| 1 |
cnh |
1.1 |
\section{Potential vorticity Matlab Toolbox} |
| 2 |
|
|
\label{sec:diag:pv} |
| 3 |
|
|
\begin{rawhtml} |
| 4 |
|
|
%<!-- CMIREDIR:pvdiag_matlab: --> |
| 5 |
|
|
\end{rawhtml} |
| 6 |
|
|
|
| 7 |
cnh |
1.2 |
Author: Guillaume Maze |
| 8 |
|
|
|
| 9 |
|
|
\bigskip |
| 10 |
|
|
|
| 11 |
|
|
|
| 12 |
cnh |
1.1 |
%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 13 |
|
|
\subsection{Introduction} |
| 14 |
|
|
|
| 15 |
|
|
\noindent |
| 16 |
|
|
This section of the documentation describes a Matlab package that aims to provide useful |
| 17 |
|
|
routines to compute vorticity fields (relative, potential and planetary) and its related |
| 18 |
|
|
components. This is an offline computation. It was developed to be used in mode water |
| 19 |
|
|
studies, so that it comes with other related routines, in particular ones computing |
| 20 |
|
|
surface vertical potential vorticity fluxes. |
| 21 |
|
|
|
| 22 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 23 |
|
|
\subsection{Equations} |
| 24 |
|
|
|
| 25 |
|
|
\subsubsection{Potential Vorticity} |
| 26 |
|
|
\noindent |
| 27 |
|
|
The package computes the three components of the relative vorticity defined by: |
| 28 |
|
|
\begin{eqnarray} |
| 29 |
|
|
\omega &= \nabla \times {\bf U} = \left( \begin{array}{c} |
| 30 |
|
|
\omega_x\\ |
| 31 |
|
|
\omega_y\\ |
| 32 |
|
|
\zeta |
| 33 |
|
|
\end{array}\right) |
| 34 |
|
|
\simeq &\left( \begin{array}{c} |
| 35 |
|
|
-\frac{\partial v}{\partial z}\\ |
| 36 |
|
|
-\frac{\partial u}{\partial z}\\ |
| 37 |
|
|
\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} |
| 38 |
|
|
\end{array}\right) \label{sec:diag:pv:eq1} |
| 39 |
|
|
\end{eqnarray} |
| 40 |
|
|
where we omitted (like all across the package) the vertical velocity component. |
| 41 |
|
|
|
| 42 |
|
|
The package then computes the potential vorticity as: |
| 43 |
|
|
\begin{eqnarray} |
| 44 |
|
|
Q &=& -\frac{1}{\rho} \omega\cdot\nabla\sigma_\theta\\ |
| 45 |
|
|
Q &=& -\frac{1}{\rho}\left(\omega_x \frac{\partial \sigma_\theta}{\partial x} + |
| 46 |
|
|
\omega_y \frac{\partial \sigma_\theta}{\partial y} + |
| 47 |
|
|
\left(f+\zeta\right) \frac{\partial \sigma_\theta}{\partial z}\right) \label{sec:diag:pv:eq2} |
| 48 |
|
|
\end{eqnarray} |
| 49 |
|
|
where $\rho$ is the density, $\sigma_\theta$ is the potential density (both eventually |
| 50 |
|
|
computed by the package) and $f$ is the Coriolis parameter. |
| 51 |
|
|
|
| 52 |
|
|
The package is also able to compute the simpler planetary vorticity as: |
| 53 |
|
|
\begin{eqnarray} |
| 54 |
|
|
splQ &=& -\frac{f}{\rho}\frac{\sigma_\theta}{\partial z} \label{sec:diag:pv:eq3} |
| 55 |
|
|
\end{eqnarray} |
| 56 |
|
|
|
| 57 |
|
|
\subsubsection{Surface vertical potential vorticity fluxes} |
| 58 |
|
|
These quantities are useful in mode water studies because of the impermeability theorem |
| 59 |
|
|
which states that for a given potential density layer (embedding a mode water), the |
