330 |
where $\mathcal{B}_{in}$ is the vertically integrated surface buoyancy (in)flux: |
where $\mathcal{B}_{in}$ is the vertically integrated surface buoyancy (in)flux: |
331 |
\begin{eqnarray} |
\begin{eqnarray} |
332 |
\mathcal{B}_{in} &=& \frac{g}{\rho_o}\left( \frac{\alpha Q_{net}}{C_w} - \rho_0\beta S_{net}\right) |
\mathcal{B}_{in} &=& \frac{g}{\rho_o}\left( \frac{\alpha Q_{net}}{C_w} - \rho_0\beta S_{net}\right) |
333 |
\label{sec:diag:pv:eq12} |
%\label{sec:diag:pv:eq12} |
334 |
\end{eqnarray} |
\end{eqnarray} |
335 |
with $\alpha\simeq 2.5\times10^{-4}\, K^{-1}$ the thermal expansion coefficient (computed |
with $\alpha\simeq 2.5\times10^{-4}\, K^{-1}$ the thermal expansion coefficient (computed |
336 |
by the package otherwise), $C_w=4187J.kg^{-1}.K^{-1}$ the specific heat of seawater, |
by the package otherwise), $C_w=4187J.kg^{-1}.K^{-1}$ the specific heat of seawater, |
362 |
\end{eqnarray} |
\end{eqnarray} |
363 |
and given the assumption that $\omega_z\simeq f$, the second term vanishes and we obtain: |
and given the assumption that $\omega_z\simeq f$, the second term vanishes and we obtain: |
364 |
\begin{eqnarray} |
\begin{eqnarray} |
365 |
\vec{N_Q}_z &=& -\frac{\rho_0}{g}f B_g \label{sec:diag:pv:eq12} |
\vec{N_Q}_z &=& -\frac{\rho_0}{g}f B_g %\label{sec:diag:pv:eq12} |
366 |
\end{eqnarray} |
\end{eqnarray} |
367 |
Note that the wind-stress forcing does not appear explicitly here but is implicit in $B_g$ |
Note that the wind-stress forcing does not appear explicitly here but is implicit in $B_g$ |
368 |
through Eq.\ref{sec:diag:pv:eq11}: the buoyancy forcing $B_g$ is determined by the |
through Eq.\ref{sec:diag:pv:eq11}: the buoyancy forcing $B_g$ is determined by the |