11 |
\begin{eqnarray} |
\begin{eqnarray} |
12 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
13 |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
14 |
\label{eq-zns-hmom} \\ |
\\ |
15 |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
16 |
&=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-zns-hydro} \\ |
&=&\epsilon _{nh}\mathcal{F}_{w} \\ |
17 |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}% |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}% |
18 |
_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont} \\ |
_{h}+\frac{\partial w}{\partial z} &=&0 \\ |
19 |
\rho &=&\rho (\theta ,S,p) \label{eq-zns-eos} \\ |
\rho &=&\rho (\theta ,S,p) \\ |
20 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat} \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \\ |
21 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt} |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} |
22 |
|
\label{eq:non-boussinesq} |
23 |
\end{eqnarray} |
\end{eqnarray} |
24 |
These equations permit acoustics modes, inertia-gravity waves, |
These equations permit acoustics modes, inertia-gravity waves, |
25 |
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline |
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline |
195 |
\begin{eqnarray} |
\begin{eqnarray} |
196 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
197 |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{% |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{% |
198 |
\mathcal{F}}} \label{eq-zpe-hmom} \\ |
\mathcal{F}}} \label{eq:ocean-mom} \\ |
199 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho |
200 |
_{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
_{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
201 |
\label{eq-zpe-hydro} \\ |
\label{eq:ocean-wmom} \\ |
202 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} |
203 |
&=&0 \label{eq-zpe-cont} \\ |
&=&0 \label{eq:ocean-cont} \\ |
204 |
\rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq-zpe-eos} \\ |
\rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq:ocean-eos} \\ |
205 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zpe-heat} \\ |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq:ocean-theta} \\ |
206 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zpe-salt} |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq:ocean-salt} |
207 |
\end{eqnarray} |
\end{eqnarray} |
208 |
Note that the hydrostatic pressure of the resting fluid, including that |
Note that the hydrostatic pressure of the resting fluid, including that |
209 |
associated with $\rho _{c}$, is subtracted out since it has no effect on the |
associated with $\rho _{c}$, is subtracted out since it has no effect on the |