| 60 |
|
|
integrated PV only changes through surface input/output. |
| 61 |
|
|
|
| 62 |
|
|
Vertical PV fluxes due to frictional and diabatic processes are given by: |
| 63 |
|
|
\begin{eqnarray} |
| 64 |
|
|
J^B_z &=& -\frac{f}{h}\left( \frac{\alpha Q_{net}}{C_w}-\rho_0 \beta S_{net}\right) \label{sec:diag:pv:eq14a}\\ |
| 65 |
|
|
J^F_z &=& \frac{1}{\rho\delta_e} \vec{k}\times\tau\cdot\nabla\sigma_m \label{sec:diag:pv:eq15a} |
| 66 |
|
|
\end{eqnarray} |
| 67 |
|
|
These components can be computed with the package. Details on the variables definition and |
| 68 |
|
|
the way these fluxes are derived can be found in section |
| 69 |
|
|
\ref{sec:diag:pv:notes-flux-form}. |
| 70 |
|
|
|
| 71 |
|
|
\vspace{.5cm} |
| 72 |
|
|
\noindent |
| 73 |
|
|
We now give some simple explanations about these fluxes and how they can reduce the PV |
| 74 |
|
|
level of an oceanic potential density layer. |
| 75 |
|
|
|
| 76 |
|
|
\paragraph{Diabatic process} |
| 77 |
|
|
Let's take the PV flux due to surface buoyancy forcing from Eq.\ref{sec:diag:pv:eq14a} and |
| 78 |
|
|
simplify it as: |
| 79 |
|
|
\begin{eqnarray} |
| 80 |
|
|
J^B_z &\simeq& -\frac{\alpha f}{hC_w} Q_{net} |
| 81 |
|
|
\end{eqnarray} |
| 82 |
|
|
When the net surface heat flux $Q_{net}$ is upward i.e. negative and cooling the ocean |
| 83 |
|
|
(buoyancy loss), surface density will increase, triggering mixing which reduces the |
| 84 |
|
|
stratification and then the PV. |
| 85 |
|
|
\begin{eqnarray} |
| 86 |
|
|
Q_{net} &<& 0 \,\,\,\hbox{(upward, cooling)} \nonumber \\ |
| 87 |
|
|
J^B_z &>& 0 \,\,\,\hbox{(upward)} \nonumber \\ |
| 88 |
|
|
-\rho^{-1}\nabla\cdot J^B_z &<& 0 \,\,\, \hbox{(PV flux divergence)} \nonumber \\ |
| 89 |
|
|
PV &\searrow& \hbox{where $Q_{net}<0$}\nonumber |
| 90 |
|
|
\end{eqnarray} |
| 91 |
|
|
|
| 92 |
|
|
|
| 93 |
|
|
\paragraph{Frictional process: "Down-front" wind-stress} |
| 94 |
|
|
Now let's take the PV flux due to the "wind-driven buoyancy flux" from |
| 95 |
|
|
Eq.\ref{sec:diag:pv:eq15a} and simplify it as: |
| 96 |
|
|
\begin{eqnarray} |
| 97 |
|
|
J^F_z &=& \frac{1}{\rho\delta_e} \left( \tau_x\frac{\partial \sigma}{\partial y} - \tau_y\frac{\partial \sigma}{\partial x} \right) \\ |
| 98 |
|
|
J^F_z &\simeq& \frac{1}{\rho\delta_e} \tau_x\frac{\partial \sigma}{\partial y} \nonumber |
| 99 |
|
|
\end{eqnarray} |
| 100 |
|
|
When the wind is blowing from the east above the Gulf Stream (a region of high meridional |
| 101 |
|
|
density gradient), it induces an advection of dense water from the northern side of the GS |
| 102 |
|
|
to the southern side through Ekman currents. Then, it induces a "wind-driven" buoyancy |
| 103 |
|
|
lost and mixing which reduces the stratification and the PV. |
| 104 |
|
|
\begin{eqnarray} |
| 105 |
|
|
\vec{k}\times\tau\cdot\nabla\sigma &>& 0 \,\,\, \hbox{("Down-front" wind)} \nonumber \\ |
| 106 |
|
|
J^F_z &>& 0 \,\,\, \hbox{(upward)} \nonumber \\ |
