--- manual/s_overview/appendix_atmos.tex 2001/09/26 14:53:10 1.3 +++ manual/s_overview/appendix_atmos.tex 2001/09/27 01:57:17 1.5 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/Attic/appendix_atmos.tex,v 1.3 2001/09/26 14:53:10 cnh Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/Attic/appendix_atmos.tex,v 1.5 2001/09/27 01:57:17 cnh Exp $ % $Name: $ \section{Appendix ATMOSPHERE} @@ -10,11 +10,11 @@ The hydrostatic primitive equations (HPEs) in p-coordinates are: \begin{eqnarray} -\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% +\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} \label{eq:atmos-mom} \\ \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ -\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% +\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ \partial p} &=&0 \label{eq:atmos-cont} \\ p\alpha &=&RT \label{eq:atmos-eos} \\ c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} @@ -24,10 +24,10 @@ surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is -the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp% +the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation \ref -{eq-p-firstlaw} is the first law of thermodynamics where internal energy $% -e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $% +{eq-p-firstlaw} is the first law of thermodynamics where internal energy $ +e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $ p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. It is convenient to cast the heat equation in terms of potential temperature @@ -36,7 +36,7 @@ \[ p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} \] -which, when added to the heat equation \ref{eq-p-firstlaw} and using $% +which, when added to the heat equation \ref{eq-p-firstlaw} and using $ c_{p}=c_{v}+R$, gives: \begin{equation} c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} @@ -55,8 +55,8 @@ the Exner function: \[ c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi -}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{% -\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}% +}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{ +\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p} \frac{Dp}{Dt} \] where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. @@ -72,7 +72,7 @@ \end{equation} which is in conservative form. -For convenience in the model we prefer to step forward (\ref{theta-equation}% +For convenience in the model we prefer to step forward (\ref{theta-equation} ) rather than (\ref{eq-p-firstlaw}). \subsubsection{Boundary conditions} @@ -116,14 +116,14 @@ The final form of the HPE's in p coordinates is then: \begin{eqnarray} -\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% +\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} \\ \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 \\ -\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% +\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ \partial p} &=&0 \\ \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } - \ + \\ \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} \end{eqnarray}