/[MITgcm]/manual/s_overview/appendix_ocean.tex
ViewVC logotype

Annotation of /manual/s_overview/appendix_ocean.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download) (as text)
Wed Aug 8 16:16:19 2001 UTC (23 years, 11 months ago) by adcroft
Branch: MAIN
Branch point for: dummy
File MIME type: application/x-tex
Initial revision

1 adcroft 1.1 % $Header: $
2     % $Name: $
3    
4     \section{Appendix OCEAN}
5    
6     \subsection{Equations of motion for the ocean}
7    
8     We review here the method by which the standard (Boussinesq, incompressible)
9     HPE's for the ocean written in z-coordinates are obtained. The
10     non-Boussinesq equations for oceanic motion are:
11     \begin{eqnarray}
12     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
13     _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
14     \label{eq-zns-hmom} \\
15     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
16     &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-zns-hydro} \\
17     \frac{1}{\rho }\frac{D\rho }{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}%
18     _{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zns-cont} \\
19     \rho &=&\rho (\theta ,S,p) \label{eq-zns-eos} \\
20     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zns-heat} \\
21     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zns-salt}
22     \end{eqnarray}
23     These equations permit acoustics modes, inertia-gravity waves,
24     non-hydrostatic motions, a geostrophic (Rossby) mode and a thermo-haline
25     mode. As written, they cannot be integrated forward consistently - if we
26     step $\rho $ forward in (\ref{eq-zns-cont}), the answer will not be
27     consistent with that obtained by stepping (\ref{eq-zns-heat}) and (\ref
28     {eq-zns-salt}) and then using (\ref{eq-zns-eos}) to yield $\rho $. It is
29     therefore necessary to manipulate the system as follows. Differentiating the
30     EOS (equation of state) gives:
31    
32     \begin{equation}
33     \frac{D\rho }{Dt}=\left. \frac{\partial \rho }{\partial \theta }\right|
34     _{S,p}\frac{D\theta }{Dt}+\left. \frac{\partial \rho }{\partial S}\right|
35     _{\theta ,p}\frac{DS}{Dt}+\left. \frac{\partial \rho }{\partial p}\right|
36     _{\theta ,S}\frac{Dp}{Dt} \label{EOSexpansion}
37     \end{equation}
38    
39     Note that $\frac{\partial \rho }{\partial p}=\frac{1}{c_{s}^{2}}$ is the
40     reciprocal of the sound speed ($c_{s}$) squared. Substituting into \ref
41     {eq-zns-cont} gives:
42     \begin{equation}
43     \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
44     v}}+\partial _{z}w\approx 0 \label{eq-zns-pressure}
45     \end{equation}
46     where we have used an approximation sign to indicate that we have assumed
47     adiabatic motion, dropping the $\frac{D\theta }{Dt}$ and $\frac{DS}{Dt}$.
48     Replacing \ref{eq-zns-cont} with \ref{eq-zns-pressure} yields a system that
49     can be explicitly integrated forward:
50     \begin{eqnarray}
51     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
52     _{h}+\frac{1}{\rho }\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
53     \label{eq-cns-hmom} \\
54     \epsilon _{nh}\frac{Dw}{Dt}+g+\frac{1}{\rho }\frac{\partial p}{\partial z}
55     &=&\epsilon _{nh}\mathcal{F}_{w} \label{eq-cns-hydro} \\
56     \frac{1}{\rho c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{\mathbf{%
57     v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-cns-cont} \\
58     \rho &=&\rho (\theta ,S,p) \label{eq-cns-eos} \\
59     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-cns-heat} \\
60     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-cns-salt}
61     \end{eqnarray}
62    
63     \subsubsection{Compressible z-coordinate equations}
64    
65     Here we linearize the acoustic modes by replacing $\rho $ with $\rho _{o}(z)$
66     wherever it appears in a product (ie. non-linear term) - this is the
67     `Boussinesq assumption'. The only term that then retains the full variation
68     in $\rho $ is the gravitational acceleration:
69     \begin{eqnarray}
70     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
71     _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
72     \label{eq-zcb-hmom} \\
73     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
74     \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
75     \label{eq-zcb-hydro} \\
76     \frac{1}{\rho _{o}c_{s}^{2}}\frac{Dp}{Dt}+\mathbf{\nabla }_{z}\cdot \vec{%
77     \mathbf{v}}_{h}+\frac{\partial w}{\partial z} &=&0 \label{eq-zcb-cont} \\
78     \rho &=&\rho (\theta ,S,p) \label{eq-zcb-eos} \\
79     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zcb-heat} \\
80     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zcb-salt}
81     \end{eqnarray}
82     These equations still retain acoustic modes. But, because the
83     ``compressible'' terms are linearized, the pressure equation \ref
84     {eq-zcb-cont} can be integrated implicitly with ease (the time-dependent
85     term appears as a Helmholtz term in the non-hydrostatic pressure equation).