| 107 |
|
|
-\rho^{-1}\nabla\cdot J^F_z &<& 0 \,\,\, \hbox{(PV flux divergence)} \nonumber \\ |
| 108 |
|
|
PV &\searrow& \hbox{where $\vec{k}\times\tau\cdot\nabla\sigma>0$}\nonumber |
| 109 |
|
|
\end{eqnarray} |
| 110 |
|
|
|
| 111 |
|
|
|
| 112 |
|
|
\paragraph{Diabatic versus frictional processes} |
| 113 |
|
|
A recent debate in the community arose about the relative role of these processes. Taking |
| 114 |
|
|
the ratio of Eq.\ref{sec:diag:pv:eq14a} and Eq.\ref{sec:diag:pv:eq15a} leads to: |
| 115 |
|
|
\begin{eqnarray} |
| 116 |
|
|
\frac{J^F_z}{J^B_Z} &=& \frac{ \frac{1}{\rho\delta_e} \vec{k}\times\tau\cdot\nabla\sigma } |
| 117 |
|
|
{-\frac{f}{h}\left( \frac{\alpha Q_{net}}{C_w}-\rho_0 \beta S_{net}\right)} \\ |
| 118 |
|
|
&\simeq& \frac{Q_{Ek}/\delta_e}{Q_{net}/h} \nonumber |
| 119 |
|
|
\end{eqnarray} |
| 120 |
|
|
where appears the lateral heat flux induced by Ekman currents: |
| 121 |
|
|
\begin{eqnarray} |
| 122 |
|
|
Q_{Ek} &=& -\frac{C_w}{\alpha\rho f}\vec{k}\times\tau\cdot\nabla\sigma |
| 123 |
|
|
\nonumber \\ |
| 124 |
|
|
&=& \frac{C_w}{\alpha}\delta_e\vec{u_{Ek}}\cdot\nabla\sigma |
| 125 |
|
|
\end{eqnarray} |
| 126 |
|
|
which can be computed with the package. In the aim of comparing both processes, it will be |
| 127 |
|
|
useful to plot surface net and lateral Ekman-induced heat fluxes together with PV fluxes. |
| 128 |
|
|
|
| 129 |
|
|
|
| 130 |
|
|
|
| 131 |
|
|
|
| 132 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 133 |
|
|
\subsection{Key routines} |
| 134 |
|
|
|
| 135 |
|
|
\begin{itemize} |
| 136 |
|
|
\item {\bf {\ttfamily A\_compute\_potential\_density.m}}: Compute the potential density |
| 137 |
|
|
field. Requires the potential temperature and salinity (either total or anomalous) and |
| 138 |
|
|
produces one output file with the potential density field (file prefix is {\ttfamily |
| 139 |
|
|
SIGMATHETA}). The routine uses {\ttfamily densjmd95.m} a Matlab counterpart of the |
| 140 |
|
|
MITgcm built-in function to compute the density. |
| 141 |
|
|
\item {\bf {\ttfamily B\_compute\_relative\_vorticity.m}}: Compute the three components of |
| 142 |
|
|
the relative vorticity defined in Eq.~(\ref{sec:diag:pv:eq1}). Requires the two |
| 143 |
|
|
horizontal velocity components and produces three output files with the three components |
| 144 |
|
|
(files prefix are {\ttfamily OMEGAX}, {\ttfamily OMEGAY} and {\ttfamily ZETA}). |
| 145 |
|
|
\item {\bf {\ttfamily C\_compute\_potential\_vorticity.m}}: Compute the potential |
| 146 |
|
|
vorticity without the negative ratio by the density. Two options are possible in order |
| 147 |
|
|
to compute either the full component (term into parenthesis in |
| 148 |
|
|
Eq.~\ref{sec:diag:pv:eq2}) or the planetary component ($f\partial_z\sigma_\theta$ in |
| 149 |
|
|
Eq.~\ref{sec:diag:pv:eq3}). Requires the relative vorticity components and the potential |
| 150 |
|
|
