/[MITgcm]/manual/s_overview/appendix_operators.tex
ViewVC logotype

Annotation of /manual/s_overview/appendix_operators.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1.1.1 - (hide annotations) (download) (as text) (vendor branch)
Wed Aug 8 16:16:19 2001 UTC (23 years, 11 months ago) by adcroft
Branch: dummy
CVS Tags: Import
Changes since 1.1: +0 -0 lines
File MIME type: application/x-tex
Importing model documentation into CVS

1 adcroft 1.1 % $Header: $
2     % $Name: $
3    
4     \section{Appendix:OPERATORS}
5    
6     \subsection{Coordinate systems}
7    
8     \subsubsection{Spherical coordinates}
9    
10     In spherical coordinates, the velocity components in the zonal, meridional
11     and vertical direction respectively, are given by (see Fig.2) :
12    
13     \[
14     u=r\cos \phi \frac{D\lambda }{Dt}
15     \]
16    
17     \[
18     v=r\frac{D\phi }{Dt}\qquad
19     \]
20     $\qquad \qquad \qquad \qquad $
21    
22     \[
23     \dot{r}=\frac{Dr}{Dt}
24     \]
25    
26     Here $\phi $ is the latitude, $\lambda $ the longitude, $r$ the radial
27     distance of the particle from the center of the earth, $\Omega $ is the
28     angular speed of rotation of the Earth and $D/Dt$ is the total derivative.
29    
30     Fig.2. The spherical polar velocities $(u,v,\dot{r})$, the latitude is $\phi
31     $ and the longitude $\lambda $.
32    
33     The `grad' ($\nabla $) and `div' ($\nabla $.) operators are defined by, in
34     spherical coordinates:
35    
36     \[
37     \nabla \equiv \left( \frac{1}{r\cos \phi }\frac{\partial }{\partial \lambda }%
38     ,\frac{1}{r}\frac{\partial }{\partial \phi },\frac{\partial }{\partial r}%
39     \right)
40     \]
41    
42     \[
43     \nabla .v\equiv \frac{1}{r\cos \phi }\left\{ \frac{\partial u}{\partial
44     \lambda }+\frac{\partial }{\partial \phi }\left( v\cos \phi \right) \right\}
45     +\frac{1}{r^{2}}\frac{\partial \left( r^{2}\dot{r}\right) }{\partial r}
46     \]

  ViewVC Help
Powered by ViewVC 1.1.22