/[MITgcm]/manual/s_overview/continuous_eqns.tex
ViewVC logotype

Annotation of /manual/s_overview/continuous_eqns.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Wed Aug 8 16:16:18 2001 UTC (23 years, 11 months ago) by adcroft
Branch: MAIN
Branch point for: dummy
File MIME type: application/x-tex
Initial revision

1 adcroft 1.1 % $Header: $
2     % $Name: $
3    
4     \section{Continuous equations in `r' coordinates}
5    
6     To render atmosphere and ocean models from one dynamical core we exploit
7     `isomorphisms' between equation sets that govern the evolution of the
8     respective fluids - see fig.4%
9     \marginpar{
10     Fig.4. Isomorphisms}. One system of hydrodynamical equations is written down
11     and encoded. The model variables have different interpretations depending on
12     whether the atmosphere or ocean is being studied. Thus, for example, the
13     vertical coordinate `$r$' is interpreted as pressure, $p$, if we are
14     modeling the atmosphere and height, $z$, if we are modeling the ocean. A
15     complete list of the isomorphisms is given in table 1.%
16     \marginpar{
17     Table 1. Isomorphisms}
18    
19     The state of the fluid at any time is characterized by the distribution of
20     velocity $\vec{\mathbf{v}}$, active tracers $\theta $ and $S$, a
21     `geopotential' $\phi $ and density $\rho =\rho (\theta ,S,p)$ which may
22     depend on $\theta $, $S$, and $p$. The equations that govern the evolution
23     of these fields, obtained by applying the laws of classical mechanics and
24     thermodynamics to a Boussinesq, Navier-Stokes fluid are, written in terms of
25     a generic vertical coordinate, $r$, see fig.5%
26     \marginpar{
27     Fig.5 The vertical coordinate of model}:
28    
29     \[
30     \frac{D\vec{\mathbf{v}_{h}}}{Dt}+\left( 2\vec{\Omega}\times \vec{\mathbf{v}}%
31     \right) _{h}+\mathbf{\nabla }_{h}\phi =\left( \mathcal{F}_{\vec{\mathbf{v}}}%
32     \mathcal{+D}_{\vec{\mathbf{v}}}\right) _{h}\text{horizontal mtm}
33     \]
34    
35     \[
36     \frac{D\dot{r}}{Dt}+\widehat{k}\cdot \left( 2\vec{\Omega}\times \vec{\mathbf{%
37     v}}\right) +\frac{\partial \phi }{\partial r}+b=\left( \mathcal{F}_{\vec{%
38     \mathbf{v}}}\mathcal{+D}_{\vec{\mathbf{v}}}\right) _{r}\text{vertical mtm}
39     \]
40    
41     \begin{equation}
42     \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \dot{r}}{%
43     \partial r}=0\text{ continuity} \label{incompressible}
44     \end{equation}
45    
46     \[
47     b=b(\theta ,S,r)\text{ equation of state}
48     \]
49    
50     \[
51     \frac{D\theta }{Dt}=\mathcal{F}_{\theta }\text{ }\mathcal{+D}_{\theta }\text{
52     potential temperature}
53     \]
54    
55     \[
56     \frac{DS}{Dt}=\mathcal{F}_{S}\text{ }\mathcal{+D}_{S}\text{ humidity/salinity%
57     }
58     \]
59    
60     Here:
61    
62     \[
63     r\text{ is the vertical coordinate}
64     \]
65    
66     \[
67     \frac{D}{Dt}=\frac{\partial }{\partial t}+\vec{\mathbf{v}}\cdot \nabla \text{
68     is the total derivative}
69     \]
70    
71     \[
72     \mathbf{\nabla }=\mathbf{\nabla }_{h}+\widehat{k}\frac{\partial }{\partial r}%
73     \text{ is the `grad' operator}
74     \]
75     with $\mathbf{\nabla }_{h}$ operating in the horizontal and $\widehat{k}%
76     \frac{\partial }{\partial r}$ operating in the vertical, where $\widehat{k}$
77     is a unit vector in the vertical
78    
79     \[
