--- manual/s_outp_pkgs/text/pvdiag.tex 2008/01/15 22:29:10 1.2 +++ manual/s_outp_pkgs/text/pvdiag.tex 2010/08/30 23:09:21 1.3 @@ -330,7 +330,7 @@ where $\mathcal{B}_{in}$ is the vertically integrated surface buoyancy (in)flux: \begin{eqnarray} \mathcal{B}_{in} &=& \frac{g}{\rho_o}\left( \frac{\alpha Q_{net}}{C_w} - \rho_0\beta S_{net}\right) -\label{sec:diag:pv:eq12} +%\label{sec:diag:pv:eq12} \end{eqnarray} with $\alpha\simeq 2.5\times10^{-4}\, K^{-1}$ the thermal expansion coefficient (computed by the package otherwise), $C_w=4187J.kg^{-1}.K^{-1}$ the specific heat of seawater, @@ -362,7 +362,7 @@ \end{eqnarray} and given the assumption that $\omega_z\simeq f$, the second term vanishes and we obtain: \begin{eqnarray} - \vec{N_Q}_z &=& -\frac{\rho_0}{g}f B_g \label{sec:diag:pv:eq12} + \vec{N_Q}_z &=& -\frac{\rho_0}{g}f B_g %\label{sec:diag:pv:eq12} \end{eqnarray} Note that the wind-stress forcing does not appear explicitly here but is implicit in $B_g$ through Eq.\ref{sec:diag:pv:eq11}: the buoyancy forcing $B_g$ is determined by the