| 1 |
% $Header: $ |
| 2 |
% $Name: $ |
| 3 |
|
| 4 |
\section{Appendix OCEAN} |
| 5 |
|
| 6 |
\subsection{Equations of motion for the ocean} |
| 7 |
|
| 8 |
We review here the method by which the standard (Boussinesq, incompressible) |
| 9 |
HPE's for the ocean written in z-coordinates are obtained. The |
| 10 |
non-Boussinesq equations for oceanic motion are: |
| 11 |
\begin{eqnarray} |
| 12 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
| 13 |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 14 |
\label{eq-zns-hmom} \\ |
| 15 |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
| 16 |
&=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-zns-hydro} \\ |
| 17 |
\frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}% |
| 18 |
_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont} \\ |
| 19 |
\rho &=&\rho (\theta ,S,p) \label{eq-zns-eos} \\ |
| 20 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat} \\ |
| 21 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt} |
| 22 |
\end{eqnarray} |
| 23 |
These equations permit acoustics modes, inertia-gravity waves, |
| 24 |
non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline |
| 25 |
mode. As written, they cannot be integrated forward consistently - if we |
| 26 |
step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be |
| 27 |
consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref |
| 28 |
{eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is |
| 29 |
therefore necessary to manipulate the system as follows. Differentiating the |
| 30 |
EOS (equation of state) gives: |
| 31 |
|
| 32 |
\begin{equation} |
| 33 |
\frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right| |
| 34 |
_{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right| |
| 35 |
_{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right| |
| 36 |
_{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion} |
| 37 |
\end{equation} |
| 38 |
|
| 39 |
Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the |
| 40 |
reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref |
| 41 |
{eq-zns-cont} gives: |
| 42 |
\begin{equation} |
| 43 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{% |
| 44 |
v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure} |
| 45 |
\end{equation} |
| 46 |
where we have used an approximation sign to indicate that we have assumed |
| 47 |
adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$. |
| 48 |
Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that |
| 49 |
can be explicitly integrated forward: |
| 50 |
\begin{eqnarray} |
| 51 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
| 52 |
_{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 53 |
\label{eq-cns-hmom} \\ |
| 54 |
\epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z} |
| 55 |
&=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\ |
| 56 |
\frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{% |
| 57 |
v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\ |
| 58 |
\rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\ |
| 59 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\ |
| 60 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt} |
| 61 |
\end{eqnarray} |
| 62 |
|
| 63 |
\subsubsection{Compressible z-coordinate equations} |
| 64 |
|
| 65 |
Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$ |
| 66 |
wherever it appears in a product (ie. non-linear term) - this is the |
| 67 |
`Boussinesq assumption'. The only term that then retains the full variation |
| 68 |
in $\rho $ is the gravitational acceleration: |
| 69 |
\begin{eqnarray} |
| 70 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
| 71 |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 72 |
\label{eq-zcb-hmom} \\ |
| 73 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}% |
| 74 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 75 |
\label{eq-zcb-hydro} \\ |
| 76 |
\frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{% |
| 77 |
\mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\ |
| 78 |
\rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\ |
| 79 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\ |
| 80 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt} |
| 81 |
\end{eqnarray} |
| 82 |
These equations still retain acoustic modes. But, because the |
| 83 |
``compressible'' terms are linearized, the pressure equation \ref |
| 84 |
{eq-zcb-cont} can be integrated implicitly with ease (the time-dependent |
| 85 |
term appears as a Helmholtz term in the non-hydrostatic pressure equation). |
| 86 |
These are the \emph{truly} compressible Boussinesq equations. Note that the |
| 87 |
EOS must have the same pressure dependency as the linearized pressure term, |
| 88 |
ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{% |
| 89 |
c_{s}^{2}}$, for consistency. |
| 90 |
|
| 91 |
\subsubsection{`Anelastic' z-coordinate equations} |
| 92 |
|
| 93 |
The anelastic approximation filters the acoustic mode by removing the |
| 94 |
time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}% |
| 95 |
). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}% |
| 96 |
\frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between |
| 97 |
continuity and EOS. A better solution is to change the dependency on |
| 98 |
pressure in the EOS by splitting the pressure into a reference function of |
| 99 |
height and a perturbation: |
| 100 |
\[ |
| 101 |
\rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime }) |
| 102 |
\] |
| 103 |
Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from |
| 104 |
differentiating the EOS, the continuity equation then becomes: |
| 105 |
\[ |
| 106 |
\frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{% |
| 107 |
Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+% |
