--- manual/s_overview/appendix_atmos.tex 2001/08/08 16:16:18 1.1 +++ manual/s_overview/appendix_atmos.tex 2001/09/11 14:34:38 1.2 @@ -1,4 +1,4 @@ -% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/Attic/appendix_atmos.tex,v 1.1 2001/08/08 16:16:18 adcroft Exp $ +% $Header: /home/ubuntu/mnt/e9_copy/manual/s_overview/Attic/appendix_atmos.tex,v 1.2 2001/09/11 14:34:38 cnh Exp $ % $Name: $ \section{Appendix ATMOSPHERE} @@ -12,12 +12,13 @@ \begin{eqnarray} \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} -\label{eq-p-hmom-start} \\ +\label{eq:atmos-mom} \\ \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% -\partial p} &=&0 \label{eq-p-cont-start} \\ -p\alpha &=&RT \label{eq-p-eos-start} \\ -c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq-p-firstlaw} +\partial p} &=&0 \label{eq:atmos-cont} \\ +p\alpha &=&RT \label{eq:atmos-eos} \\ +c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} +\label{eq:atmos-heat} \end{eqnarray} where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot @@ -43,7 +44,7 @@ \end{equation} Potential temperature is defined: \begin{equation} -\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq-potential-temp} +\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp} \end{equation} where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience we will make use of the Exner function $\Pi (p)$ which defined by: @@ -67,7 +68,7 @@ \] and on substituting into (\ref{eq-p-heat-interim}) gives: \begin{equation} -\Pi \frac{D\theta }{Dt}=\mathcal{Q} \label{theta-equation} +\Pi \frac{D\theta }{Dt}=\mathcal{Q} \label{eq:potential-temperature-equation} \end{equation} which is in conservative form. @@ -80,6 +81,7 @@ \begin{eqnarray*} \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\ \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo} +\label{eq:boundary-condition-atmosphere} \end{eqnarray*} In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega =0 $); in $z$-coordinates and the lower boundary is analogous to a free @@ -94,9 +96,9 @@ equations. The equations written in terms of perturbations are obtained by substituting the following definitions into the previous model equations: \begin{eqnarray*} -\theta &=&\theta _{o}+\theta ^{\prime } \\ -\alpha &=&\alpha _{o}+\alpha ^{\prime } \\ -\phi &=&\phi _{o}+\phi ^{\prime } +\theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\ +\alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha}\\ +\phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi} \end{eqnarray*} The reference state (indicated by subscript ``0'') corresponds to horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi @@ -116,12 +118,12 @@ \begin{eqnarray} \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} -\label{eq-p-hmom} \\ + \\ \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 -\label{eq-p-hydro} \\ + \\ \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% -\partial p} &=&0 \label{eq-p-cont} \\ +\partial p} &=&0 \\ \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } -\label{eq-p-eos} \\ -\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq-p-heat} + \ +\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} \end{eqnarray}