/[MITgcm]/manual/s_overview/appendix_atmos.tex
ViewVC logotype

Diff of /manual/s_overview/appendix_atmos.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by cnh, Tue Sep 11 14:34:38 2001 UTC revision 1.3 by cnh, Wed Sep 26 14:53:10 2001 UTC
# Line 78  For convenience in the model we prefer t Line 78  For convenience in the model we prefer t
78  \subsubsection{Boundary conditions}  \subsubsection{Boundary conditions}
79    
80  The upper and lower boundary conditions are :  The upper and lower boundary conditions are :
81  \begin{eqnarray*}  \begin{eqnarray}
82  \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\  \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
83  \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}  \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
84  \label{eq:boundary-condition-atmosphere}  \label{eq:boundary-condition-atmosphere}
85  \end{eqnarray*}  \end{eqnarray}
86  In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega  In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
87  =0 $); in $z$-coordinates and the lower boundary is analogous to a free  =0 $); in $z$-coordinates and the lower boundary is analogous to a free
88  surface ($\phi $ is imposed and $\omega \neq 0$).  surface ($\phi $ is imposed and $\omega \neq 0$).
# Line 95  example, the hydrostatic geopotential as Line 95  example, the hydrostatic geopotential as
95  is not dynamically relevant and can therefore be subtracted from the  is not dynamically relevant and can therefore be subtracted from the
96  equations. The equations written in terms of perturbations are obtained by  equations. The equations written in terms of perturbations are obtained by
97  substituting the following definitions into the previous model equations:  substituting the following definitions into the previous model equations:
98  \begin{eqnarray*}  \begin{eqnarray}
99  \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\  \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
100  \alpha &=&\alpha _{o}+\alpha ^{\prime }  \label{eq:atmos-ref-prof-alpha}\\  \alpha &=&\alpha _{o}+\alpha ^{\prime }  \label{eq:atmos-ref-prof-alpha}\\
101  \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}  \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
102  \end{eqnarray*}  \end{eqnarray}
103  The reference state (indicated by subscript ``0'') corresponds to  The reference state (indicated by subscript ``0'') corresponds to
104  horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi  horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
105  _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi  _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.3

  ViewVC Help
Powered by ViewVC 1.1.22