/[MITgcm]/manual/s_overview/appendix_atmos.tex
ViewVC logotype

Contents of /manual/s_overview/appendix_atmos.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (show annotations) (download) (as text)
Wed Sep 26 17:00:34 2001 UTC (23 years, 9 months ago) by adcroft
Branch: MAIN
Changes since 1.3: +2 -2 lines
File MIME type: application/x-tex
More tracer doc.

1 % $Header: /u/gcmpack/mitgcmdoc/part1/appendix_atmos.tex,v 1.3 2001/09/26 14:53:10 cnh Exp $
2 % $Name: $
3
4 \section{Appendix ATMOSPHERE}
5
6 \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
7 coordinates}
8
9 \label{sect-hpe-p}
10
11 The hydrostatic primitive equations (HPEs) in p-coordinates are:
12 \begin{eqnarray}
13 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
14 _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
15 \label{eq:atmos-mom} \\
16 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
17 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
18 \partial p} &=&0 \label{eq:atmos-cont} \\
19 p\alpha &=&RT \label{eq:atmos-eos} \\
20 c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q}
21 \label{eq:atmos-heat}
22 \end{eqnarray}
23 where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
24 surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
25 \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
26 derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is
27 the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp%
28 }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation \ref
29 {eq-p-firstlaw} is the first law of thermodynamics where internal energy $%
30 e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $%
31 p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
32
33 It is convenient to cast the heat equation in terms of potential temperature
34 $\theta $ so that it looks more like a generic conservation law.
35 Differentiating \ref{eq-p-eos-start} we get:
36 \[
37 p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
38 \]
39 which, when added to the heat equation \ref{eq-p-firstlaw} and using $%
40 c_{p}=c_{v}+R$, gives:
41 \begin{equation}
42 c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
43 \label{eq-p-heat-interim}
44 \end{equation}
45 Potential temperature is defined:
46 \begin{equation}
47 \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
48 \end{equation}
49 where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
50 we will make use of the Exner function $\Pi (p)$ which defined by:
51 \begin{equation}
52 \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
53 \end{equation}
54 The following relations will be useful and are easily expressed in terms of
55 the Exner function:
56 \[
57 c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
58 }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{%
59 \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}%
60 \frac{Dp}{Dt}
61 \]
62 where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
63
64 The heat equation is obtained by noting that
65 \[
66 c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
67 \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
68 \]
69 and on substituting into (\ref{eq-p-heat-interim}) gives:
70 \begin{equation}
71 \Pi \frac{D\theta }{Dt}=\mathcal{Q} \label{eq:potential-temperature-equation}
72 \end{equation}
73 which is in conservative form.
74
75 For convenience in the model we prefer to step forward (\ref{theta-equation}%
76 ) rather than (\ref{eq-p-firstlaw}).
77
78 \subsubsection{Boundary conditions}
79
80 The upper and lower boundary conditions are :
81 \begin{eqnarray}
82 \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
83 \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
84 \label{eq:boundary-condition-atmosphere}
85 \end{eqnarray}
86 In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
87 =0 $); in $z$-coordinates and the lower boundary is analogous to a free
88 surface ($\phi $ is imposed and $\omega \neq 0$).
89
90 \subsubsection{Splitting the geo-potential}
91
92 For the purposes of initialization and reducing round-off errors, the model
93 deals with perturbations from reference (or ``standard'') profiles. For
94 example, the hydrostatic geopotential associated with the resting atmosphere
95 is not dynamically relevant and can therefore be subtracted from the
96 equations. The equations written in terms of perturbations are obtained by
97 substituting the following definitions into the previous model equations:
98 \begin{eqnarray}
99 \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
100 \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha}\\
101 \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
102 \end{eqnarray}
103 The reference state (indicated by subscript ``0'') corresponds to
104 horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
105 _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
106 _{o}(p_{o})=g~Z_{topo}$, defined:
107 \begin{eqnarray*}
108 \theta _{o}(p) &=&f^{n}(p) \\
109 \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
110 \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
111 \end{eqnarray*}
112 %\begin{eqnarray*}
113 %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
114 %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
115 %\end{eqnarray*}
116
117 The final form of the HPE's in p coordinates is then:
118 \begin{eqnarray}
119 \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
120 _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}}
121 \\
122 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0
123 \\
124 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
125 \partial p} &=&0 \\
126 \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime }
127 \\
128 \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime}
129 \end{eqnarray}

  ViewVC Help
Powered by ViewVC 1.1.22