86     These are the \emph{truly} compressible Boussinesq equations. Note that the
87     EOS must have the same pressure dependency as the linearized pressure term,
88     ie. $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}=\frac{1}{%
89     c_{s}^{2}}$, for consistency.
90    
91     \subsubsection{`Anelastic' z-coordinate equations}
92    
93     The anelastic approximation filters the acoustic mode by removing the
94     time-dependency in the continuity (now pressure-) equation (\ref{eq-zcb-cont}%
95     ). This could be done simply by noting that $\frac{Dp}{Dt}\approx -g\rho _{o}%
96     \frac{Dz}{Dt}=-g\rho _{o}w$, but this leads to an inconsistency between
97     continuity and EOS. A better solution is to change the dependency on
98     pressure in the EOS by splitting the pressure into a reference function of
99     height and a perturbation:
100     \[
101     \rho =\rho (\theta ,S,p_{o}(z)+\epsilon _{s}p^{\prime })
102     \]
103     Remembering that the term $\frac{Dp}{Dt}$ in continuity comes from
104     differentiating the EOS, the continuity equation then becomes:
105     \[
106     \frac{1}{\rho _{o}c_{s}^{2}}\left( \frac{Dp_{o}}{Dt}+\epsilon _{s}\frac{%
107     Dp^{\prime }}{Dt}\right) +\mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+%
108     \frac{\partial w}{\partial z}=0
109     \]
110     If the time- and space-scales of the motions of interest are longer than
111     those of acoustic modes, then $\frac{Dp^{\prime }}{Dt}<<(\frac{Dp_{o}}{Dt},%
112     \mathbf{\nabla }\cdot \vec{\mathbf{v}}_{h})$ in the continuity equations and
113     $\left. \frac{\partial \rho }{\partial p}\right| _{\theta ,S}\frac{%
114     Dp^{\prime }}{Dt}<<\left. \frac{\partial \rho }{\partial p}\right| _{\theta
115     ,S}\frac{Dp_{o}}{Dt}$ in the EOS (\ref{EOSexpansion}). Thus we set $\epsilon
116     _{s}=0$, removing the dependency on $p^{\prime }$ in the continuity equation
117     and EOS. Expanding $\frac{Dp_{o}(z)}{Dt}=-g\rho _{o}w$ then leads to the
118     anelastic continuity equation:
119     \begin{equation}
120     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}-%
121     \frac{g}{c_{s}^{2}}w=0 \label{eq-za-cont1}
122     \end{equation}
123     A slightly different route leads to the quasi-Boussinesq continuity equation
124     where we use the scaling $\frac{\partial \rho ^{\prime }}{\partial t}+%
125     \mathbf{\nabla }_{3}\cdot \rho ^{\prime }\vec{\mathbf{v}}<<\mathbf{\nabla }%
126     _{3}\cdot \rho _{o}\vec{\mathbf{v}}$ yielding:
127     \begin{equation}
128     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
129     \partial \left( \rho _{o}w\right) }{\partial z}=0 \label{eq-za-cont2}
130     \end{equation}
131     Equations \ref{eq-za-cont1} and \ref{eq-za-cont2} are in fact the same
132     equation if:
133     \begin{equation}
134     \frac{1}{\rho _{o}}\frac{\partial \rho _{o}}{\partial z}=\frac{-g}{c_{s}^{2}}
135     \end{equation}
136     Again, note that if $\rho _{o}$ is evaluated from prescribed $\theta _{o}$
137     and $S_{o}$ profiles, then the EOS dependency on $p_{o}$ and the term $\frac{%
138     g}{c_{s}^{2}}$ in continuity should be referred to those same profiles. The
139     full set of `quasi-Boussinesq' or `anelastic' equations for the ocean are
140     then:
141     \begin{eqnarray}
142     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
143     _{h}+\frac{1}{\rho _{o}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
144     \label{eq-zab-hmom} \\
145     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{o}}+\frac{1}{\rho _{o}}%
146     \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
147     \label{eq-zab-hydro} \\
