| 1 | 
adcroft | 
1.4 | 
% $Header: /u/gcmpack/mitgcmdoc/part1/appendix_atmos.tex,v 1.3 2001/09/26 14:53:10 cnh Exp $ | 
| 2 | 
cnh | 
1.2 | 
% $Name:  $ | 
| 3 | 
adcroft | 
1.1 | 
 | 
| 4 | 
  | 
  | 
\section{Appendix ATMOSPHERE} | 
| 5 | 
  | 
  | 
 | 
| 6 | 
  | 
  | 
\subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure | 
| 7 | 
  | 
  | 
coordinates} | 
| 8 | 
  | 
  | 
 | 
| 9 | 
  | 
  | 
\label{sect-hpe-p} | 
| 10 | 
  | 
  | 
 | 
| 11 | 
  | 
  | 
The hydrostatic primitive equations (HPEs) in p-coordinates are:  | 
| 12 | 
  | 
  | 
\begin{eqnarray} | 
| 13 | 
  | 
  | 
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% | 
| 14 | 
  | 
  | 
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} | 
| 15 | 
cnh | 
1.2 | 
\label{eq:atmos-mom} \\ | 
| 16 | 
adcroft | 
1.1 | 
\frac{\partial \phi }{\partial p}+\alpha &=&0  \label{eq-p-hydro-start} \\ | 
| 17 | 
  | 
  | 
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% | 
| 18 | 
cnh | 
1.2 | 
\partial p} &=&0  \label{eq:atmos-cont} \\ | 
| 19 | 
  | 
  | 
p\alpha &=&RT  \label{eq:atmos-eos} \\ | 
| 20 | 
  | 
  | 
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q}   | 
| 21 | 
  | 
  | 
\label{eq:atmos-heat} | 
| 22 | 
adcroft | 
1.1 | 
\end{eqnarray} | 
| 23 | 
  | 
  | 
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure | 
| 24 | 
  | 
  | 
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot  | 
| 25 | 
  | 
  | 
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total | 
| 26 | 
  | 
  | 
derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is | 
| 27 | 
  | 
  | 
the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp% | 
| 28 | 
  | 
  | 
}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation \ref | 
| 29 | 
  | 
  | 
{eq-p-firstlaw} is the first law of thermodynamics where internal energy $% | 
| 30 | 
  | 
  | 
e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $% | 
| 31 | 
  | 
  | 
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. | 
| 32 | 
  | 
  | 
 | 
| 33 | 
  | 
  | 
It is convenient to cast the heat equation in terms of potential temperature  | 
| 34 | 
  | 
  | 
$\theta $ so that it looks more like a generic conservation law. | 
| 35 | 
  | 
  | 
Differentiating \ref{eq-p-eos-start} we get:  | 
| 36 | 
  | 
  | 
\[ | 
| 37 | 
  | 
  | 
p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} | 
| 38 | 
  | 
  | 
\] | 
| 39 | 
  | 
  | 
which, when added to the heat equation \ref{eq-p-firstlaw} and using $% | 
| 40 | 
  | 
  | 
c_{p}=c_{v}+R$, gives:  | 
| 41 | 
  | 
  | 
\begin{equation} | 
| 42 | 
  | 
  | 
c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} | 
| 43 | 
  | 
  | 
\label{eq-p-heat-interim} | 
| 44 | 
  | 
  | 
\end{equation} | 
| 45 | 
  | 
  | 
Potential temperature is defined:  | 
| 46 | 
  | 
  | 
\begin{equation} | 
| 47 | 
cnh | 
1.2 | 
\theta =T(\frac{p_{c}}{p})^{\kappa }  \label{eq:potential-temp} | 
| 48 | 
adcroft | 
1.1 | 
\end{equation} | 
| 49 | 
  | 
  | 
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience | 
| 50 | 
  | 
  | 
we will make use of the Exner function $\Pi (p)$ which defined by:  | 
| 51 | 
  | 
  | 
\begin{equation} | 
| 52 | 
  | 
  | 
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa }  \label{Exner} | 
| 53 | 
  | 
  | 
\end{equation} | 
| 54 | 
  | 
  | 
The following relations will be useful and are easily expressed in terms of | 
| 55 | 
  | 
  | 
the Exner function:  | 
| 56 | 
  | 
  | 
\[ | 
| 57 | 
  | 
  | 
c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi  | 
| 58 | 
  | 
  | 
}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{% | 
| 59 | 
  | 
  | 
\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}% | 
| 60 | 
  | 
  | 
\frac{Dp}{Dt} | 
| 61 | 
  | 
  | 
\] | 
| 62 | 
  | 
  | 
where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. | 
| 63 | 
  | 
  | 
 | 
| 64 | 
  | 
  | 
The heat equation is obtained by noting that  | 
| 65 | 
  | 
  | 
\[ | 
| 66 | 
  | 
  | 
c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta  | 
| 67 | 
  | 
  | 
