/[MITgcm]/manual/s_overview/appendix_ocean.tex
ViewVC logotype

Annotation of /manual/s_overview/appendix_ocean.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (hide annotations) (download) (as text)
Wed Oct 10 16:48:38 2001 UTC (22 years, 6 months ago) by cnh
Branch: MAIN
CVS Tags: HEAD
Changes since 1.3: +1 -1 lines
File MIME type: application/x-tex
FILE REMOVED
Updates to part1 for figures

1 cnh 1.4 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/appendix_ocean.tex,v 1.3 2001/09/27 01:57:17 cnh Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4     \section{Appendix OCEAN}
5    
6     \subsection{Equations of motion for the ocean}
7    
8     We review here the method by which the standard (Boussinesq, incompressible)
9     HPE's for the ocean written in z-coordinates are obtained. The
10     non-Boussinesq equations for oceanic motion are:
11     \begin{eqnarray}
12 cnh 1.3 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
13 adcroft 1.1 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
14 cnh 1.2 \\
15 adcroft 1.1 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
16 cnh 1.2 &=&\epsilon _{nh}\mathcal{F}_{w} \\
17 cnh 1.3 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
18 cnh 1.2 _{h}+\frac{\partial w}{\partial z} &=&0 \\
19     \rho &=&\rho (\theta ,S,p) \\
20     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\
21     \frac{DS}{Dt} &=&\mathcal{Q}_{s}
22     \label{eq:non-boussinesq}
23 adcroft 1.1 \end{eqnarray}
24     These equations permit acoustics modes, inertia-gravity waves,
25     non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
26     mode. As written, they cannot be integrated forward consistently - if we
27     step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
28     consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
29     {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
30     therefore necessary to manipulate the system as follows. Differentiating the
31     EOS (equation of state) gives:
32    
33     \begin{equation}
34     \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
35     _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
36     _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
37     _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
38     \end{equation}
39    
40     Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
41     reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref
42     {eq-zns-cont} gives:
43     \begin{equation}
44 cnh 1.3 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
45 adcroft 1.1 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
46     \end{equation}
47     where we have used an approximation sign to indicate that we have assumed
48     adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
49     Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
50     can be explicitly integrated forward:
51     \begin{eqnarray}
52 cnh 1.3 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
53 adcroft 1.1 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
54     \label{eq-cns-hmom} \\
55     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
56     &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
57 cnh 1.3 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
58 adcroft 1.1 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
59     \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
60     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
61     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
62     \end{eqnarray}
63    
64     \subsubsection{Compressible z-coordinate equations}
65    
66     Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
67     wherever it appears in a product (ie. non-linear term) - this is the
68     `Boussinesq assumption'. The only term that then retains the full variation
69     in $\rho $ is the gravitational acceleration:
70     \begin{eqnarray}
71 cnh 1.3 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
72 adcroft 1.1 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
73     \label{eq-zcb-hmom} \\
74 cnh 1.3 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
75 adcroft 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
76     \label{eq-zcb-hydro} \\
77 cnh 1.3 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
78 adcroft 1.1 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
79     \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
80     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
81     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
82     \end{eqnarray}
83     These equations still retain acoustic modes. But, because the
84     ``compressible'' terms are linearized, the pressure equation \ref
85     {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
86     term appears as a Helmholtz term in the non-hydrostatic pressure equation).
87     These are the \emph{truly} compressible Boussinesq equations. Note that the
88     EOS must have the same pressure dependency as the linearized pressure term,
89 cnh 1.3 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
90 adcroft 1.1 c_{s}^{2}}$, for consistency.
91    
92     \subsubsection{`Anelastic' z-coordinate equations}
93    
94     The anelastic approximation filters the acoustic mode by removing the
95 cnh 1.3 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
96     ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
97 adcroft 1.1 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
98     continuity and EOS. A better solution is to change the dependency on
99     pressure in the EOS by splitting the pressure into a reference function of
100     height and a perturbation:
101     \[
102     \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
103     \]
104     Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
105     differentiating the EOS, the continuity equation then becomes:
106     \[
107 cnh 1.3 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
108     Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
109 adcroft 1.1 \frac{\partial w}{\partial z}=0
110     \]
111     If the time- and space-scales of the motions of interest are longer than
112 cnh 1.3 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
113 adcroft 1.1 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
114 cnh 1.3 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
115 adcroft 1.1 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
116     ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
117     _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
118     and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
119     anelastic continuity equation:
120     \begin{equation}
121 cnh 1.3 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
122 adcroft 1.1 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
123     \end{equation}
124     A slightly different route leads to the quasi-Boussinesq continuity equation
125 cnh 1.3 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
126     \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
127 adcroft 1.1 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
128     \begin{equation}
129 cnh 1.3 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
130 adcroft 1.1 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
131     \end{equation}
132     Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
133     equation if:
134     \begin{equation}
135     \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
136     \end{equation}
137     Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
138 cnh 1.3 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
139 adcroft 1.1 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
140     full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
141     then:
142     \begin{eqnarray}
143 cnh 1.3 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
144 adcroft 1.1 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
145     \label{eq-zab-hmom} \\
146 cnh 1.3 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
147 adcroft 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
148     \label{eq-zab-hydro} \\
149 cnh 1.3 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
150 adcroft 1.1 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
151     \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
152     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
153     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
154     \end{eqnarray}
155    
156     \subsubsection{Incompressible z-coordinate equations}
157    
158     Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
159     technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
160     yield the ``truly'' incompressible Boussinesq equations:
161     \begin{eqnarray}
162 cnh 1.3 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
163 adcroft 1.1 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
164     \label{eq-ztb-hmom} \\
165 cnh 1.3 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
166 adcroft 1.1 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
167     \label{eq-ztb-hydro} \\
168     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
169     &=&0 \label{eq-ztb-cont} \\
170     \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
171     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
172     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
173     \end{eqnarray}
174     where $\rho _{c}$ is a constant reference density of water.
175    
176     \subsubsection{Compressible non-divergent equations}
177    
178     The above ``incompressible'' equations are incompressible in both the flow
179     and the density. In many oceanic applications, however, it is important to
180     retain compressibility effects in the density. To do this we must split the
181     density thus:
182     \[
183     \rho =\rho _{o}+\rho ^{\prime }
184     \]
185     We then assert that variations with depth of $\rho _{o}$ are unimportant
186     while the compressible effects in $\rho ^{\prime }$ are:
187     \[
188     \rho _{o}=\rho _{c}
189     \]
190     \[
191     \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
192     \]
193     This then yields what we can call the semi-compressible Boussinesq
194     equations:
195     \begin{eqnarray}
196 cnh 1.3 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
197     _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
198 cnh 1.2 \mathcal{F}}} \label{eq:ocean-mom} \\
199 adcroft 1.1 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
200     _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
201 cnh 1.2 \label{eq:ocean-wmom} \\
202 adcroft 1.1 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
203 cnh 1.2 &=&0 \label{eq:ocean-cont} \\
204     \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos} \\
205     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
206     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
207 adcroft 1.1 \end{eqnarray}
208     Note that the hydrostatic pressure of the resting fluid, including that
209     associated with $\rho _{c}$, is subtracted out since it has no effect on the
210     dynamics.
211    
212     Though necessary, the assumptions that go into these equations are messy
213     since we essentially assume a different EOS for the reference density and
214     the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
215     _{nh}=0$ form of these equations that are used throughout the ocean modeling
216     community and referred to as the primitive equations (HPE).

  ViewVC Help
Powered by ViewVC 1.1.22