80     t\text{ is time}
81     \]
82    
83     \[
84     \vec{\mathbf{v}}=(u,v,\dot{r})=(\vec{\mathbf{v}}_{h},\dot{r})\text{ is the
85     velocity}
86     \]
87    
88     \[
89     \phi \text{ is the `pressure'/`geopotential'}
90     \]
91    
92     \[
93     \vec{\Omega}\text{ is the Earth's rotation}
94     \]
95    
96     \[
97     b\text{ is the `buoyancy'}
98     \]
99    
100     \[
101     \theta \text{ is potential temperature}
102     \]
103    
104     \[
105     S\text{ is specific humidity in the atmosphere; salinity in the ocean}
106     \]
107    
108     \[
109     \mathcal{F}_{\vec{\mathbf{v}}}\text{ and }\mathcal{D}_{\vec{\mathbf{v}}}%
110     \text{ are forcing and dissipation of }\vec{\mathbf{v}}
111     \]
112    
113     \[
114     \mathcal{F}_{\theta }\mathcal{\ }\text{and }\mathcal{D}_{\theta }\text{ are
115     forcing and dissipation of }\theta
116     \]
117    
118     \[
119     \mathcal{F}_{S}\mathcal{\ }\text{and }\mathcal{D}_{S}\text{ are forcing and
120     dissipation of }S
121     \]
122    
123     The $\mathcal{F}^{\prime }s$ and $\mathcal{D}^{\prime }s$ are provided by
124     extensive `physics' packages for atmosphere and ocean described in section
125     ?.?.
126    
127     \subsection{Kinematic Boundary conditions}
128    
129     \subsubsection{vertical}
130    
131     at fixed and moving $r$ surfaces we set (see fig.4):
132    
133     \begin{eqnarray*}
134     \dot{r} &=&0\text{ at }r=R_{fixed}(x,y):\text{(ocean bottom, top of the
135     atmosphere)} \\
136     \dot{r} &=&\frac{Dr}{Dt}\text{ at }r=R_{moving}\text{ (ocean surface, bottom
137     of the atmosphere)}
138     \end{eqnarray*}
139     Here
140    
141     \[
142     R_{moving}=R_{o}+\eta
143     \]
144     where $R_{o}(x,y)$ is the `$r-$value' (height or pressure, depending on
145     whether we are in the atmosphere or ocean) of the `moving surface' in the
146     resting fluid and $\eta $ is the departure from $R_{o}(x,y)$ in the presence
147     of motion.
148    
149     \subsubsection{horizontal}
150    
151     \[
152     \vec{\mathbf{v}}\cdot \vec{\mathbf{n}}=0
153     \]
154     where $\vec{\mathbf{n}}$ is the normal to a solid boundary.
155    
156     \subsection{Atmosphere}
157    
158     In the atmosphere, see fig. we interpret:
159     \begin{eqnarray}
160     r &=&p\text{ is the pressure} \\
161     \dot{r} &=&\frac{Dp}{Dt}=\omega \text{ is the vertical velocity in }p\text{
162     coordinates} \\
163     \phi &=&g\,z\text{ is the geopotential height} \\
164     b &=&\frac{\partial \Pi }{\partial p}\theta \text{ is the buoyancy} \\
165     \theta &=&T(\frac{p_{c}}{p})^{\kappa }\text{ is potential temperature} \\
166     S &=&q\text{, the specific humidity}
167     \end{eqnarray}
168     where
169    
170     \[
171     T\text{is absolute temperature}
172     \]
173     \[
174     p\text{ is the pressure}
175     \]
176     \begin{eqnarray*}
177     &&z\text{ is the height of the pressure surface} \\
178     &&g\text{ is the acceleration due to gravity}
179     \end{eqnarray*}
180    
181     In the above the ideal gas law, $p=\rho RT$, has been expressed in terms of
182     the Exner function $\Pi (p)$ given by (see Appendix Atmosphere)
183     \[
184     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }
185     \]
186     where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$ with $R$ the gas
187     constant and $c_{p}$ the specific heat of air at constant pressure.
