466 |
|
|
But this leads to negligible increase in computation. In \textbf{NH}, in |
| 467 |
|
|
contrast, one additional elliptic equation - a three-dimensional one - must |
| 468 |
|
|
be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is |
| 469 |
|
|
essentially negligible in the hydrostatic limit (see detailed discussion in |
| 470 |
|
|
Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the |
| 471 |
|
|
hydrostatic limit, is as computationally economic as the \textbf{HPEs}. |
| 472 |
|
|
|
| 473 |
|
|
\subsection{Finding the pressure field} |
| 474 |
|
|
|
| 475 |
|
|
Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the |
| 476 |
|
|
pressure field must be obtained diagnostically. We proceed, as before, by |
| 477 |
|
|
dividing the total (pressure/geo) potential in to three parts, a surface |
| 478 |
|
|
part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a |
| 479 |
|
|
non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and |
| 480 |
cnh |
1.2 |
writing the momentum equation |
| 481 |
|
|
as in (\ref{eq:mom-h}). |
| 482 |
adcroft |
1.1 |
|
| 483 |
|
|
\subsubsection{Hydrostatic pressure} |
| 484 |
|
|
|
| 485 |
|
|
Hydrostatic pressure is obtained by integrating (\ref{hydro}) vertically |
| 486 |
|
|
from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield: |
| 487 |
|
|
|
| 488 |
|
|
\[ |
| 489 |
|
|
\int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi |
| 490 |
|
|
_{hyd}\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr |
| 491 |
|
|
\] |
| 492 |
|
|
and so |
| 493 |
|
|
|
| 494 |
cnh |
1.2 |
\begin{equation} |
| 495 |
adcroft |
1.1 |
\phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr |
| 496 |
cnh |
1.2 |
\label{eq:hydro-phi} |
| 497 |
|
|
\end{equation} |
| 498 |
adcroft |
1.1 |
|
| 499 |
|
|
\subsubsection{Surface pressure} |
| 500 |
|
|
|
| 501 |
cnh |
1.4 |
The surface pressure equation can be obtained by integrating continuity, ( |
| 502 |
adcroft |
1.1 |
\ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$ |
| 503 |
|
|
|
| 504 |
|
|
\[ |
| 505 |
cnh |
1.4 |
\int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v} |
| 506 |
adcroft |
1.1 |
}_{h}+\partial _{r}\dot{r}\right) dr=0 |
| 507 |
|
|
\] |
| 508 |
|
|
|
| 509 |
|
|
Thus: |
| 510 |
|
|
|
| 511 |
|
|
\[ |
| 512 |
|
|
\frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta |
| 513 |
cnh |
1.4 |
+\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}} |
| 514 |
adcroft |
1.1 |
_{h}dr=0 |
| 515 |
|
|
\] |
| 516 |
cnh |
1.4 |
where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $ |
| 517 |
adcroft |
1.1 |
r $. The above can be rearranged to yield, using Leibnitz's theorem: |
| 518 |
|
|
|
| 519 |
|
|
\begin{equation} |
| 520 |
|
|
\frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot |
| 521 |
|
|
\int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0 |
| 522 |
cnh |
1.2 |
\label{eq:free-surface} |
| 523 |
adcroft |
1.1 |
\end{equation} |
| 524 |
|
|
|
| 525 |
|
|
Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential |
| 526 |
|
|
(atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can |
| 527 |
|
|
be written |
| 528 |
|
|
\begin{equation} |
| 529 |
cnh |
1.2 |
\mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta |
| 530 |
|
|
\label{eq:phi-surf} |
| 531 |
adcroft |
1.1 |
\end{equation} |
| 532 |
|
|
where $b$ is the buoyancy. |
| 533 |
|
|
|
| 534 |
|
|
In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{mtm-split}), (\ref |
| 535 |
|
|
{integralcontinuity}) and (\ref{link}) can be solved by inverting a 2-d |
| 536 |
|
|
elliptic equation for $\phi _{s}$ as described in section ?.?. Both `free |
| 537 |
|
|
surface' and `rigid lid' approaches are available. |
| 538 |
|
|
|
| 539 |
|
|
\subsubsection{Non-hydrostatic pressure} |
| 540 |
|
|
|
| 541 |
cnh |
1.4 |
Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{ |
| 542 |
adcroft |
1.1 |
\partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation |
| 543 |
|
|
(\ref{incompressible}), we deduce that: |
| 544 |
|
|
|
| 545 |
|
|
\begin{equation} |
| 546 |
cnh |
1.4 |
\nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{ |
| 547 |
|
|
\nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla . |
| 548 |
cnh |
1.2 |
\vec{\mathbf{F}} \label{eq:3d-invert} |
| 549 |
adcroft |
1.1 |
\end{equation} |
| 550 |
|
|
|
| 551 |
|
|
For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$ |
| 552 |
|
|
subject to appropriate choice of boundary conditions. This method is usually |
| 553 |
|
|
called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969; |
| 554 |
|
|
Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}), |
| 555 |
|
|
the 3-d problem does not need to be solved. |
| 556 |
|
|
|
| 557 |
|
|
\paragraph{Boundary Conditions} |
| 558 |
|
|
|
| 559 |
|
|
We apply the condition of no normal flow through all solid boundaries - the |
| 560 |
|
|
coasts (in the ocean) and the bottom: |
| 561 |
|
|
|
| 562 |
|
|
\begin{equation} |
| 563 |
|
|
\vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow} |
| 564 |
|
|
\end{equation} |
| 565 |
|
|
where $\widehat{n}$ is a vector of unit length normal to the boundary. The |
| 566 |
|
|
kinematic condition (\ref{nonormalflow}) is also applied to the vertical |
| 567 |
cnh |
1.4 |
velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $ |
| 568 |
adcroft |
1.1 |
\left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the |
| 569 |
|
|
tangential component of velocity, $v_{T}$, at all solid boundaries, |
| 570 |
|
|
depending on the form chosen for the dissipative terms in the momentum |
| 571 |
|
|
equations - see below. |
| 572 |
|
|
|
| 573 |
|
|
Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that: |
| 574 |
|
|
|
| 575 |
|
|
\begin{equation} |
| 576 |
|
|
\widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}} |
| 577 |
cnh |
1.2 |
\label{eq:inhom-neumann-nh} |
| 578 |
adcroft |
1.1 |
\end{equation} |
| 579 |
|
|
where |
| 580 |
|
|
|
| 581 |
|
|
\[ |
| 582 |
|
|
\vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi |
| 583 |
|
|
_{s}+\mathbf{\nabla }\phi _{hyd}\right) |
| 584 |
|
|
\] |
| 585 |
|
|
presenting inhomogeneous Neumann boundary conditions to the Elliptic problem |
| 586 |
|
|
(\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit |
| 587 |
cnh |
1.4 |
classical 3D potential theory and, by introducing an appropriately chosen $ |
| 588 |
adcroft |
1.1 |
\delta $-function sheet of `source-charge', replace the inhomogenous |
| 589 |
|
|
boundary condition on pressure by a homogeneous one. The source term $rhs$ |
| 590 |
|
|
in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By |
| 591 |
|
|
simultaneously setting $ |
| 592 |
|
|
\begin{array}{l} |
| 593 |
|
|
\widehat{n}.\vec{\mathbf{F}} |
| 594 |
|
|
\end{array} |
| 595 |
|
|
=0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following |
| 596 |
|
|
self-consistent but simpler homogenised Elliptic problem is obtained: |
| 597 |
|
|
|
| 598 |
|
|
\[ |
| 599 |
|
|
\nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad |
| 600 |
|
|
\] |
| 601 |
|
|
where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such |
| 602 |
|
|
that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref |
| 603 |
|
|
{inhomneumann}) the modified boundary condition becomes: |
| 604 |
|
|
|
| 605 |
|
|
\begin{equation} |
| 606 |
cnh |
1.2 |
\widehat{n}.\nabla \phi _{nh}=0 \label{eq:hom-neumann-nh} |
| 607 |
adcroft |
1.1 |
\end{equation} |
| 608 |
|
|
|
| 609 |
|
|
If the flow is `close' to hydrostatic balance then the 3-d inversion |
| 610 |
|
|
converges rapidly because $\phi _{nh}\ $is then only a small correction to |
| 611 |
|
|
the hydrostatic pressure field (see the discussion in Marshall et al, a,b). |
| 612 |
|
|
|
| 613 |
|
|
The solution $\phi _{nh}\ $to (\ref{3dinvert}) and (\ref{homneuman}) does |
| 614 |
