1 |
adcroft |
1.1 |
% $Header: $ |
2 |
|
|
% $Name: $ |
3 |
|
|
|
4 |
|
|
\section{Appendix ATMOSPHERE} |
5 |
|
|
|
6 |
|
|
\subsection{Hydrostatic Primitive Equations for the Atmosphere in pressure |
7 |
|
|
coordinates} |
8 |
|
|
|
9 |
|
|
\label{sect-hpe-p} |
10 |
|
|
|
11 |
|
|
The hydrostatic primitive equations (HPEs) in p-coordinates are: |
12 |
|
|
\begin{eqnarray} |
13 |
|
|
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
14 |
|
|
_{h}+\mathbf{\nabla }_{p}\phi &=&\vec{\mathbf{\mathcal{F}}} |
15 |
|
|
\label{eq-p-hmom-start} \\ |
16 |
|
|
\frac{\partial \phi }{\partial p}+\alpha &=&0 \label{eq-p-hydro-start} \\ |
17 |
|
|
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
18 |
|
|
\partial p} &=&0 \label{eq-p-cont-start} \\ |
19 |
|
|
p\alpha &=&RT \label{eq-p-eos-start} \\ |
20 |
|
|
c_{v}\frac{DT}{Dt}+p\frac{D\alpha }{Dt} &=&\mathcal{Q} \label{eq-p-firstlaw} |
21 |
|
|
\end{eqnarray} |
22 |
|
|
where $\vec{\mathbf{v}}_{h}=(u,v,0)$ is the `horizontal' (on pressure |
23 |
|
|
surfaces) component of velocity,$\frac{D}{Dt}=\vec{\mathbf{v}}_{h}\cdot |
24 |
|
|
\mathbf{\nabla }_{p}+\omega \frac{\partial }{\partial p}$ is the total |
25 |
|
|
derivative, $f=2\Omega \sin lat$ is the Coriolis parameter, $\phi =gz$ is |
26 |
|
|
the geopotential, $\alpha =1/\rho $ is the specific volume, $\omega =\frac{Dp% |
27 |
|
|
}{Dt}$ is the vertical velocity in the $p-$coordinate. Equation \ref |
28 |
|
|
{eq-p-firstlaw} is the first law of thermodynamics where internal energy $% |
29 |
|
|
e=c_{v}T$, $T$ is temperature, $Q$ is the rate of heating per unit mass and $% |
30 |
|
|
p\frac{D\alpha }{Dt}$ is the work done by the fluid in compressing. |
31 |
|
|
|
32 |
|
|
It is convenient to cast the heat equation in terms of potential temperature |
33 |
|
|
$\theta $ so that it looks more like a generic conservation law. |
34 |
|
|
Differentiating \ref{eq-p-eos-start} we get: |
35 |
|
|
\[ |
36 |
|
|
p\frac{D\alpha }{Dt}+\alpha \frac{Dp}{Dt}=R\frac{DT}{Dt} |
37 |
|
|
\] |
38 |
|
|
which, when added to the heat equation \ref{eq-p-firstlaw} and using $% |
39 |
|
|
c_{p}=c_{v}+R$, gives: |
40 |
|
|
\begin{equation} |
41 |
|
|
c_{p}\frac{DT}{Dt}-\alpha \frac{Dp}{Dt}=\mathcal{Q} |
42 |
|
|
\label{eq-p-heat-interim} |
43 |
|
|
\end{equation} |
44 |
|
|
Potential temperature is defined: |
45 |
|
|
\begin{equation} |
46 |
|
|
\theta =T(\frac{p_{c}}{p})^{\kappa } \label{eq-potential-temp} |
47 |
|
|
\end{equation} |
48 |
|
|
where $p_{c}$ is a reference pressure and $\kappa =R/c_{p}$. For convenience |
49 |
|
|
we will make use of the Exner function $\Pi (p)$ which defined by: |
50 |
|
|
\begin{equation} |
51 |
|
|
\Pi (p)=c_{p}(\frac{p}{p_{c}})^{\kappa } \label{Exner} |
52 |
|
|
\end{equation} |
53 |
|
|
The following relations will be useful and are easily expressed in terms of |
54 |
|
|
the Exner function: |
55 |
|
|
\[ |
56 |
|
|
c_{p}T=\Pi \theta \;\;;\;\;\frac{\partial \Pi }{\partial p}=\frac{\kappa \Pi |
57 |
|
|
}{p}\;\;;\;\;\alpha =\frac{\kappa \Pi \theta }{p}=\frac{\partial \ \Pi }{% |
58 |
|
|
\partial p}\theta \;\;;\;\;\frac{D\Pi }{Dt}=\frac{\partial \Pi }{\partial p}% |
59 |
|
|
\frac{Dp}{Dt} |
60 |
|
|
\] |
61 |
|
|
where $b=\frac{\partial \ \Pi }{\partial p}\theta $ is the buoyancy. |
62 |
|
|
|
63 |
|
|
The heat equation is obtained by noting that |
64 |
|
|
\[ |
65 |
|
|