188    
189     At the top of the atmosphere (which is `fixed' in our $r$ coordinate):
190    
191     \[
192     R_{fixed}=p_{top}=0
193     \]
194     In a resting atmosphere the elevation of the mountains at the bottom is
195     given by
196     \[
197     R_{moving}=R_{o}(x,y)=p_{o}(x,y)
198     \]
199     i.e. the (hydrostatic) pressure at the top of the mountains in a resting
200     atmosphere.
201    
202     The boundary conditions at top and bottom are given by:
203    
204     \begin{eqnarray*}
205     &&\omega =0~\text{at }r=R_{fixed}\text{ (top of the atmosphere)} \\
206     \omega &=&\frac{Dp_{s}}{Dt}\text{; at }r=R_{moving}\text{ (bottom of the
207     atmosphere)}
208     \end{eqnarray*}
209    
210     Then the (hydrostatic form of) eq(\ref{incompressible}) yields a consistent
211     set of atmospheric equations which, for convenience, are written out in $p$
212     coordinates in Appendix Atmosphere - see eqs(\ref{eq-p-hmom}) to (\ref
213     {eq-p-heat}).
214    
215     \subsection{Ocean}
216    
217     In the ocean we interpret:
218     \begin{eqnarray}
219     r &=&z\text{ is the height} \\
220     \dot{r} &=&\frac{Dz}{Dt}=w\text{ is the vertical velocity} \\
221     \phi &=&\frac{p}{\rho _{c}}\text{ is the pressure} \\
222     b(\theta ,S,r) &=&\frac{g}{\rho _{c}}\left( \rho (\theta ,S,r)-\rho
223     _{c}\right) \text{ is the buoyancy}
224     \end{eqnarray}
225     where $\rho _{c}$ is a fixed reference density of water and $g$ is the
226     acceleration due to gravity.\noindent
227    
228     In the above
229    
230     At the bottom of the ocean: $R_{fixed}(x,y)=-H(x,y)$.
231    
232     The surface of the ocean is given by: $R_{moving}=\eta $
233    
234     The position of the resting free surface of the ocean is given by $%
235     R_{o}=Z_{o}=0$.
236    
237     Boundary conditions are:
238    
239     \begin{eqnarray*}
240     w &=&0~\text{at }r=R_{fixed}\text{ (ocean bottom)} \\
241     w &=&\frac{D\eta }{Dt}\text{ at }r=R_{moving}=\eta \text{ (ocean surface)}
242     \end{eqnarray*}
243     where $\eta $ is the elevation of the free surface.
244    
245     Then eq(\ref{incompressible}) yields a consistent set of oceanic equations
246     which, for convenience, are written out in $z$ coordinates in Appendix Ocean.
247    
248     \subsection{Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and
249     Non-hydrostatic forms}
250    
251     Let us separate $\phi $ in to surface, hydrostatic and non-hydrostatic terms:
252    
253     \begin{equation}
254     \phi (x,y,r)=\phi _{s}(x,y)+\phi _{hyd}(x,y,r)+\phi _{nh}(x,y,r)
255     \label{pressuresplit}
256     \end{equation}
257     and write eq(\ref{incompressible}a) in the form:
258    
259     \begin{equation}
260     \frac{\partial \vec{\mathbf{v}_{h}}}{\partial t}+\mathbf{\nabla }_{h}\phi
261     _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }_{h}\phi
262     _{nh}=\vec{\mathbf{G}}_{\vec{v}_{h}} \label{hor-mtm}
263     \end{equation}
264    
265     \begin{equation}
266     \frac{\partial \phi _{hyd}}{\partial r}=-b \label{hydro}
267     \end{equation}
268    
269     \begin{equation}
270     \epsilon _{nh}\frac{\partial \dot{r}}{\partial t}+\frac{\partial \phi _{nh}}{%
271     \partial r}=G_{\dot{r}} \label{vertmtm}
272     \end{equation}
273     Here $\epsilon _{nh}$ is a non-hydrostatic parameter.
274    
275     The $\left( \vec{\mathbf{G}}_{\vec{v}},G_{\dot{r}}\right) $ in eq(\ref
276     {hor-mtm}) and (\ref{vertmtm}) represent advective, metric and Coriolis
277     terms in the momentum equations. In spherical coordinates they take the form%
278     \footnote{%
279     In the hydrostatic primitive equations (\textbf{HPE}) all underlined terms
280     in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}) are omitted; the singly-underlined
281     terms are included in the quasi-hydrostatic model (\textbf{QH}). The fully
282     non-hydrostatic model (\textbf{NH}) includes all terms.}:
283    
284     \begin{equation}
285     \left.