148     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{1}{\rho _{o}}\frac{%
149     \partial \left( \rho _{o}w\right) }{\partial z} &=&0 \label{eq-zab-cont} \\
150     \rho &=&\rho (\theta ,S,p_{o}(z)) \label{eq-zab-eos} \\
151     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zab-heat} \\
152     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zab-salt}
153     \end{eqnarray}
154    
155     \subsubsection{Incompressible z-coordinate equations}
156    
157     Here, the objective is to drop the depth dependence of $\rho _{o}$ and so,
158     technically, to also remove the dependence of $\rho $ on $p_{o}$. This would
159     yield the ``truly'' incompressible Boussinesq equations:
160     \begin{eqnarray}
161     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
162     _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p &=&\vec{\mathbf{\mathcal{F}}}
163     \label{eq-ztb-hmom} \\
164     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho }{\rho _{c}}+\frac{1}{\rho _{c}}%
165     \frac{\partial p}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
166     \label{eq-ztb-hydro} \\
167     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
168     &=&0 \label{eq-ztb-cont} \\
169     \rho &=&\rho (\theta ,S) \label{eq-ztb-eos} \\
170     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-ztb-heat} \\
171     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-ztb-salt}
172     \end{eqnarray}
173     where $\rho _{c}$ is a constant reference density of water.
174    
175     \subsubsection{Compressible non-divergent equations}
176    
177     The above ``incompressible'' equations are incompressible in both the flow
178     and the density. In many oceanic applications, however, it is important to
179     retain compressibility effects in the density. To do this we must split the
180     density thus:
181     \[
182     \rho =\rho _{o}+\rho ^{\prime }
183     \]
184     We then assert that variations with depth of $\rho _{o}$ are unimportant
185     while the compressible effects in $\rho ^{\prime }$ are:
186     \[
187     \rho _{o}=\rho _{c}
188     \]
189     \[
190     \rho ^{\prime }=\rho (\theta ,S,p_{o}(z))-\rho _{o}
191     \]
192     This then yields what we can call the semi-compressible Boussinesq
193     equations:
194     \begin{eqnarray}
195     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
196     _{h}+\frac{1}{\rho _{c}}\mathbf{\nabla }_{z}p^{\prime } &=&\vec{\mathbf{%
197     \mathcal{F}}} \label{eq-zpe-hmom} \\
198     \epsilon _{nh}\frac{Dw}{Dt}+\frac{g\rho ^{\prime }}{\rho _{c}}+\frac{1}{\rho
199     _{c}}\frac{\partial p^{\prime }}{\partial z} &=&\epsilon _{nh}\mathcal{F}_{w}
200     \label{eq-zpe-hydro} \\
201     \mathbf{\nabla }_{z}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial w}{\partial z}
202     &=&0 \label{eq-zpe-cont} \\
203     \rho ^{\prime } &=&\rho (\theta ,S,p_{o}(z))-\rho _{c} \label{eq-zpe-eos} \\
204     \frac{D\theta }{Dt} &=&\mathcal{Q}_{\theta } \label{eq-zpe-heat} \\
205     \frac{DS}{Dt} &=&\mathcal{Q}_{s} \label{eq-zpe-salt}
206     \end{eqnarray}
207     Note that the hydrostatic pressure of the resting fluid, including that
208     associated with $\rho _{c}$, is subtracted out since it has no effect on the
209     dynamics.
210    
211     Though necessary, the assumptions that go into these equations are messy
212     since we essentially assume a different EOS for the reference density and
213     the perturbation density. Nevertheless, it is the hydrostatic ($\epsilon
214     _{nh}=0$ form of these equations that are used throughout the ocean modeling
215     community and referred to as the primitive equations (HPE).

  ViewVC Help
Powered by ViewVC 1.1.22