/[MITgcm]/manual/s_overview/appendix_ocean.tex
ViewVC logotype

Contents of /manual/s_overview/appendix_ocean.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download) (as text)
Wed Aug 8 16:16:19 2001 UTC (22 years, 9 months ago) by adcroft
Branch: MAIN
Branch point for: dummy
File MIME type: application/x-tex
Initial revision

1 % $Header: $
2 % $Name: $
3
4 \section{Appendix OCEAN}
5
6 \subsection{Equations of motion for the ocean}
7
8 We review here the method by which the standard (Boussinesq, incompressible)
9 HPE's for the ocean written in z-coordinates are obtained. The
10 non-Boussinesq equations for oceanic motion are:
11 \begin{eqnarray}
12 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
13 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
14 \label{eq-zns-hmom} \\
15 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
16 &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-zns-hydro} \\
17 \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}%
18 _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont} \\
19 \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos} \\
20 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat} \\
21 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt}
22 \end{eqnarray}
23 These equations permit acoustics modes, inertia-gravity waves,
24 non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
25 mode. As written, they cannot be integrated forward consistently - if we
26 step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
27 consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
28 {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
29 therefore necessary to manipulate the system as follows. Differentiating the
30 EOS (equation of state) gives:
31
32 \begin{equation}
33 \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
34 _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
35 _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
36 _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
37 \end{equation}
38
39 Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
40 reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref
41 {eq-zns-cont} gives:
42 \begin{equation}
43 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
44 v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
45 \end{equation}
46 where we have used an approximation sign to indicate that we have assumed
47 adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
48 Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
49 can be explicitly integrated forward:
50 \begin{eqnarray}
51 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
52 _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
53 \label{eq-cns-hmom} \\
54 \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
55 &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
56 \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
57 v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
58 \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
59 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
60 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
61 \end{eqnarray}
62
63 \subsubsection{Compressible z-coordinate equations}
64
65 Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
66 wherever it appears in a product (ie. non-linear term) - this is the
67 `Boussinesq assumption'. The only term that then retains the full variation
68 in $\rho $ is the gravitational acceleration:
69 \begin{eqnarray}
70 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
71 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
72 \label{eq-zcb-hmom} \\
73 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
74 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
75 \label{eq-zcb-hydro} \\
76 \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{%
77 \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
78 \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
79 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
80 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
81 \end{eqnarray}
82 These equations still retain acoustic modes. But, because the
83 ``compressible'' terms are linearized, the pressure equation \ref
84 {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
85 term appears as a Helmholtz term in the non-hydrostatic pressure equation).
86 These are the \emph{truly} compressible Boussinesq equations. Note that the
87 EOS must have the same pressure dependency as the linearized pressure term,
88 ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{%
89 c_{s}^{2}}$, for consistency.
90
91 \subsubsection{`Anelastic' z-coordinate equations}
92
93 The anelastic approximation filters the acoustic mode by removing the
94 time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}%
95 ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}%
96 \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
97 continuity and EOS. A better solution is to change the dependency on
98 pressure in the EOS by splitting the pressure into a reference function of
99 height and a perturbation:
100 \[
101 \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
102 \]
103 Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
104 differentiating the EOS, the continuity equation then becomes:
105 \[
106 \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{%
107 Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+%
108 \frac{\partial w}{\partial z}=0
109 \]
110 If the time- and space-scales of the motions of interest are longer than
111 those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},%
112 \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
113 $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{%
114 Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
115 ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
116 _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
117 and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
118 anelastic continuity equation:
119 \begin{equation}
120 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-%
121 \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
122 \end{equation}
123 A slightly different route leads to the quasi-Boussinesq continuity equation
124 where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+%
125 \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }%
126 _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
127 \begin{equation}
128 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
129 \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
130 \end{equation}
131 Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
132 equation if:
133 \begin{equation}
134 \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
135 \end{equation}
136 Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
137 and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{%
138 g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
139 full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
140 then:
141 \begin{eqnarray}
142 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
143 _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
144 \label{eq-zab-hmom} \\
145 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
146 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
147 \label{eq-zab-hydro} \\
148 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
149 \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
150 \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
151 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
152 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
153 \end{eqnarray}
154
155 \subsubsection{Incompressible z-coordinate equations}
156
157 Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
158 technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
159 yield the ``truly'' incompressible Boussinesq equations:
160 \begin{eqnarray}
161 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
162 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
163 \label{eq-ztb-hmom} \\
164 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}%
165 \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
166 \label{eq-ztb-hydro} \\
167 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
168 &=&0 \label{eq-ztb-cont} \\
169 \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
170 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
171 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
172 \end{eqnarray}
173 where $\rho _{c}$ is a constant reference density of water.
174
175 \subsubsection{Compressible non-divergent equations}
176
177 The above ``incompressible'' equations are incompressible in both the flow
178 and the density. In many oceanic applications, however, it is important to
179 retain compressibility effects in the density. To do this we must split the
180 density thus:
181 \[
182 \rho =\rho _{o}+\rho ^{\prime }
183 \]
184 We then assert that variations with depth of $\rho _{o}$ are unimportant
185 while the compressible effects in $\rho ^{\prime }$ are:
186 \[
187 \rho _{o}=\rho _{c}
188 \]
189 \[
190 \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
191 \]
192 This then yields what we can call the semi-compressible Boussinesq
193 equations:
194 \begin{eqnarray}
195 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
196 _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{%
197 \mathcal{F}}} \label{eq-zpe-hmom} \\
198 \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
199 _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
200 \label{eq-zpe-hydro} \\
201 \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
202 &=&0 \label{eq-zpe-cont} \\
203 \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq-zpe-eos} \\
204 \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zpe-heat} \\
205 \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zpe-salt}
206 \end{eqnarray}
207 Note that the hydrostatic pressure of the resting fluid, including that
208 associated with $\rho _{c}$, is subtracted out since it has no effect on the
209 dynamics.
210
211 Though necessary, the assumptions that go into these equations are messy
212 since we essentially assume a different EOS for the reference density and
213 the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
214 _{nh}=0$ form of these equations that are used throughout the ocean modeling
215 community and referred to as the primitive equations (HPE).

  ViewVC Help
Powered by ViewVC 1.1.22