286     \begin{tabular}{l}
287     $G_{u}=-\vec{\mathbf{v}}.\nabla u$ \\
288     $-\left\{ \underline{\frac{u\dot{r}}{{r}}}-\frac{uv\tan lat}{{r}}%
289     \right\} $ \\
290     $-\left\{ -2\Omega v\sin lat+\underline{\underline{2\Omega \dot{r}\cos lat}}%
291     \right\} $ \\
292     $+\mathcal{F}_{u}\mathcal{+D}_{u}$%
293     \end{tabular}
294     \right\} \left\{
295     \begin{tabular}{l}
296     \textit{advection} \\
297     \textit{metric} \\
298     \textit{Coriolis} \\
299     \textit{\ Forcing/Dissipation}
300     \end{tabular}
301     \right. \qquad \label{Gu}
302     \end{equation}
303    
304     \begin{equation}
305     \left.
306     \begin{tabular}{l}
307     $G_{v}=-\vec{\mathbf{v}}.\nabla v$ \\
308     $-\left\{ \underline{\frac{v\dot{r}}{{r}}}-\frac{u^{2}\tan lat}{{r}%
309     }\right\} $ \\
310     $-\left\{ -2\Omega u\sin lat\right\} $ \\
311     $+\mathcal{F}_{v}\mathcal{+D}_{v}$%
312     \end{tabular}
313     \right\} \left\{
314     \begin{tabular}{l}
315     \textit{advection} \\
316     \textit{metric} \\
317     \textit{Coriolis} \\
318     \textit{\ Forcing/Dissipation}
319     \end{tabular}
320     \right. \qquad \label{Gv}
321     \end{equation}
322     \qquad \qquad \qquad \qquad \qquad
323    
324     \begin{equation}
325     \left.
326     \begin{tabular}{l}
327     $G_{\dot{r}}=-\vec{\mathbf{v}}.\nabla \dot{r}$ \\
328     $+\left\{ \frac{u^{_{^{2}}}+v^{2}}{{{r}}}%
329     \right\} $ \\
330     ${+2\Omega u\cos lat}$ \\
331     $\mathcal{F}_{\dot{r}}\mathcal{+D}_{\dot{r}}$%
332     \end{tabular}
333     \right\} \left\{
334     \begin{tabular}{l}
335     \textit{advection} \\
336     \textit{metric} \\
337     \textit{Coriolis} \\
338     \textit{\ Forcing/Dissipation}
339     \end{tabular}
340     \right. \label{Gw}
341     \end{equation}
342     \qquad \qquad \qquad \qquad \qquad
343    
344     In the above `${r}$' is the distance from the center of the earth and `$%
345     lat$' is latitude.
346    
347     Grad and div operators in spherical coordinates are defined in appendix
348     OPERATORS.%
349     \marginpar{
350     Fig.6 Spherical polar coordinate system.}
351    
352     \subsubsection{Shallow atmosphere approximation}
353    
354     ............................
355    
356     \subsubsection{Hydrostatic and quasi-hydrostatic forms}
357    
358     These are discussed at length in Marshall et al (1997a).
359    
360     In the `hydrostatic primitive equations' (\textbf{HPE)} all the underlined
361     terms in Eqs. (\ref{Gu} $\rightarrow $\ \ref{Gw}) are neglected and `${r%
362     }$' is replaced by `$a$', the mean radius of the earth. Once the pressure is
363     found at one level - e.g. by inverting a 2-d Elliptic equation for $\phi
364     _{s} $ at $r=R_{moving}$ - the pressure can be computed at all other levels
365     by integration of the hydrostatic relation, eq(\ref{hydro}).