density, and produces one output file with the potential vorticity (file prefix is |
| 151 |
|
|
{\ttfamily PV} for the full term and {\ttfamily splPV} for the planetary component). |
| 152 |
|
|
\item {\bf {\ttfamily D\_compute\_potential\_vorticity.m}}: Load the field computed with |
| 153 |
|
|
\mbox{{\ttfamily C\_comp...}} and divide it by $-\rho$ to obtain the |
| 154 |
|
|
correct potential vorticity. Require the density field and after loading, overwrite the |
| 155 |
|
|
file with prefix {\ttfamily PV} or {\ttfamily splPV}. |
| 156 |
|
|
\item {\bf {\ttfamily compute\_density.m}}: Compute the density $\rho$ from the potential |
| 157 |
|
|
temperature and the salinity fields. |
| 158 |
|
|
\item {\bf {\ttfamily compute\_JFz.m}}: Compute the surface vertical PV flux due to |
| 159 |
|
|
frictional processes. Requires the wind stress components, density, potential density |
| 160 |
|
|
and Ekman layer depth (all of them, except the wind stress, may be computed with the |
| 161 |
|
|
package), and produces one output file with the PV flux $J^F_z$ (see |
| 162 |
|
|
Eq.~\ref{sec:diag:pv:eq15a}) and with {\ttfamily JFz} as a prefix. |
| 163 |
|
|
\item {\bf {\ttfamily compute\_JBz.m}}: Compute the surface vertical PV flux due to |
| 164 |
|
|
diabatic processes as: |
| 165 |
|
|
\begin{eqnarray} |
| 166 |
|
|
J^B_z &=& -\frac{f}{h}\frac{\alpha Q_{net}}{C_w} \nonumber |
| 167 |
|
|
\end{eqnarray} |
| 168 |
|
|
which is a simplified version of the full expression given in |
| 169 |
|
|
Eq.~(\ref{sec:diag:pv:eq14a}). Requires the net surface heat flux and the mixed layer depth |
| 170 |
|
|
(of which an estimation can be computed with the package), and produces one output file |
| 171 |
|
|
with the PV flux $J^B_z$ and with {\ttfamily JBz} as a prefix. |
| 172 |
|
|
\item {\bf {\ttfamily compute\_QEk.m}}: Compute the horizontal heat flux due to Ekman |
| 173 |
|
|
currents from the PV flux induced by frictional forces as: |
| 174 |
|
|
\begin{eqnarray} |
| 175 |
|
|
Q_{Ek} &=& - \frac{C_w \delta_e}{\alpha f}J^F_z\nonumber |
| 176 |
|
|
\end{eqnarray} |
| 177 |
|
|
Requires the PV flux due to frictional forces and the Ekman layer depth, and produces one |
| 178 |
|
|
output with the heat flux and with {\ttfamily QEk} as a prefix. |
| 179 |
|
|
\item {\bf {\ttfamily eg\_main\_getPV}}: A complete example of how to set up a master |
| 180 |
|
|
routine able to compute everything from the package. |
| 181 |
|
|
\end{itemize} |
| 182 |
|
|
|
| 183 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 184 |
|
|
\subsection{Technical details} |
| 185 |
|
|
|
| 186 |
|
|
\subsubsection{File name} |
| 187 |
|
|
\noindent |
| 188 |
|
|
A file name is formed by three parameters which need to be set up as global variables in Matlab |
| 189 |
|
|
before running any routines. They are: |
| 190 |
|
|
\begin{itemize} |
| 191 |
|
|
\item the prefix, ie the variable name ({\ttfamily netcdf\_UVEL} for example). This |