|
|
not vanish at $r=R_{moving}$, and so refines the pressure there. |
| 615 |
|
|
|
| 616 |
|
|
\subsection{Forcing/dissipation} |
| 617 |
|
|
|
| 618 |
|
|
\subsubsection{Forcing} |
| 619 |
|
|
|
| 620 |
|
|
The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by |
| 621 |
|
|
`physics packages' described in detail in section ?.?. |
| 622 |
|
|
|
| 623 |
|
|
\subsubsection{Dissipation} |
| 624 |
|
|
|
| 625 |
|
|
\paragraph{Momentum} |
| 626 |
|
|
|
| 627 |
|
|
Many forms of momentum dissipation are available in the model. Laplacian and |
| 628 |
|
|
biharmonic frictions are commonly used: |
| 629 |
|
|
|
| 630 |
cnh |
1.2 |
\begin{equation} |
| 631 |
cnh |
1.4 |
D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}} |
| 632 |
adcroft |
1.1 |
+A_{4}\nabla _{h}^{4}v |
| 633 |
cnh |
1.2 |
\label{eq:dissipation} |
| 634 |
|
|
\end{equation} |
| 635 |
adcroft |
1.1 |
where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity |
| 636 |
|
|
coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic |
| 637 |
|
|
friction. These coefficients are the same for all velocity components. |
| 638 |
|
|
|
| 639 |
|
|
\paragraph{Tracers} |
| 640 |
|
|
|
| 641 |
|
|
The mixing terms for the temperature and salinity equations have a similar |
| 642 |
|
|
form to that of momentum except that the diffusion tensor can be |
| 643 |
cnh |
1.4 |
non-diagonal and have varying coefficients. $\qquad $ |
| 644 |
cnh |
1.2 |
\begin{equation} |
| 645 |
adcroft |
1.1 |
D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla |
| 646 |
|
|
_{h}^{4}(T,S) |
| 647 |
cnh |
1.2 |
\label{eq:diffusion} |
| 648 |
|
|
\end{equation} |
| 649 |
cnh |
1.4 |
where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $ |
| 650 |
adcroft |
1.1 |
horizontal coefficient for biharmonic diffusion. In the simplest case where |
| 651 |
|
|
the subgrid-scale fluxes of heat and salt are parameterized with constant |
| 652 |
|
|
horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$, |
| 653 |
|
|
reduces to a diagonal matrix with constant coefficients: |
| 654 |
|
|
|
| 655 |
cnh |
1.2 |
\begin{equation} |
| 656 |
adcroft |
1.1 |
\qquad \qquad \qquad \qquad K=\left( |
| 657 |
|
|
\begin{array}{ccc} |
| 658 |
|
|
K_{h} & 0 & 0 \\ |
| 659 |
|
|
0 & K_{h} & 0 \\ |
| 660 |
|
|
0 & 0 & K_{v} |
| 661 |
|
|
\end{array} |
| 662 |
|
|
\right) \qquad \qquad \qquad |
| 663 |
cnh |
1.2 |
\label{eq:diagonal-diffusion-tensor} |
| 664 |
|
|
\end{equation} |
| 665 |
adcroft |
1.1 |
where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion |
| 666 |
|
|
coefficients. These coefficients are the same for all tracers (temperature, |
| 667 |
|
|
salinity ... ). |
| 668 |
|
|
|
| 669 |
|
|
\subsection{Vector invariant form} |
| 670 |
|
|
|
| 671 |
|
|
For some purposes it is advantageous to write momentum advection in eq(\ref |
| 672 |
|
|
{hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form: |
| 673 |
|
|
|
| 674 |
|
|
\begin{equation} |
| 675 |
cnh |
1.4 |
\frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t} |
| 676 |
adcroft |
1.1 |
+\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla |
| 677 |
|
|
\left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right] |
| 678 |
cnh |
1.2 |
\label{eq:vi-identity} |
| 679 |
adcroft |
1.1 |
\end{equation} |
| 680 |
|
|
This permits alternative numerical treatments of the non-linear terms based |
| 681 |
|
|
on their representation as a vorticity flux. Because gradients of coordinate |
| 682 |
|
|
vectors no longer appear on the rhs of (\ref{vecinvariant}) (???), explicit |
| 683 |
|
|
representation of the metric terms in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}), |
| 684 |
|
|
can be avoided: information about the geometry is contained in the areas and |
| 685 |
|
|
lengths of the volumes used to discretize the model. |
| 686 |
|
|
|
| 687 |
|
|
\subsection{Adjoint} |
| 688 |
|
|
|
| 689 |
|
|
...... |