366    
367     In the `quasi-hydrostatic' equations (\textbf{QH)} strict balance between
368     gravity and vertical pressure gradients is not imposed. The $2\Omega u\cos
369     \phi $ Coriolis term are not neglected and are balanced by a non-hydrostatic
370     contribution to the pressure field: only the terms underlined twice in Eqs. (%
371     \ref{Gu} $\rightarrow $\ \ref{Gw}) are set to zero and, simultaneously, the
372     shallow atmosphere approximation is relaxed. In \textbf{QH}\ \textit{all}
373     the metric terms are retained and the full variation of the radial position
374     of a particle monitored. The \textbf{QH}\ vertical momentum equation (\ref
375     {vertmtm}) becomes:
376    
377     \[
378     \frac{\partial \phi _{nh}}{\partial r}=2\Omega u\cos lat
379     \]
380     making a small correction to the hydrostatic pressure.
381    
382     \textbf{QH} has good energetic credentials - they are the same as for
383     \textbf{HPE}. Importantly, however, it has the same angular momentum
384     principle as the full non-hydrostatic model (\textbf{NH)} - see Marshall
385     et.al., 1997a. As in \textbf{HPE }only a 2-d elliptic problem need be solved.
386    
387     \subsubsection{Non-hydrostatic and quasi-nonhydrostatic forms}
388    
389     The MIT model presently supports a full non-hydrostatic ocean isomorph, but
390     only a quasi-non-hydrostatic atmospheric isomorph.
391    
392     \paragraph{Non-hydrostatic Ocean}
393    
394     In the non-hydrostatic ocean model all terms in equations (\ref{Gu} $%
395     \rightarrow $\ \ref{Gw}) are retained. A three dimensional elliptic equation
396     must be solved subject to Neumann boundary conditions (see below). It is
397     important to note that use of the full \textbf{NH} does not admit any new
398     `fast' waves in to the system - the incompressible condition (\ref
399     {incompressible}) has already filtered out acoustic modes. It does, however,
400     ensure that the gravity waves are treated accurately with an exact
401     dispersion relation. The \textbf{NH} set has a complete angular momentum
402     principle and consistent energetics - see White and Bromley, 1995; Marshall
403     et.al.\ 1997a.
404    
405     \paragraph{Quasi-nonhydrostatic Atmosphere}
406    
407     In the non-hydrostatic version of our atmospheric model we approximate $\dot{%
408     r}$ in the vertical momentum eqs(\ref{vertmtm}) and (\ref{Gw}) (but only
409     here) by:
410    
411     \begin{equation}
412     \dot{r}=\frac{Dp}{Dt}=\frac{Dp_{hyd}}{Dt} \label{quasinonhydro}
413     \end{equation}
414     where $p_{hy}$ is the hydrostatic pressure.
415    
416     ........................................
417    
418     \subsubsection{Summary of equation sets supported by model}
419    
420     The key equation sets and isomorphisms are summarised in fig.4.
421    
422     \paragraph{Atmosphere}
423    
424     \subparagraph{Hydrostatic and quasi-hydrostatic}
425    
426     Hydrostatic, and quasi-hydrostatic forms of the compressible non-Boussinesq
427     equations in $p-$coordinates are supported\ref{eq-p} - see appendix
428     Atmosphere, where they are written out in $p-$coordinates.
429    
430     \subparagraph{Quasi-nonhydrostatic}
431    
432     A quasi-nonhydrostatic form is also supported - see appendix Ocean.
433    
434     \paragraph{Ocean}
435    
436     \subparagraph{Hydrostatic and quasi-hydrostatic}
437    
438     Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq
439     equations in $z-$coordinates are supported
440    
441     \subparagraph{Non-hydrostatic }
442    
443     Non-hydrostatic forms of the incompressible Boussinesq equations in $z-$%
444     coordinates are supported.