c_{p}\frac{DT}{Dt}=\frac{D(\Pi \theta )}{Dt}=\Pi \frac{D\theta }{Dt}+\theta |
66 |
|
|
\frac{D\Pi }{Dt}=\Pi \frac{D\theta }{Dt}+\alpha \frac{Dp}{Dt} |
67 |
|
|
\] |
68 |
|
|
and on substituting into (\ref{eq-p-heat-interim}) gives: |
69 |
|
|
\begin{equation} |
70 |
|
|
\Pi \frac{D\theta }{Dt}=\mathcal{Q} \label{theta-equation} |
71 |
|
|
\end{equation} |
72 |
|
|
which is in conservative form. |
73 |
|
|
|
74 |
|
|
For convenience in the model we prefer to step forward (\ref{theta-equation}% |
75 |
|
|
) rather than (\ref{eq-p-firstlaw}). |
76 |
|
|
|
77 |
|
|
\subsubsection{Boundary conditions} |
78 |
|
|
|
79 |
|
|
The upper and lower boundary conditions are : |
80 |
|
|
\begin{eqnarray*} |
81 |
|
|
\mbox{at the top:}\;\;p=0 &&\text{, }\omega =\frac{Dp}{Dt}=0 \\ |
82 |
|
|
\mbox{at the surface:}\;\;p=p_{s} &&\text{, }\phi =\phi _{topo}=g~Z_{topo} |
83 |
|
|
\end{eqnarray*} |
84 |
|
|
In $p$-coordinates, the upper boundary acts like a solid boundary ($\omega |
85 |
|
|
=0 $); in $z$-coordinates and the lower boundary is analogous to a free |
86 |
|
|
surface ($\phi $ is imposed and $\omega \neq 0$). |
87 |
|
|
|
88 |
|
|
\subsubsection{Splitting the geo-potential} |
89 |
|
|
|
90 |
|
|
For the purposes of initialization and reducing round-off errors, the model |
91 |
|
|
deals with perturbations from reference (or ``standard'') profiles. For |
92 |
|
|
example, the hydrostatic geopotential associated with the resting atmosphere |
93 |
|
|
is not dynamically relevant and can therefore be subtracted from the |
94 |
|
|
equations. The equations written in terms of perturbations are obtained by |
95 |
|
|
substituting the following definitions into the previous model equations: |
96 |
|
|
\begin{eqnarray*} |
97 |
|
|
\theta &=&\theta _{o}+\theta ^{\prime } \\ |
98 |
|
|
\alpha &=&\alpha _{o}+\alpha ^{\prime } \\ |
99 |
|
|
\phi &=&\phi _{o}+\phi ^{\prime } |
100 |
|
|
\end{eqnarray*} |
101 |
|
|
The reference state (indicated by subscript ``0'') corresponds to |
102 |
|
|
horizontally homogeneous atmosphere at rest ($\theta _{o},\alpha _{o},\phi |
103 |
|
|
_{o}$) with surface pressure $p_{o}(x,y)$ that satisfies $\phi |
104 |
|
|
_{o}(p_{o})=g~Z_{topo}$, defined: |
105 |
|
|
\begin{eqnarray*} |
106 |
|
|
\theta _{o}(p) &=&f^{n}(p) \\ |
107 |
|
|
\alpha _{o}(p) &=&\Pi _{p}\theta _{o} \\ |
108 |
|
|
\phi _{o}(p) &=&\phi _{topo}-\int_{p_{0}}^{p}\alpha _{o}dp |
109 |
|
|
\end{eqnarray*} |
110 |
|
|
%\begin{eqnarray*} |
111 |
|
|
%\phi'_\alpha & = & \int^p_{p_o} (\alpha_o -\alpha) dp \\ |
112 |
|
|
%\phi'_s(x,y,t) & = & \int_{p_o}^{p_s} \alpha dp |
113 |
|
|
%\end{eqnarray*} |
114 |
|
|
|
115 |
|
|
The final form of the HPE's in p coordinates is then: |
116 |
|
|
\begin{eqnarray} |
117 |
|
|
\frac{D\vec{\mathbf{v}}_{h}}{Dt}+f\hat{\mathbf{k}}\times \vec{\mathbf{v}}% |
118 |
|
|
_{h}+\mathbf{\nabla }_{p}\phi ^{\prime } &=&\vec{\mathbf{\mathcal{F}}} |
119 |
|
|
\label{eq-p-hmom} \\ |
120 |
|
|
\frac{\partial \phi ^{\prime }}{\partial p}+\alpha ^{\prime } &=&0 |
121 |
|
|
\label{eq-p-hydro} \\ |
122 |
|
|
\mathbf{\nabla }_{p}\cdot \vec{\mathbf{v}}_{h}+\frac{\partial \omega }{% |
123 |
|
|
\partial p} &=&0 \label{eq-p-cont} \\ |
124 |
|
|
\frac{\partial \Pi }{\partial p}\theta ^{\prime } &=&\alpha ^{\prime } |
125 |
|
|
\label{eq-p-eos} \\ |
126 |
|
|
\frac{D\theta }{Dt} &=&\frac{\mathcal{Q}}{\Pi } \label{eq-p-heat} |
127 |
|
|
\end{eqnarray} |