| 192 |
|
|
parameter is specified in the help section of all diagnostic routines. |
| 193 |
|
|
\item {\ttfamily netcdf\_domain}: the geographical domain. |
| 194 |
|
|
\item {\ttfamily netcdf\_suff}: the netcdf extension (nc or cdf for example). |
| 195 |
|
|
\end{itemize} |
| 196 |
|
|
Then, for example, if the calling Matlab routine had set up: |
| 197 |
|
|
\begin{verbatim} |
| 198 |
|
|
global netcdf_THETA netcdf_SALTanom netcdf_domain netcdf_suff |
| 199 |
|
|
netcdf_THETA = 'THETA'; |
| 200 |
|
|
netcdf_SALTanom = 'SALT'; |
| 201 |
|
|
netcdf_domain = 'north_atlantic'; |
| 202 |
|
|
netcdf_suff = 'nc'; |
| 203 |
|
|
\end{verbatim} |
| 204 |
|
|
the routine {\ttfamily A\_compute\_potential\_density.m} to compute the potential density |
| 205 |
|
|
field, will look for the files: |
| 206 |
|
|
\begin{verbatim} |
| 207 |
|
|
THETA.north_atlantic.nc |
| 208 |
|
|
SALT.north_atlantic.nc |
| 209 |
|
|
\end{verbatim} |
| 210 |
|
|
and the output file will automatically be: {\ttfamily SIGMATHETA.north\_atlantic.nc}. |
| 211 |
|
|
|
| 212 |
|
|
Otherwise indicated, output file prefix cannot be changed. |
| 213 |
|
|
|
| 214 |
|
|
\subsubsection{Path to file} |
| 215 |
|
|
\noindent |
| 216 |
|
|
All diagnostic routines look for input files in a subdirectory (relative to the Matlab |
| 217 |
|
|
routine directory) called {\ttfamily ./netcdf-files} which in turn, is supposed to contain |
| 218 |
|
|
subdirectories for each set of fields. For example, computing the potential density for |
| 219 |
|
|
the timestep 12H00 02/03/2005 will require a |
| 220 |
|
|
subdirectory with the potential temperature and salinity files like: |
| 221 |
|
|
\begin{verbatim} |
| 222 |
|
|
./netcdf-files/200501031200/THETA.north_atlantic.nc |
| 223 |
|
|
./netcdf-files/200501031200/SALT.north_atlantic.nc |
| 224 |
|
|
\end{verbatim} |
| 225 |
|
|
\noindent |
| 226 |
|
|
The output file {\ttfamily SIGMATHETA.north\_atlantic.nc} will be created in {\ttfamily |
| 227 |
|
|
./netcdf-files/200501031200/}. |
| 228 |
|
|
\noindent |
| 229 |
|
|
All diagnostic routines take as argument the name of the timestep subdirectory into |
| 230 |
|
|
{\ttfamily ./netcdf-files}. |
| 231 |
|
|
|
| 232 |
|
|
\subsubsection{Grids} |
| 233 |
|
|
\noindent |
| 234 |
|
|
With MITgcm numerical outputs, velocity and tracer fields may not be defined on the same |
| 235 |
|
|
grid. Usually, UVEL and VVEL are defined on a C-grid but when interpolated from a |
| 236 |
|
|
cube-sphere simulation they are defined on a A-grid. When it is needed, routines allow |
| 237 |
|
|
to set up a global variable which define the grid to use. |
| 238 |
|
|
|
| 239 |
|
|
|
| 240 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 241 |
|
|
\subsection{Notes on the flux form of the PV equation and vertical PV fluxes} |
| 242 |
|
|
\label{sec:diag:pv:notes-flux-form} |
| 243 |
|
|
|
| 244 |
|
|
\subsubsection{Flux form of the PV equation} |
