/[MITgcm]/manual/s_overview/appendix_atmos.tex
ViewVC logotype

Annotation of /manual/s_overview/appendix_atmos.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.3 - (hide annotations) (download) (as text)
Wed Sep 26 14:53:10 2001 UTC (23 years, 9 months ago) by cnh
Branch: MAIN
Changes since 1.2: +5 -5 lines
File MIME type: application/x-tex
Small changes to equations that were perviously unlabelled

1 cnh 1.3 % $Header: /u/gcmpack/mitgcmdoc/part1/appendix_atmos.tex,v 1.2 2001/09/11 14:34:38 cnh Exp $
2 cnh 1.2 % $Name: $
3 adcroft 1.1
4     \section{Appendix ATMOSPHERE}
5    
6     \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
7     coordinates}
8    
9     \label{sect-hpe-p}
10    
11     The hydrostatic primitive equations (HPEs) in p-coordinates are:
12     \begin{eqnarray}
13     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
14     _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
15 cnh 1.2 \label{eq:atmos-mom} \\
16 adcroft 1.1 \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
17     \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
18 cnh 1.2 \partial p} &=&0 \label{eq:atmos-cont} \\
19     p\alpha &=&RT \label{eq:atmos-eos} \\
20     c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q}
21     \label{eq:atmos-heat}
22 adcroft 1.1 \end{eqnarray}
23     where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
24     surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
25     \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
26     derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is
27     the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp%
28     }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation \ref
29     {eq-p-firstlaw} is the first law of thermodynamics where internal energy $%
30     e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $%
31     p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
32    
33     It is convenient to cast the heat equation in terms of potential temperature
34     $\theta $ so that it looks more like a generic conservation law.
35     Differentiating \ref{eq-p-eos-start} we get:
36     \[
37     p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
38     \]
39     which, when added to the heat equation \ref{eq-p-firstlaw} and using $%
40     c_{p}=c_{v}+R$, gives:
41     \begin{equation}
42     c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
43     \label{eq-p-heat-interim}
44     \end{equation}
45     Potential temperature is defined:
46     \begin{equation}
47 cnh 1.2 \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq:potential-temp}
48 adcroft 1.1 \end{equation}
49     where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
50     we will make use of the Exner function $\Pi (p)$ which defined by:
51     \begin{equation}
52     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
53     \end{equation}
54     The following relations will be useful and are easily expressed in terms of
55     the Exner function:
56     \[
57     c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
58     }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{%
59     \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}%
60     \frac{Dp}{Dt}
61     \]
62     where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
63    
64     The heat equation is obtained by noting that
65     \[
66     c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
67     \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
68     \]
69     and on substituting into (\ref{eq-p-heat-interim}) gives:
70     \begin{equation}
71 cnh 1.2 \Pi \frac{D\theta }{Dt}=\mathcal{Q} \label{eq:potential-temperature-equation}
72 adcroft 1.1 \end{equation}
73     which is in conservative form.
74    
75     For convenience in the model we prefer to step forward (\ref{theta-equation}%
76     ) rather than (\ref{eq-p-firstlaw}).
77    
78     \subsubsection{Boundary conditions}
79    
80     The upper and lower boundary conditions are :
81 cnh 1.3 \begin{eqnarray}
82 adcroft 1.1 \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
83     \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
84 cnh 1.2 \label{eq:boundary-condition-atmosphere}
85 cnh 1.3 \end{eqnarray}
86 adcroft 1.1 In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
87     =0 $); in $z$-coordinates and the lower boundary is analogous to a free
88     surface ($\phi $ is imposed and $\omega \neq 0$).
89    
90     \subsubsection{Splitting the geo-potential}
91    
92     For the purposes of initialization and reducing round-off errors, the model
93     deals with perturbations from reference (or ``standard'') profiles. For
94     example, the hydrostatic geopotential associated with the resting atmosphere
95     is not dynamically relevant and can therefore be subtracted from the
96     equations. The equations written in terms of perturbations are obtained by
97     substituting the following definitions into the previous model equations:
98 cnh 1.3 \begin{eqnarray}
99 cnh 1.2 \theta &=&\theta _{o}+\theta ^{\prime } \label{eq:atmos-ref-prof-theta} \\
100     \alpha &=&\alpha _{o}+\alpha ^{\prime } \label{eq:atmos-ref-prof-alpha}\\
101     \phi &=&\phi _{o}+\phi ^{\prime } \label{eq:atmos-ref-prof-phi}
102 cnh 1.3 \end{eqnarray}
103 adcroft 1.1 The reference state (indicated by subscript ``0'') corresponds to
104     horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
105     _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
106     _{o}(p_{o})=g~Z_{topo}$, defined:
107     \begin{eqnarray*}
108     \theta _{o}(p) &=&f^{n}(p) \\
109     \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
110     \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
111     \end{eqnarray*}
112     %\begin{eqnarray*}
113     %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
114     %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
115     %\end{eqnarray*}
116    
117     The final form of the HPE's in p coordinates is then:
118     \begin{eqnarray}
119     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
120     _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}}
121 cnh 1.2 \\
122 adcroft 1.1 \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0
123 cnh 1.2 \\
124 adcroft 1.1 \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
125 cnh 1.2 \partial p} &=&0 \\
126 adcroft 1.1 \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime }
127 cnh 1.2 \
128     \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq:atmos-prime}
129 adcroft 1.1 \end{eqnarray}

  ViewVC Help
Powered by ViewVC 1.1.22