445    
446     \subsection{Solution strategy}
447    
448     The method of solution employed in the \textbf{HPE}, \textbf{QH} and \textbf{%
449     NH} models are summarized in Fig.7.%
450     \marginpar{
451     Fig.7 Solution strategy}
452    
453     Overview paragraph......
454    
455     There is no penalty in implementing \textbf{QH} over \textbf{HPE} except, of
456     course, some complication that goes with the inclusion of $\cos \phi \ $%
457     Coriolis terms and the relaxation of the shallow atmosphere approximation.
458     But this leads to negligible increase in computation. In \textbf{NH}, in
459     contrast, one additional elliptic equation - a three-dimensional one - must
460     be inverted for $p_{nh}$. However the `overhead' of the \textbf{NH} model is
461     essentially negligible in the hydrostatic limit (see detailed discussion in
462     Marshall et al, 1997) resulting in a non-hydrostatic algorithm that, in the
463     hydrostatic limit, is as computationally economic as the \textbf{HPEs}.
464    
465     \subsection{Finding the pressure field}
466    
467     Unlike the prognostic variables $u$, $v$, $w$, $\theta $ and $S$, the
468     pressure field must be obtained diagnostically. We proceed, as before, by
469     dividing the total (pressure/geo) potential in to three parts, a surface
470     part, $\phi _{s}(x,y)$, a hydrostatic part $\phi _{hyd}(x,y,r)$ and a
471     non-hydrostatic part $\phi _{nh}(x,y,r)$, as in (\ref{pressuresplit}), and
472     writing the momentum equation in the form
473     \begin{equation}
474     \frac{\partial }{\partial t}\vec{\mathbf{v}_{h}}+\mathbf{\nabla }_{h}\phi
475     _{s}+\mathbf{\nabla }_{h}\phi _{hyd}+\epsilon _{nh}\mathbf{\nabla }\phi
476     _{nh}=\vec{\mathbf{G}}_{\vec{v}} \label{mtm-split}
477     \end{equation}
478     as in (\ref{hor-mtm}).
479    
480     \subsubsection{Hydrostatic pressure}
481    
482     Hydrostatic pressure is obtained by integrating (\ref{hydro}) vertically
483     from $r=R_{o}$ where $\phi _{hyd}(r=R_{o})=0$, to yield:
484    
485     \[
486     \int_{r}^{R_{o}}\frac{\partial \phi _{hyd}}{\partial r}dr=\left[ \phi
487     _{hyd}\right] _{r}^{R_{o}}=\int_{r}^{R_{o}}-bdr
488     \]
489     and so
490    
491     \[
492     \phi _{hyd}(x,y,r)=\int_{r}^{R_{o}}bdr
493     \]
494    
495     \subsubsection{Surface pressure}
496    
497     The surface pressure equation can be obtained by integrating continuity, (%
498     \ref{incompressible})c, vertically from $r=R_{fixed}$ to $r=R_{moving}$
499    
500     \[
501     \int_{R_{fixed}}^{R_{moving}}\left( \mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}%
502     }_{h}+\partial _{r}\dot{r}\right) dr=0
503     \]
504    
505     Thus:
506    
507     \[
508     \frac{\partial \eta }{\partial t}+\vec{\mathbf{v}}.\nabla \eta
509     +\int_{R_{fixed}}^{R_{moving}}\mathbf{\nabla }_{h}\cdot \vec{\mathbf{v}}%
510     _{h}dr=0
511     \]
512     where $\eta =R_{moving}-R_{o}$ is the free-surface $r$-anomaly in units of $%
513     r $. The above can be rearranged to yield, using Leibnitz's theorem:
514    
515     \begin{equation}
516     \frac{\partial \eta }{\partial t}+\mathbf{\nabla }_{h}\cdot
517     \int_{R_{fixed}}^{R_{moving}}\vec{\mathbf{v}}_{h}dr=0
518     \label{integralcontinuity}
519     \end{equation}
520    
521     Whether $\phi $ is pressure (ocean model, $p/\rho _{c}$) or geopotential
522     (atmospheric model), in (\ref{mtm-split}), the horizontal gradient term can
523     be written
524     \begin{equation}
525     \mathbf{\nabla }_{h}\phi _{s}=\mathbf{\nabla }_{h}b\eta \label{link}
526     \end{equation}
527     where $b$ is the buoyancy.
