| 12 |
\begin{eqnarray} |
\begin{eqnarray} |
| 13 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
| 14 |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
| 15 |
\label{eq-p-hmom-start} \\ |
\label{eq:atmos-mom} \\ |
| 16 |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
| 17 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
| 18 |
\partial p} &=&0 \label{eq-p-cont-start} \\ |
\partial p} &=&0 \label{eq:atmos-cont} \\ |
| 19 |
p\alpha &=&RT \label{eq-p-eos-start} \\ |
p\alpha &=&RT \label{eq:atmos-eos} \\ |
| 20 |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq-p-firstlaw} |
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} |
| 21 |
|
\label{eq:atmos-heat} |
| 22 |
\end{eqnarray} |
\end{eqnarray} |
| 23 |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
| 24 |
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot |
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot |
| 44 |
\end{equation} |
\end{equation} |
| 45 |
Potential temperature is defined: |
Potential temperature is defined: |
| 46 |
\begin{equation} |
\begin{equation} |
| 47 |
\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq-potential-temp} |
\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp} |
| 48 |
\end{equation} |
\end{equation} |
| 49 |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience |
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience |
| 50 |
we will make use of the Exner function $\Pi (p)$ which defined by: |
we will make use of the Exner function $\Pi (p)$ which defined by: |
| 68 |
\] |
\] |
| 69 |
and on substituting into (\ref{eq-p-heat-interim}) gives: |
and on substituting into (\ref{eq-p-heat-interim}) gives: |
| 70 |
\begin{equation} |
\begin{equation} |
| 71 |
\Pi \frac{D\theta }{Dt}=\mathcal{Q} \label{theta-equation} |
\Pi \frac{D\theta }{Dt}=\mathcal{Q} \label{eq:potential-temperature-equation} |
| 72 |
\end{equation} |
\end{equation} |
| 73 |
which is in conservative form. |
which is in conservative form. |
| 74 |
|
|
| 78 |
\subsubsection{Boundary conditions} |
\subsubsection{Boundary conditions} |
| 79 |
|
|
| 80 |
The upper and lower boundary conditions are : |
The upper and lower boundary conditions are : |
| 81 |
\begin{eqnarray*} |
\begin{eqnarray} |
| 82 |
\mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\ |
\mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\ |
| 83 |
\mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo} |
\mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo} |
| 84 |
\end{eqnarray*} |
\label{eq:boundary-condition-atmosphere} |
| 85 |
|
\end{eqnarray} |
| 86 |
In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega |
In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega |
| 87 |
=0 $); in $z$-coordinates and the lower boundary is analogous to a free |
=0 $); in $z$-coordinates and the lower boundary is analogous to a free |
| 88 |
surface ($\phi $ is imposed and $\omega \neq 0$). |
surface ($\phi $ is imposed and $\omega \neq 0$). |
| 95 |
is not dynamically relevant and can therefore be subtracted from the |
is not dynamically relevant and can therefore be subtracted from the |
| 96 |
equations. The equations written in terms of perturbations are obtained by |
equations. The equations written in terms of perturbations are obtained by |
| 97 |
substituting the following definitions into the previous model equations: |
substituting the following definitions into the previous model equations: |
| 98 |
\begin{eqnarray*} |
\begin{eqnarray} |
| 99 |
\theta &=&\theta _{o}+\theta ^{\prime } \\ |
\theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\ |
| 100 |
\alpha &=&\alpha _{o}+\alpha ^{\prime } \\ |
\alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha}\\ |
| 101 |
\phi &=&\phi _{o}+\phi ^{\prime } |
\phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi} |
| 102 |
\end{eqnarray*} |
\end{eqnarray} |
| 103 |
The reference state (indicated by subscript ``0'') corresponds to |
The reference state (indicated by subscript ``0'') corresponds to |
| 104 |
horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi |
horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi |
| 105 |
_{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi |
_{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi |
| 118 |
\begin{eqnarray} |
\begin{eqnarray} |
| 119 |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
| 120 |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} |
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} |
| 121 |
\label{eq-p-hmom} \\ |
\\ |
| 122 |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 |
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 |
| 123 |
\label{eq-p-hydro} \\ |
\\ |
| 124 |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
| 125 |
\partial p} &=&0 \label{eq-p-cont} \\ |
\partial p} &=&0 \\ |
| 126 |
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } |
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } |
| 127 |
\label{eq-p-eos} \\ |
\\ |
| 128 |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq-p-heat} |
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime} |
| 129 |
\end{eqnarray} |
\end{eqnarray} |