| 1 |
cnh |
1.3 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/appendix_operators.tex,v 1.2 2001/09/27 01:57:17 cnh Exp $ |
| 2 |
cnh |
1.2 |
% $Name: $ |
| 3 |
adcroft |
1.1 |
|
| 4 |
|
|
\section{Appendix:OPERATORS} |
| 5 |
|
|
|
| 6 |
|
|
\subsection{Coordinate systems} |
| 7 |
|
|
|
| 8 |
|
|
\subsubsection{Spherical coordinates} |
| 9 |
|
|
|
| 10 |
|
|
In spherical coordinates, the velocity components in the zonal, meridional |
| 11 |
|
|
and vertical direction respectively, are given by (see Fig.2) : |
| 12 |
|
|
|
| 13 |
|
|
\[ |
| 14 |
|
|
u=r\cos \phi \frac{D\lambda }{Dt} |
| 15 |
|
|
\] |
| 16 |
|
|
|
| 17 |
|
|
\[ |
| 18 |
|
|
v=r\frac{D\phi }{Dt}\qquad |
| 19 |
|
|
\] |
| 20 |
|
|
$\qquad \qquad \qquad \qquad $ |
| 21 |
|
|
|
| 22 |
|
|
\[ |
| 23 |
|
|
\dot{r}=\frac{Dr}{Dt} |
| 24 |
|
|
\] |
| 25 |
|
|
|
| 26 |
|
|
Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial |
| 27 |
|
|
distance of the particle from the center of the earth, $\Omega $ is the |
| 28 |
|
|
angular speed of rotation of the Earth and $D/Dt$ is the total derivative. |
| 29 |
|
|
|
| 30 |
|
|
Fig.2. The spherical polar velocities $(u,v,\dot{r})$, the latitude is $\phi |
| 31 |
|
|
$ and the longitude $\lambda $. |
| 32 |
|
|
|
| 33 |
|
|
The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in |
| 34 |
|
|
spherical coordinates: |
| 35 |
|
|
|
| 36 |
|
|
\[ |
| 37 |
cnh |
1.2 |
\nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda } |
| 38 |
|
|
,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r} |
| 39 |
adcroft |
1.1 |
\right) |
| 40 |
|
|
\] |
| 41 |
|
|
|
| 42 |
|
|
\[ |
| 43 |
|
|
\nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial |
| 44 |
|
|
\lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\} |
| 45 |
|
|
+\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r} |
| 46 |
|
|
\] |