Parent Directory
|
Revision Log
|
Revision Graph
|
Patch
--- manual/s_outp_pkgs/text/pvdiag.tex 2008/01/15 22:29:10 1.2
+++ manual/s_outp_pkgs/text/pvdiag.tex 2010/08/30 23:09:21 1.3
@@ -330,7 +330,7 @@
where $\mathcal{B}_{in}$ is the vertically integrated surface buoyancy (in)flux:
\begin{eqnarray}
\mathcal{B}_{in} &=& \frac{g}{\rho_o}\left( \frac{\alpha Q_{net}}{C_w} - \rho_0\beta S_{net}\right)
-\label{sec:diag:pv:eq12}
+%\label{sec:diag:pv:eq12}
\end{eqnarray}
with $\alpha\simeq 2.5\times10^{-4}\, K^{-1}$ the thermal expansion coefficient (computed
by the package otherwise), $C_w=4187J.kg^{-1}.K^{-1}$ the specific heat of seawater,
@@ -362,7 +362,7 @@
\end{eqnarray}
and given the assumption that $\omega_z\simeq f$, the second term vanishes and we obtain:
\begin{eqnarray}
- \vec{N_Q}_z &=& -\frac{\rho_0}{g}f B_g \label{sec:diag:pv:eq12}
+ \vec{N_Q}_z &=& -\frac{\rho_0}{g}f B_g %\label{sec:diag:pv:eq12}
\end{eqnarray}
Note that the wind-stress forcing does not appear explicitly here but is implicit in $B_g$
through Eq.\ref{sec:diag:pv:eq11}: the buoyancy forcing $B_g$ is determined by the
| ViewVC Help | |
| Powered by ViewVC 1.1.22 |