528    
529     In the hydrostatic limit ($\epsilon _{nh}=0$), Eqs(\ref{mtm-split}), (\ref
530     {integralcontinuity}) and (\ref{link}) can be solved by inverting a 2-d
531     elliptic equation for $\phi _{s}$ as described in section ?.?. Both `free
532     surface' and `rigid lid' approaches are available.
533    
534     \subsubsection{Non-hydrostatic pressure}
535    
536     Taking the horizontal divergence of (\ref{hor-mtm}) and adding $\frac{%
537     \partial }{\partial r}$ of (\ref{vertmtm}), invoking the continuity equation
538     (\ref{incompressible}), we deduce that:
539    
540     \begin{equation}
541     \nabla _{3}^{2}\phi _{nh}=\nabla .\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{%
542     \nabla }_{h}^{2}\phi _{s}+\mathbf{\nabla }^{2}\phi _{hyd}\right) =\nabla .%
543     \vec{\mathbf{F}} \label{3dinvert}
544     \end{equation}
545    
546     For a given rhs this 3-d elliptic equation must be inverted for $\phi _{nh}$
547     subject to appropriate choice of boundary conditions. This method is usually
548     called \textit{The Pressure Method} [Harlow and Welch, 1965; Williams, 1969;
549     Potter, 1976]. In the hydrostatic primitive equations case (\textbf{HPE}),
550     the 3-d problem does not need to be solved.
551    
552     \paragraph{Boundary Conditions}
553    
554     We apply the condition of no normal flow through all solid boundaries - the
555     coasts (in the ocean) and the bottom:
556    
557     \begin{equation}
558     \vec{\mathbf{v}}.\widehat{n}=0 \label{nonormalflow}
559     \end{equation}
560     where $\widehat{n}$ is a vector of unit length normal to the boundary. The
561     kinematic condition (\ref{nonormalflow}) is also applied to the vertical
562     velocity at $r=R_{moving}$. No-slip $\left( v_{T}=0\right) \ $or slip $%
563     \left( \partial v_{T}/\partial n=0\right) \ $conditions are employed on the
564     tangential component of velocity, $v_{T}$, at all solid boundaries,
565     depending on the form chosen for the dissipative terms in the momentum
566     equations - see below.
567    
568     Eq.(\ref{nonormalflow}) implies, making use of (\ref{mtm-split}), that:
569    
570     \begin{equation}
571     \widehat{n}.\nabla \phi _{nh}=\widehat{n}.\vec{\mathbf{F}}
572     \label{inhomneumann}
573     \end{equation}
574     where
575    
576     \[
577     \vec{\mathbf{F}}=\vec{\mathbf{G}}_{\vec{v}}-\left( \mathbf{\nabla }_{h}\phi
578     _{s}+\mathbf{\nabla }\phi _{hyd}\right)
579     \]
580     presenting inhomogeneous Neumann boundary conditions to the Elliptic problem
581     (\ref{3dinvert}). As shown, for example, by Williams (1969), one can exploit
582     classical 3D potential theory and, by introducing an appropriately chosen $%
583     \delta $-function sheet of `source-charge', replace the inhomogenous
584     boundary condition on pressure by a homogeneous one. The source term $rhs$
585     in (\ref{3dinvert}) is the divergence of the vector $\vec{\mathbf{F}}.$ By
586     simultaneously setting $
587     \begin{array}{l}
588     \widehat{n}.\vec{\mathbf{F}}
589     \end{array}
590     =0$\ and $\widehat{n}.\nabla \phi _{nh}=0\ $on the boundary the following
591     self-consistent but simpler homogenised Elliptic problem is obtained:
592    
593     \[
594     \nabla ^{2}\phi _{nh}=\nabla .\widetilde{\vec{\mathbf{F}}}\qquad
595     \]
596     where $\widetilde{\vec{\mathbf{F}}}$ is a modified $\vec{\mathbf{F}}$ such
597     that $\widetilde{\vec{\mathbf{F}}}.\widehat{n}=0$. As is implied by (\ref
598     {inhomneumann}) the modified boundary condition becomes:
599    
600     \begin{equation}
601     \widehat{n}.\nabla \phi _{nh}=0 \label{homneuman}
602     \end{equation}
603    
604     If the flow is `close' to hydrostatic balance then the 3-d inversion
605     converges rapidly because $\phi _{nh}\ $is then only a small correction to
606     the hydrostatic pressure field (see the discussion in Marshall et al, a,b).
