/[MITgcm]/manual/s_overview/appendix_atmos.tex
ViewVC logotype

Annotation of /manual/s_overview/appendix_atmos.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1.1.1 - (hide annotations) (download) (as text) (vendor branch)
Wed Aug 8 16:16:18 2001 UTC (23 years, 11 months ago) by adcroft
Branch: dummy
CVS Tags: Import
Changes since 1.1: +0 -0 lines
File MIME type: application/x-tex
Importing model documentation into CVS

1 adcroft 1.1 % $Header: $
2     % $Name: $
3    
4     \section{Appendix ATMOSPHERE}
5    
6     \subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure
7     coordinates}
8    
9     \label{sect-hpe-p}
10    
11     The hydrostatic primitive equations (HPEs) in p-coordinates are:
12     \begin{eqnarray}
13     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
14     _{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}}
15     \label{eq-p-hmom-start} \\
16     \frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\
17     \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
18     \partial p} &=&0 \label{eq-p-cont-start} \\
19     p\alpha &=&RT \label{eq-p-eos-start} \\
20     c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq-p-firstlaw}
21     \end{eqnarray}
22     where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure
23     surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot
24     \mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total
25     derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is
26     the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp%
27     }{Dt}$ is the vertical velocity in the $p-$coordinate. Equation \ref
28     {eq-p-firstlaw} is the first law of thermodynamics where internal energy $%
29     e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $%
30     p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing.
31    
32     It is convenient to cast the heat equation in terms of potential temperature
33     $\theta $ so that it looks more like a generic conservation law.
34     Differentiating \ref{eq-p-eos-start} we get:
35     \[
36     p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt}
37     \]
38     which, when added to the heat equation \ref{eq-p-firstlaw} and using $%
39     c_{p}=c_{v}+R$, gives:
40     \begin{equation}
41     c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q}
42     \label{eq-p-heat-interim}
43     \end{equation}
44     Potential temperature is defined:
45     \begin{equation}
46     \theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq-potential-temp}
47     \end{equation}
48     where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience
49     we will make use of the Exner function $\Pi (p)$ which defined by:
50     \begin{equation}
51     \Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner}
52     \end{equation}
53     The following relations will be useful and are easily expressed in terms of
54     the Exner function:
55     \[
56     c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi
57     }{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{%
58     \partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}%
59     \frac{Dp}{Dt}
60     \]
61     where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy.
62    
63     The heat equation is obtained by noting that
64     \[
65     c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta
66     \frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt}
67     \]
68     and on substituting into (\ref{eq-p-heat-interim}) gives:
69     \begin{equation}
70     \Pi \frac{D\theta }{Dt}=\mathcal{Q} \label{theta-equation}
71     \end{equation}
72     which is in conservative form.
73    
74     For convenience in the model we prefer to step forward (\ref{theta-equation}%
75     ) rather than (\ref{eq-p-firstlaw}).
76    
77     \subsubsection{Boundary conditions}
78    
79     The upper and lower boundary conditions are :
80     \begin{eqnarray*}
81     \mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\
82     \mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo}
83     \end{eqnarray*}
84     In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega
85     =0 $); in $z$-coordinates and the lower boundary is analogous to a free
86     surface ($\phi $ is imposed and $\omega \neq 0$).
87    
88     \subsubsection{Splitting the geo-potential}
89    
90     For the purposes of initialization and reducing round-off errors, the model
91     deals with perturbations from reference (or ``standard'') profiles. For
92     example, the hydrostatic geopotential associated with the resting atmosphere
93     is not dynamically relevant and can therefore be subtracted from the
94     equations. The equations written in terms of perturbations are obtained by
95     substituting the following definitions into the previous model equations:
96     \begin{eqnarray*}
97     \theta &=&\theta _{o}+\theta ^{\prime } \\
98     \alpha &=&\alpha _{o}+\alpha ^{\prime } \\
99     \phi &=&\phi _{o}+\phi ^{\prime }
100     \end{eqnarray*}
101     The reference state (indicated by subscript ``0'') corresponds to
102     horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi
103     _{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi
104     _{o}(p_{o})=g~Z_{topo}$, defined:
105     \begin{eqnarray*}
106     \theta _{o}(p) &=&f^{n}(p) \\
107     \alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\
108     \phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp
109     \end{eqnarray*}
110     %\begin{eqnarray*}
111     %\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\
112     %\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp
113     %\end{eqnarray*}
114    
115     The final form of the HPE's in p coordinates is then:
116     \begin{eqnarray}
117     \frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}%
118     _{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}}
119     \label{eq-p-hmom} \\
120     \frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0
121     \label{eq-p-hydro} \\
122     \mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{%
123     \partial p} &=&0 \label{eq-p-cont} \\
124     \frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime }
125     \label{eq-p-eos} \\
126     \frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq-p-heat}
127     \end{eqnarray}

  ViewVC Help
Powered by ViewVC 1.1.22