| 245 |
|
|
The conservative flux form of the potential vorticity equation is: |
| 246 |
|
|
\begin{eqnarray} |
| 247 |
|
|
\frac{\partial \rho Q}{\partial t} + \nabla \cdot \vec{J} &=& 0 \label{sec:diag:pv:eq4} |
| 248 |
|
|
\end{eqnarray} |
| 249 |
|
|
where the potential vorticity $Q$ is given by the Eq.\ref{sec:diag:pv:eq2}. |
| 250 |
|
|
|
| 251 |
|
|
The generalized flux vector of potential vorticity is: |
| 252 |
|
|
\begin{eqnarray} |
| 253 |
|
|
\vec{J} &=& \rho Q \vec{u} + \vec{N_Q} |
| 254 |
|
|
\end{eqnarray} |
| 255 |
|
|
which allows to rewrite Eq.\ref{sec:diag:pv:eq4} as: |
| 256 |
|
|
\begin{eqnarray} |
| 257 |
|
|
\frac{DQ}{dt} &=& -\frac{1}{\rho}\nabla\cdot\vec{N_Q} \label{sec:diag:pv:eq5} |
| 258 |
|
|
\end{eqnarray} |
| 259 |
|
|
where the nonadvective PV flux $\vec{N_Q}$ is given by: |
| 260 |
|
|
\begin{eqnarray} |
| 261 |
|
|
\vec{N_Q} &=& -\frac{\rho_0}{g}B\vec{\omega_a} + \vec{F}\times\nabla\sigma_\theta |
| 262 |
|
|
\label{sec:diag:pv:eq6} |
| 263 |
|
|
\end{eqnarray} |
| 264 |
|
|
|
| 265 |
|
|
Its first component is linked to the buoyancy forcing\footnote{ |
| 266 |
|
|
Note that introducing B into Eq.\ref{sec:diag:pv:eq6} yields to: |
| 267 |
|
|
\begin{eqnarray} |
| 268 |
|
|
\vec{N_Q} &=& \omega_a \frac{D \sigma_\theta}{dt} + \vec{F}\times\nabla\sigma_\theta |
| 269 |
|
|
\end{eqnarray}}: |
| 270 |
|
|
\begin{eqnarray} |
| 271 |
|
|
B &=& -\frac{g}{\rho_o}\frac{D \sigma_\theta}{dt} |
| 272 |
|
|
\end{eqnarray} |
| 273 |
|
|
and the second one to the nonconservative body forces per unit mass: |
| 274 |
|
|
\begin{eqnarray} |
| 275 |
|
|
\vec{F} &=& \frac{D \vec{u}}{dt} + 2\Omega\times\vec{u} + \nabla p |
| 276 |
|
|
\end{eqnarray} |
| 277 |
|
|
|
| 278 |
|
|
\subsubsection{Determining the PV flux at the ocean's surface} |
| 279 |
|
|
In the context of mode water study, we're particularly interested in how the PV may be |
| 280 |
|
|
reduced by surface PV fluxes because a mode water is characterised by a low PV level. |
| 281 |
|
|
Considering the volume limited by two $iso-\sigma_\theta$, PV |
| 282 |
|
|
flux is limited to surface processes and then vertical component of $\vec{N_Q}$. It is |
| 283 |
|
|
supposed that $B$ and $\vec{F}$ will only be nonzero in the mixed layer (of depth $h$ and |
| 284 |
|
|
variable density $\sigma_m$) exposed to mechanical forcing by the wind and buoyancy fluxes |
| 285 |
|
|
through the ocean's surface. |
| 286 |
|
|
|
| 287 |
|
|
Given the assumption of a mechanical forcing confined to a thin surface Ekman layer (of |
| 288 |
|
|
depth $\delta_e$, eventually computed by the package) and of hydrostatic and geostrophic |
| 289 |
|
|
balances, we can write: |
| 290 |
|
|
\begin{eqnarray} |
| 291 |
|
|
\vec{u_g} &=& \frac{1}{\rho f} \vec{k}\times\nabla p \\ |
| 292 |
|
|
\frac{\partial p_m}{\partial z} &=& -\sigma_m g \\ |
| 293 |
|
|
\frac{\partial \sigma_m}{\partial t} + \vec{u}_m\cdot\nabla\sigma_m &=& -\frac{\rho_0}{g}B \label{sec:diag:pv:eq7} |