607    
608     The solution $\phi _{nh}\ $to (\ref{3dinvert}) and (\ref{homneuman}) does
609     not vanish at $r=R_{moving}$, and so refines the pressure there.
610    
611     \subsection{Forcing/dissipation}
612    
613     \subsubsection{Forcing}
614    
615     The forcing terms $\mathcal{F}$ on the rhs of the equations are provided by
616     `physics packages' described in detail in section ?.?.
617    
618     \subsubsection{Dissipation}
619    
620     \paragraph{Momentum}
621    
622     Many forms of momentum dissipation are available in the model. Laplacian and
623     biharmonic frictions are commonly used:
624    
625     \[
626     D_{V}=A_{h}\nabla _{h}^{2}v+A_{v}\frac{\partial ^{2}v}{\partial z^{2}}%
627     +A_{4}\nabla _{h}^{4}v
628     \]
629     where $A_{h}$ and $A_{v}\ $are (constant) horizontal and vertical viscosity
630     coefficients and $A_{4}\ $is the horizontal coefficient for biharmonic
631     friction. These coefficients are the same for all velocity components.
632    
633     \paragraph{Tracers}
634    
635     The mixing terms for the temperature and salinity equations have a similar
636     form to that of momentum except that the diffusion tensor can be
637     non-diagonal and have varying coefficients. $\qquad $%
638     \[
639     D_{T,S}=\nabla .[\underline{\underline{K}}\nabla (T,S)]+K_{4}\nabla
640     _{h}^{4}(T,S)
641     \]
642     where $\underline{\underline{K}}\ $is the diffusion tensor and the $K_{4}\ $%
643     horizontal coefficient for biharmonic diffusion. In the simplest case where
644     the subgrid-scale fluxes of heat and salt are parameterized with constant
645     horizontal and vertical diffusion coefficients, $\underline{\underline{K}}$,
646     reduces to a diagonal matrix with constant coefficients:
647    
648     \[
649     \qquad \qquad \qquad \qquad K=\left(
650     \begin{array}{ccc}
651     K_{h} & 0 & 0 \\
652     0 & K_{h} & 0 \\
653     0 & 0 & K_{v}
654     \end{array}
655     \right) \qquad \qquad \qquad
656     \]
657     where $K_{h}\ $and $K_{v}\ $are the horizontal and vertical diffusion
658     coefficients. These coefficients are the same for all tracers (temperature,
659     salinity ... ).
660    
661     \subsection{Vector invariant form}
662    
663     For some purposes it is advantageous to write momentum advection in eq(\ref
664     {hor-mtm}) and (\ref{vertmtm}) in the (so-called) `vector invariant' form:
665    
666     \begin{equation}
667     \frac{D\vec{\mathbf{v}}}{Dt}=\frac{\partial \vec{\mathbf{v}}}{\partial t}%
668     +\left( \nabla \times \vec{\mathbf{v}}\right) \times \vec{\mathbf{v}}+\nabla
669     \left[ \frac{1}{2}(\vec{\mathbf{v}}\cdot \vec{\mathbf{v}})\right]
670     \label{vecinvariant}
671     \end{equation}
672     This permits alternative numerical treatments of the non-linear terms based
673     on their representation as a vorticity flux. Because gradients of coordinate
674     vectors no longer appear on the rhs of (\ref{vecinvariant}) (???), explicit
675     representation of the metric terms in (\ref{Gu}), (\ref{Gv}) and (\ref{Gw}),
676     can be avoided: information about the geometry is contained in the areas and
677     lengths of the volumes used to discretize the model.
678    
679     \subsection{Adjoint}
680    
681     ......

  ViewVC Help
Powered by ViewVC 1.1.22