| 108 |
\frac{\partial w}{\partial z}=0 |
| 109 |
\] |
| 110 |
If the time- and space-scales of the motions of interest are longer than |
| 111 |
those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},% |
| 112 |
\mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and |
| 113 |
$\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{% |
| 114 |
Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta |
| 115 |
,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon |
| 116 |
_{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation |
| 117 |
and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the |
| 118 |
anelastic continuity equation: |
| 119 |
\begin{equation} |
| 120 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-% |
| 121 |
\frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1} |
| 122 |
\end{equation} |
| 123 |
A slightly different route leads to the quasi-Boussinesq continuity equation |
| 124 |
where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+% |
| 125 |
\mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }% |
| 126 |
_{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding: |
| 127 |
\begin{equation} |
| 128 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{% |
| 129 |
\partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2} |
| 130 |
\end{equation} |
| 131 |
Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same |
| 132 |
equation if: |
| 133 |
\begin{equation} |
| 134 |
\frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}} |
| 135 |
\end{equation} |
| 136 |
Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$ |
| 137 |
and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{% |
| 138 |
g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The |
| 139 |
full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are |
| 140 |
then: |
| 141 |
\begin{eqnarray} |
| 142 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
| 143 |
_{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 144 |
\label{eq-zab-hmom} \\ |
| 145 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}% |
| 146 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 147 |
\label{eq-zab-hydro} \\ |
| 148 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{% |
| 149 |
\partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\ |
| 150 |
\rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\ |
| 151 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\ |
| 152 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt} |
| 153 |
\end{eqnarray} |
| 154 |
|
| 155 |
\subsubsection{Incompressible z-coordinate equations} |
| 156 |
|
| 157 |
Here, the objective is to drop the depth dependence of $\rho _{o}$ and so, |
| 158 |
technically, to also remove the dependence of $\rho $ on $p_{o}$. This would |
| 159 |
yield the ``truly'' incompressible Boussinesq equations: |
| 160 |
\begin{eqnarray} |
| 161 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
| 162 |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}} |
| 163 |
\label{eq-ztb-hmom} \\ |
| 164 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}% |
| 165 |
\frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 166 |
\label{eq-ztb-hydro} \\ |
| 167 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} |
| 168 |
&=&0 \label{eq-ztb-cont} \\ |
| 169 |
\rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\ |
| 170 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\ |
| 171 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt} |
| 172 |
\end{eqnarray} |
| 173 |
where $\rho _{c}$ is a constant reference density of water. |
| 174 |
|
| 175 |
\subsubsection{Compressible non-divergent equations} |
| 176 |
|
| 177 |
The above ``incompressible'' equations are incompressible in both the flow |
| 178 |
and the density. In many oceanic applications, however, it is important to |
| 179 |
retain compressibility effects in the density. To do this we must split the |
| 180 |
density thus: |
| 181 |
\[ |
| 182 |
\rho =\rho _{o}+\rho ^{\prime } |
| 183 |
\] |
| 184 |
We then assert that variations with depth of $\rho _{o}$ are unimportant |
| 185 |
while the compressible effects in $\rho ^{\prime }$ are: |
| 186 |
\[ |
| 187 |
\rho _{o}=\rho _{c} |
| 188 |
\] |
| 189 |
\[ |
| 190 |
\rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o} |
| 191 |
\] |
| 192 |
This then yields what we can call the semi-compressible Boussinesq |
| 193 |
equations: |
| 194 |
\begin{eqnarray} |
| 195 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
| 196 |
_{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{% |
| 197 |
\mathcal{F}}} \label{eq-zpe-hmom} \\ |
| 198 |
\epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho |
| 199 |
_{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w} |
| 200 |
\label{eq-zpe-hydro} \\ |
| 201 |
\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z} |
| 202 |
&=&0 \label{eq-zpe-cont} \\ |
| 203 |
\rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq-zpe-eos} \\ |
| 204 |
\frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zpe-heat} \\ |
| 205 |
\frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zpe-salt} |
| 206 |
\end{eqnarray} |
| 207 |
Note that the hydrostatic pressure of the resting fluid, including that |
| 208 |
associated with $\rho _{c}$, is subtracted out since it has no effect on the |
| 209 |
dynamics. |
| 210 |
|
| 211 |
Though necessary, the assumptions that go into these equations are messy |
| 212 |
since we essentially assume a different EOS for the reference density and |
| 213 |
the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon |
| 214 |
_{nh}=0$ form of these equations that are used throughout the ocean modeling |
| 215 |
community and referred to as the primitive equations (HPE). |