| 294 |
|
|
\end{eqnarray} |
| 295 |
|
|
where: |
| 296 |
|
|
\begin{eqnarray} |
| 297 |
|
|
\vec{u}_m &=& \vec{u}_g + \vec{u}_{Ek} + o(R_o) \label{sec:diag:pv:eq8} |
| 298 |
|
|
\end{eqnarray} |
| 299 |
|
|
is the full velocity field composed by the geostrophic current $\vec{u}_g$ and the Ekman |
| 300 |
|
|
drift: |
| 301 |
|
|
\begin{eqnarray} |
| 302 |
|
|
\vec{u}_{Ek} &=& -\frac{1}{\rho f}\vec{k}\times\frac{\partial \tau}{\partial z} \label{sec:diag:pv:eq9} |
| 303 |
|
|
\end{eqnarray} |
| 304 |
|
|
(where $\tau$ is the wind stress) and last by other ageostrophic components of $o(R_o)$ |
| 305 |
|
|
which are neglected. |
| 306 |
|
|
|
| 307 |
|
|
Partitioning the buoyancy forcing as: |
| 308 |
|
|
\begin{eqnarray} |
| 309 |
|
|
B &=& B_g + B_{Ek} \label{sec:diag:pv:eq10} |
| 310 |
|
|
\end{eqnarray} |
| 311 |
|
|
and using Eq.\ref{sec:diag:pv:eq8} and Eq.\ref{sec:diag:pv:eq9}, the Eq.\ref{sec:diag:pv:eq7} becomes: |
| 312 |
|
|
\begin{eqnarray} |
| 313 |
|
|
\frac{\partial \sigma_m}{\partial t} + \vec{u}_g\cdot\nabla\sigma_m &=& -\frac{\rho_0}{g} B_g |
| 314 |
|
|
\end{eqnarray} |
| 315 |
|
|
revealing the "wind-driven buoyancy forcing": |
| 316 |
|
|
\begin{eqnarray} |
| 317 |
|
|
B_{Ek} &=& \frac{g}{\rho_0}\frac{1}{\rho f}\left(\vec{k}\times\frac{\partial \tau}{\partial z}\right)\cdot\nabla\sigma_m |
| 318 |
|
|
\end{eqnarray} |
| 319 |
|
|
Note that since: |
| 320 |
|
|
\begin{eqnarray} |
| 321 |
|
|
\frac{\partial B_g}{\partial z} &=& \frac{\partial}{\partial z}\left(-\frac{g}{\rho_0}\vec{u_g}\cdot\nabla\sigma_m\right) |
| 322 |
|
|
= -\frac{g}{\rho_0}\frac{\partial \vec{u_g}}{\partial z}\cdot\nabla\sigma_m |
| 323 |
|
|
= 0 |
| 324 |
|
|
\end{eqnarray} |
| 325 |
|
|
$B_g$ must be uniform throughout the depth of the mixed layer and then being related to |
| 326 |
|
|
the surface buoyancy flux by integrating Eq.\ref{sec:diag:pv:eq10} through the mixed layer: |
| 327 |
|
|
\begin{eqnarray} |
| 328 |
|
|
\int_{-h}^0B\,dz &=\, hB_g + \int_{-h}^0B_{Ek}\,dz \,=& \mathcal{B}_{in} \label{sec:diag:pv:eq11} |
| 329 |
|
|
\end{eqnarray} |
| 330 |
|
|
where $\mathcal{B}_{in}$ is the vertically integrated surface buoyancy (in)flux: |
| 331 |
|
|
\begin{eqnarray} |
| 332 |
|
|
\mathcal{B}_{in} &=& \frac{g}{\rho_o}\left( \frac{\alpha Q_{net}}{C_w} - \rho_0\beta S_{net}\right) |
| 333 |
jmc |
1.3 |
%\label{sec:diag:pv:eq12} |
| 334 |
cnh |
1.1 |
\end{eqnarray} |
| 335 |
|
|
with $\alpha\simeq 2.5\times10^{-4}\, K^{-1}$ the thermal expansion coefficient (computed |
| 336 |
|
|
by the package otherwise), $C_w=4187J.kg^{-1}.K^{-1}$ the specific heat of seawater, |
| 337 |
|
|
$Q_{net}[W.m^{-2}]$ the net heat surface flux (positive downward, warming the ocean), |
| 338 |
|
|
$\beta[PSU^{-1}]$ the saline contraction coefficient, and |
| 339 |
|
|
$S_{net}=S*(E-P)[PSU.m.s^{-1}]$ the net freshwater surface flux with $S[PSU]$ |
| 340 |
|
|
