| 1 |
% $Header: /u/u0/gcmpack/mitgcmdoc/part1/appendix_atmos.tex,v 1.5 2001/09/27 01:57:17 cnh Exp $ |
| 2 |
% $Name: $ |
| 3 |
|
| 4 |
\section{Appendix ATMOSPHERE} |
| 5 |
|
| 6 |
\subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure |
| 7 |
coordinates} |
| 8 |
|
| 9 |
\label{sect-hpe-p} |
| 10 |
|
| 11 |
The hydrostatic primitive equations (HPEs) in p-coordinates are: |
| 12 |
\begin{eqnarray} |
| 13 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 14 |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
| 15 |
\label{eq:atmos-mom} \\ |
| 16 |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
| 17 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
| 18 |
\partial p} &=&0 \label{eq:atmos-cont} \\ |
| 19 |
p\alpha &=&RT \label{eq:atmos-eos} \\ |
| 20 |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} |
| 21 |
\label{eq:atmos-heat} |
| 22 |
\end{eqnarray} |
| 23 |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
| 24 |
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot |
| 25 |
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total |
| 26 |
derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is |
| 27 |
the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp |
| 28 |
}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation \ref |
| 29 |
{eq-p-firstlaw} is the first law of thermodynamics where internal energy $ |
| 30 |
e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $ |
| 31 |
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. |
| 32 |
|
| 33 |
It is convenient to cast the heat equation in terms of potential temperature |
| 34 |
$\theta $ so that it looks more like a generic conservation law. |
| 35 |
Differentiating \ref{eq-p-eos-start} we get: |
| 36 |
\[ |
| 37 |
p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} |
| 38 |
\] |
| 39 |
which, when added to the heat equation \ref{eq-p-firstlaw} and using $ |
| 40 |
c_{p}=c_{v}+R$, gives: |
| 41 |
\begin{equation} |
| 42 |
c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} |
| 43 |
\label{eq-p-heat-interim} |
| 44 |
\end{equation} |
| 45 |
Potential temperature is defined: |
| 46 |
\begin{equation} |
| 47 |
\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp} |
| 48 |
\end{equation} |
| 49 |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience |
| 50 |
we will make use of the Exner function $\Pi (p)$ which defined by: |
| 51 |
\begin{equation} |
| 52 |
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner} |
| 53 |
\end{equation} |
| 54 |
The following relations will be useful and are easily expressed in terms of |
| 55 |
the Exner function: |
| 56 |
\[ |
| 57 |
c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi |
| 58 |
}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{ |
| 59 |
\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p} |
| 60 |
\frac{Dp}{Dt} |
| 61 |
\] |
| 62 |
where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. |
| 63 |
|
| 64 |
The heat equation is obtained by noting that |
| 65 |
\[ |
| 66 |
c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta |
| 67 |
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt} |
| 68 |
\] |
| 69 |
and on substituting into (\ref{eq-p-heat-interim}) gives: |
| 70 |
\begin{equation} |
| 71 |
\Pi \frac{D\theta }{Dt}=\mathcal{Q} \label{eq:potential-temperature-equation} |
| 72 |
\end{equation} |
| 73 |
which is in conservative form. |
| 74 |
|
| 75 |
For convenience in the model we prefer to step forward (\ref{theta-equation} |
| 76 |
) rather than (\ref{eq-p-firstlaw}). |
| 77 |
|
| 78 |
\subsubsection{Boundary conditions} |
| 79 |
|
| 80 |
The upper and lower boundary conditions are : |
| 81 |
\begin{eqnarray} |
| 82 |
\mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\ |
| 83 |
\mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo} |
| 84 |
\label{eq:boundary-condition-atmosphere} |
| 85 |
\end{eqnarray} |
| 86 |
In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega |
| 87 |
=0 $); in $z$-coordinates and the lower boundary is analogous to a free |
| 88 |
surface ($\phi $ is imposed and $\omega \neq 0$). |
| 89 |
|
| 90 |
\subsubsection{Splitting the geo-potential} |
| 91 |
|
| 92 |
For the purposes of initialization and reducing round-off errors, the model |
| 93 |
deals with perturbations from reference (or ``standard'') profiles. For |
| 94 |
example, the hydrostatic geopotential associated with the resting atmosphere |
| 95 |
is not dynamically relevant and can therefore be subtracted from the |
| 96 |
equations. The equations written in terms of perturbations are obtained by |
| 97 |
substituting the following definitions into the previous model equations: |
| 98 |
\begin{eqnarray} |
| 99 |
\theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\ |
| 100 |
\alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha}\\ |
| 101 |
\phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi} |
| 102 |
\end{eqnarray} |
| 103 |
The reference state (indicated by subscript ``0'') corresponds to |
| 104 |
horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi |
| 105 |
_{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi |
| 106 |
_{o}(p_{o})=g~Z_{topo}$, defined: |
| 107 |
\begin{eqnarray*} |
| 108 |
\theta _{o}(p) &=&f^{n}(p) \\ |
| 109 |
\alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\ |
| 110 |
\phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp |
| 111 |
\end{eqnarray*} |
| 112 |
%\begin{eqnarray*} |
| 113 |
%\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\ |
| 114 |
%\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp |
| 115 |
%\end{eqnarray*} |
| 116 |
|
| 117 |
The final form of the HPE's in p coordinates is then: |
| 118 |
\begin{eqnarray} |
| 119 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}} |
| 120 |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} |
| 121 |
\\ |
| 122 |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 |
| 123 |
\\ |
| 124 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{ |
| 125 |
\partial p} &=&0 \\ |
| 126 |
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } |
| 127 |
\\ |
| 128 |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} |
| 129 |
\end{eqnarray} |