/[MITgcm]/manual/s_overview/appendix_ocean.tex
ViewVC logotype

Contents of /manual/s_overview/appendix_ocean.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (show annotations) (download) (as text)
Wed Oct 10 16:48:38 2001 UTC (22 years, 7 months ago) by cnh
Branch: MAIN
CVS Tags: HEAD
Changes since 1.3: +1 -1 lines
File MIME type: application/x-tex
FILE REMOVED
Updates to part1 for figures

1 % $Header: /u/u0/gcmpack/mitgcmdoc/part1/appendix_ocean.tex,v 1.3 2001/09/27 01:57:17 cnh Exp $
2 % $Name: $
3
4 \section{Appendix OCEAN}
5
6 \subsection{Equations of motion for the ocean}
7
8 We review here the method by which the standard (Boussinesq, incompressible)
9 HPE's for the ocean written in z-coordinates are obtained. The
10 non-Boussinesq equations for oceanic motion are:
11 \begin{eqnarray}
12 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
13 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
14 \\
15 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
16 &=&\epsilon _{nh}\mathcal{F}_{w} \\
17 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}
18 _{h}+\frac{\partial w}{\partial z} &=&0 \\
19 \rho &=&\rho (\theta ,S,p) \\
20 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\
21 \frac{DS}{Dt} &=&\mathcal{Q}_{s}
22 \label{eq:non-boussinesq}
23 \end{eqnarray}
24 These equations permit acoustics modes, inertia-gravity waves,
25 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
26 mode. As written, they cannot be integrated forward consistently - if we
27 step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
28 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
29 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
30 therefore necessary to manipulate the system as follows. Differentiating the
31 EOS (equation of state) gives:
32
33 \begin{equation}
34 \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
35 _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
36 _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
37 _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
38 \end{equation}
39
40 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
41 reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref
42 {eq-zns-cont} gives:
43 \begin{equation}
44 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
45 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
46 \end{equation}
47 where we have used an approximation sign to indicate that we have assumed
48 adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
49 Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
50 can be explicitly integrated forward:
51 \begin{eqnarray}
52 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
53 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
54 \label{eq-cns-hmom} \\
55 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
56 &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
57 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{
58 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
59 \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
60 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
61 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
62 \end{eqnarray}
63
64 \subsubsection{Compressible z-coordinate equations}
65
66 Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
67 wherever it appears in a product (ie. non-linear term) - this is the
68 `Boussinesq assumption'. The only term that then retains the full variation
69 in $\rho $ is the gravitational acceleration:
70 \begin{eqnarray}
71 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
72 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
73 \label{eq-zcb-hmom} \\
74 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
75 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
76 \label{eq-zcb-hydro} \\
77 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{
78 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
79 \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
80 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
81 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
82 \end{eqnarray}
83 These equations still retain acoustic modes. But, because the
84 ``compressible'' terms are linearized, the pressure equation \ref
85 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
86 term appears as a Helmholtz term in the non-hydrostatic pressure equation).
87 These are the \emph{truly} compressible Boussinesq equations. Note that the
88 EOS must have the same pressure dependency as the linearized pressure term,
89 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{
90 c_{s}^{2}}$, for consistency.
91
92 \subsubsection{`Anelastic' z-coordinate equations}
93
94 The anelastic approximation filters the acoustic mode by removing the
95 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}
96 ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}
97 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
98 continuity and EOS. A better solution is to change the dependency on
99 pressure in the EOS by splitting the pressure into a reference function of
100 height and a perturbation:
101 \[
102 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
103 \]
104 Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
105 differentiating the EOS, the continuity equation then becomes:
106 \[
107 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{
108 Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+
109 \frac{\partial w}{\partial z}=0
110 \]
111 If the time- and space-scales of the motions of interest are longer than
112 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},
113 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
114 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{
115 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
116 ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
117 _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
118 and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
119 anelastic continuity equation:
120 \begin{equation}
121 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-
122 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
123 \end{equation}
124 A slightly different route leads to the quasi-Boussinesq continuity equation
125 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+
126 \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }
127 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
128 \begin{equation}
129 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
130 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
131 \end{equation}
132 Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
133 equation if:
134 \begin{equation}
135 \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
136 \end{equation}
137 Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
138 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{
139 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
140 full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
141 then:
142 \begin{eqnarray}
143 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
144 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
145 \label{eq-zab-hmom} \\
146 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}
147 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
148 \label{eq-zab-hydro} \\
149 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{
150 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
151 \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
152 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
153 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
154 \end{eqnarray}
155
156 \subsubsection{Incompressible z-coordinate equations}
157
158 Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
159 technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
160 yield the ``truly'' incompressible Boussinesq equations:
161 \begin{eqnarray}
162 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
163 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
164 \label{eq-ztb-hmom} \\
165 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}
166 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
167 \label{eq-ztb-hydro} \\
168 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
169 &=&0 \label{eq-ztb-cont} \\
170 \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
171 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
172 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
173 \end{eqnarray}
174 where $\rho _{c}$ is a constant reference density of water.
175
176 \subsubsection{Compressible non-divergent equations}
177
178 The above ``incompressible'' equations are incompressible in both the flow
179 and the density. In many oceanic applications, however, it is important to
180 retain compressibility effects in the density. To do this we must split the
181 density thus:
182 \[
183 \rho =\rho _{o}+\rho ^{\prime }
184 \]
185 We then assert that variations with depth of $\rho _{o}$ are unimportant
186 while the compressible effects in $\rho ^{\prime }$ are:
187 \[
188 \rho _{o}=\rho _{c}
189 \]
190 \[
191 \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
192 \]
193 This then yields what we can call the semi-compressible Boussinesq
194 equations:
195 \begin{eqnarray}
196 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}
197 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{
198 \mathcal{F}}} \label{eq:ocean-mom} \\
199 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
200 _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
201 \label{eq:ocean-wmom} \\
202 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
203 &=&0 \label{eq:ocean-cont} \\
204 \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos} \\
205 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\
206 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt}
207 \end{eqnarray}
208 Note that the hydrostatic pressure of the resting fluid, including that
209 associated with $\rho _{c}$, is subtracted out since it has no effect on the
210 dynamics.
211
212 Though necessary, the assumptions that go into these equations are messy
213 since we essentially assume a different EOS for the reference density and
214 the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
215 _{nh}=0$ form of these equations that are used throughout the ocean modeling
216 community and referred to as the primitive equations (HPE).

  ViewVC Help
Powered by ViewVC 1.1.22