the surface salinity and $(E-P)[m.s^{-1}]$ the fresh water flux. |
| 341 |
|
|
|
| 342 |
|
|
Introducing the body force in the Ekman layer: |
| 343 |
|
|
\begin{eqnarray} |
| 344 |
|
|
F_z &=& \frac{1}{\rho}\frac{\partial \tau}{\partial z} |
| 345 |
|
|
\end{eqnarray} |
| 346 |
|
|
the vertical component of Eq.\ref{sec:diag:pv:eq6} is: |
| 347 |
|
|
\begin{eqnarray} |
| 348 |
|
|
\vec{N_Q}_z &=& -\frac{\rho_0}{g}(B_g+B_{Ek})\omega_z |
| 349 |
|
|
+ \frac{1}{\rho} |
| 350 |
|
|
\left( \frac{\partial \tau}{\partial z}\times\nabla\sigma_\theta \right)\cdot\vec{k} |
| 351 |
|
|
\nonumber \\ |
| 352 |
|
|
&=& -\frac{\rho_0}{g}B_g\omega_z |
| 353 |
|
|
-\frac{\rho_0}{g} |
| 354 |
|
|
\left(\frac{g}{\rho_0}\frac{1}{\rho f}\vec{k}\times\frac{\partial \tau}{\partial z} |
| 355 |
|
|
\cdot\nabla\sigma_m\right)\omega_z |
| 356 |
|
|
+ \frac{1}{\rho} |
| 357 |
|
|
\left( \frac{\partial \tau}{\partial z}\times\nabla\sigma_\theta \right)\cdot\vec{k} |
| 358 |
|
|
\nonumber \\ |
| 359 |
|
|
&=& -\frac{\rho_0}{g}B_g\omega_z |
| 360 |
|
|
+ \left(1-\frac{\omega_z}{f}\right)\left(\frac{1}{\rho}\frac{\partial \tau}{\partial z} |
| 361 |
|
|
\times\nabla\sigma_\theta \right)\cdot\vec{k} |
| 362 |
|
|
\end{eqnarray} |
| 363 |
|
|
and given the assumption that $\omega_z\simeq f$, the second term vanishes and we obtain: |
| 364 |
|
|
\begin{eqnarray} |
| 365 |
jmc |
1.3 |
\vec{N_Q}_z &=& -\frac{\rho_0}{g}f B_g %\label{sec:diag:pv:eq12} |
| 366 |
cnh |
1.1 |
\end{eqnarray} |
| 367 |
|
|
Note that the wind-stress forcing does not appear explicitly here but is implicit in $B_g$ |
| 368 |
|
|
through Eq.\ref{sec:diag:pv:eq11}: the buoyancy forcing $B_g$ is determined by the |
| 369 |
|
|
difference between the integrated surface buoyancy flux $\mathcal{B}_{in}$ and the |
| 370 |
|
|
integrated "wind-driven buoyancy forcing": |
| 371 |
|
|
\begin{eqnarray} |
| 372 |
|
|
B_g &=& \frac{1}{h}\left( \mathcal{B}_{in} - \int_{-h}^0B_{Ek}dz \right) \nonumber \\ |
| 373 |
|
|
&=& \frac{1}{h}\frac{g}{\rho_0}\left( \frac{\alpha Q_{net}}{C_w} - \rho_0 \beta S_{net}\right) |
| 374 |
|
|
- \frac{1}{h}\int_{-h}^0 |
| 375 |
|
|
\frac{g}{\rho_0}\frac{1}{\rho f}\vec{k}\times \frac{\partial \tau}{\partial z} \cdot\nabla\sigma_m dz |
| 376 |
|
|
\nonumber \\ |
| 377 |
|
|
&=& \frac{1}{h}\frac{g}{\rho_0}\left( \frac{\alpha Q_{net}}{C_w} - \rho_0 \beta S_{net}\right) |
| 378 |
|
|
- \frac{g}{\rho_0}\frac{1}{\rho f \delta_e}\vec{k}\times\tau\cdot\nabla\sigma_m |
| 379 |
|
|
\end{eqnarray} |
| 380 |
|
|
Finally, from Eq.\ref{sec:diag:pv:eq6}, the vertical surface flux of PV may be written as: |
| 381 |
|
|
\begin{eqnarray} |
| 382 |
|
|
\vec{N_Q}_z &=& J^B_z + J^F_z \label{sec:diag:pv:eq13} \\ |
| 383 |
|
|
J^B_z &=& -\frac{f}{h}\left( \frac{\alpha Q_{net}}{C_w}-\rho_0 \beta S_{net}\right) \label{sec:diag:pv:eq14}\\ |
| 384 |
|
|
J^F_z &=& \frac{1}{\rho\delta_e} \vec{k}\times\tau\cdot\nabla\sigma_m \label{sec:diag:pv:eq15} |
| 385 |
|
|
\end{eqnarray} |