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt} | 
| 68 | 
  | 
  | 
\] | 
| 69 | 
  | 
  | 
and on substituting into (\ref{eq-p-heat-interim}) gives:  | 
| 70 | 
  | 
  | 
\begin{equation} | 
| 71 | 
cnh | 
1.2 | 
\Pi \frac{D\theta }{Dt}=\mathcal{Q}  \label{eq:potential-temperature-equation} | 
| 72 | 
adcroft | 
1.1 | 
\end{equation} | 
| 73 | 
  | 
  | 
which is in conservative form. | 
| 74 | 
  | 
  | 
 | 
| 75 | 
  | 
  | 
For convenience in the model we prefer to step forward (\ref{theta-equation}% | 
| 76 | 
  | 
  | 
) rather than (\ref{eq-p-firstlaw}). | 
| 77 | 
  | 
  | 
 | 
| 78 | 
  | 
  | 
\subsubsection{Boundary conditions} | 
| 79 | 
  | 
  | 
 | 
| 80 | 
  | 
  | 
The upper and lower boundary conditions are :  | 
| 81 | 
cnh | 
1.3 | 
\begin{eqnarray} | 
| 82 | 
adcroft | 
1.1 | 
\mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\ | 
| 83 | 
  | 
  | 
\mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo} | 
| 84 | 
cnh | 
1.2 | 
\label{eq:boundary-condition-atmosphere} | 
| 85 | 
cnh | 
1.3 | 
\end{eqnarray} | 
| 86 | 
adcroft | 
1.1 | 
In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega | 
| 87 | 
  | 
  | 
=0 $); in $z$-coordinates and the lower boundary is analogous to a free | 
| 88 | 
  | 
  | 
surface ($\phi $ is imposed and $\omega \neq 0$). | 
| 89 | 
  | 
  | 
 | 
| 90 | 
  | 
  | 
\subsubsection{Splitting the geo-potential} | 
| 91 | 
  | 
  | 
 | 
| 92 | 
  | 
  | 
For the purposes of initialization and reducing round-off errors, the model | 
| 93 | 
  | 
  | 
deals with perturbations from reference (or ``standard'') profiles. For | 
| 94 | 
  | 
  | 
example, the hydrostatic geopotential associated with the resting atmosphere | 
| 95 | 
  | 
  | 
is not dynamically relevant and can therefore be subtracted from the | 
| 96 | 
  | 
  | 
equations. The equations written in terms of perturbations are obtained by | 
| 97 | 
  | 
  | 
substituting the following definitions into the previous model equations:  | 
| 98 | 
cnh | 
1.3 | 
\begin{eqnarray} | 
| 99 | 
cnh | 
1.2 | 
\theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\ | 
| 100 | 
  | 
  | 
\alpha &=&\alpha _{o}+\alpha ^{\prime }  \label{eq:atmos-ref-prof-alpha}\\ | 
| 101 | 
  | 
  | 
\phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi} | 
| 102 | 
cnh | 
1.3 | 
\end{eqnarray} | 
| 103 | 
adcroft | 
1.1 | 
The reference state (indicated by subscript ``0'') corresponds to | 
| 104 | 
  | 
  | 
horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi | 
| 105 | 
  | 
  | 
_{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi | 
| 106 | 
  | 
  | 
_{o}(p_{o})=g~Z_{topo}$, defined:  | 
| 107 | 
  | 
  | 
\begin{eqnarray*} | 
| 108 | 
  | 
  | 
\theta _{o}(p) &=&f^{n}(p) \\ | 
| 109 | 
  | 
  | 
\alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\ | 
| 110 | 
  | 
  | 
\phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp | 
| 111 | 
  | 
  | 
\end{eqnarray*} | 
| 112 | 
  | 
  | 
%\begin{eqnarray*} | 
| 113 | 
  | 
  | 
%\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\ | 
| 114 | 
  | 
  | 
%\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp | 
| 115 | 
  | 
  | 
%\end{eqnarray*} | 
| 116 | 
  | 
  | 
 | 
| 117 | 
  | 
  | 
The final form of the HPE's in p coordinates is then:  | 
| 118 | 
  | 
  | 
\begin{eqnarray} | 
| 119 | 
  | 
  | 
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% | 
| 120 | 
  | 
  | 
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} | 
| 121 | 
cnh | 
1.2 | 
                  \\ | 
| 122 | 
adcroft | 
1.1 | 
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 | 
| 123 | 
cnh | 
1.2 | 
                   \\ | 
| 124 | 
adcroft | 
1.1 | 
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% | 
| 125 | 
cnh | 
1.2 | 
\partial p} &=&0                    \\ | 
| 126 | 
adcroft | 
1.1 | 
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } | 
| 127 | 
adcroft | 
1.4 | 
                  \\ | 
| 128 | 
cnh | 
1.2 | 
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi }  \label{eq:atmos-prime} | 
| 129 | 
adcroft | 
1.1 | 
\end{eqnarray} |