/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Diff of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.8 by cnh, Mon Oct 22 11:55:47 2001 UTC revision 1.37 by molod, Wed Jun 28 16:48:19 2006 UTC
# Line 17  you are ready to try implementing the co Line 17  you are ready to try implementing the co
17    
18  \section{Where to find information}  \section{Where to find information}
19  \label{sect:whereToFindInfo}  \label{sect:whereToFindInfo}
20    \begin{rawhtml}
21  A web site is maintained for release 1 (Sealion) of MITgcm:  <!-- CMIREDIR:whereToFindInfo: -->
22  \begin{verbatim}  \end{rawhtml}
23  http://mitgcm.org/sealion  
24  \end{verbatim}  There is a web-archived support mailing list for the model that
25  Here you will find an on-line version of this document, a  you can email at \texttt{MITgcm-support@mitgcm.org} or browse at:
26  ``browsable'' copy of the code and a searchable database of the model  \begin{rawhtml} <A href=http://mitgcm.org/mailman/listinfo/mitgcm-support/ target="idontexist"> \end{rawhtml}
 and site, as well as links for downloading the model and  
 documentation, to data-sources and other related sites.  
   
 There is also a support news group for the model that you can email at  
 \texttt{support@mitgcm.org} or browse at:  
27  \begin{verbatim}  \begin{verbatim}
28  news://mitgcm.org/mitgcm.support  http://mitgcm.org/mailman/listinfo/mitgcm-support/
29    http://mitgcm.org/pipermail/mitgcm-support/
30  \end{verbatim}  \end{verbatim}
31  A mail to the email list will reach all the developers and be archived  \begin{rawhtml} </A> \end{rawhtml}
 on the newsgroup. A users email list will be established at some time  
 in the future.  
32    
33  \section{Obtaining the code}  \section{Obtaining the code}
34  \label{sect:obtainingCode}  \label{sect:obtainingCode}
35    \begin{rawhtml}
36    <!-- CMIREDIR:obtainingCode: -->
37    \end{rawhtml}
38    
39  MITgcm can be downloaded from our system by following  MITgcm can be downloaded from our system by following
40  the instructions below. As a courtesy we ask that you send e-mail to us at  the instructions below. As a courtesy we ask that you send e-mail to us at
41  \begin{rawhtml} <A href=mailto:support@mitgcm.org> \end{rawhtml}  \begin{rawhtml} <A href=mailto:MITgcm-support@mitgcm.org> \end{rawhtml}
42  support@mitgcm.org  MITgcm-support@mitgcm.org
43  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
44  to enable us to keep track of who's using the model and in what application.  to enable us to keep track of who's using the model and in what application.
45  You can download the model two ways:  You can download the model two ways:
46    
47  \begin{enumerate}  \begin{enumerate}
48  \item Using CVS software. CVS is a freely available source code managment  \item Using CVS software. CVS is a freely available source code management
49  tool. To use CVS you need to have the software installed. Many systems  tool. To use CVS you need to have the software installed. Many systems
50  come with CVS pre-installed, otherwise good places to look for  come with CVS pre-installed, otherwise good places to look for
51  the software for a particular platform are  the software for a particular platform are
# Line 67  provide easy support for maintenance upd Line 64  provide easy support for maintenance upd
64    
65  \end{enumerate}  \end{enumerate}
66    
67    \subsection{Method 1 - Checkout from CVS}
68    \label{sect:cvs_checkout}
69    
70  If CVS is available on your system, we strongly encourage you to use it. CVS  If CVS is available on your system, we strongly encourage you to use it. CVS
71  provides an efficient and elegant way of organizing your code and keeping  provides an efficient and elegant way of organizing your code and keeping
72  track of your changes. If CVS is not available on your machine, you can also  track of your changes. If CVS is not available on your machine, you can also
73  download a tar file.  download a tar file.
74    
75  Before you can use CVS, the following environment variable has to be set in  Before you can use CVS, the following environment variable(s) should
76  your .cshrc or .tcshrc:  be set within your shell.  For a csh or tcsh shell, put the following
77  \begin{verbatim}  \begin{verbatim}
78  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/u0/gcmpack  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack
79  \end{verbatim}  \end{verbatim}
80    in your \texttt{.cshrc} or \texttt{.tcshrc} file.  For bash or sh
81    shells, put:
82    \begin{verbatim}
83    % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
84    \end{verbatim}
85    in your \texttt{.profile} or \texttt{.bashrc} file.
86    
87    
88  To start using CVS, register with the MITgcm CVS server using command:  To get MITgcm through CVS, first register with the MITgcm CVS server
89    using command:
90  \begin{verbatim}  \begin{verbatim}
91  % cvs login ( CVS password: cvsanon )  % cvs login ( CVS password: cvsanon )
92  \end{verbatim}  \end{verbatim}
93  You only need to do ``cvs login'' once.  You only need to do a ``cvs login'' once.
94    
95  To obtain the sources for release1 type:  To obtain the latest sources type:
96  \begin{verbatim}  \begin{verbatim}
97  % cvs co -d directory -P -r release1 MITgcmUV  % cvs co MITgcm
98  \end{verbatim}  \end{verbatim}
99    or to get a specific release type:
100    \begin{verbatim}
101    % cvs co -P -r checkpoint52i_post  MITgcm
102    \end{verbatim}
103    The MITgcm web site contains further directions concerning the source
104    code and CVS.  It also contains a web interface to our CVS archive so
105    that one may easily view the state of files, revisions, and other
106    development milestones:
107    \begin{rawhtml} <A href="http://mitgcm.org/download" target="idontexist"> \end{rawhtml}
108    \begin{verbatim}
109    http://mitgcm.org/source_code.html
110    \end{verbatim}
111    \begin{rawhtml} </A> \end{rawhtml}
112    
113  This creates a directory called \textit{directory}. If \textit{directory}  As a convenience, the MITgcm CVS server contains aliases which are
114  exists this command updates your code based on the repository. Each  named subsets of the codebase.  These aliases can be especially
115  directory in the source tree contains a directory \textit{CVS}. This  helpful when used over slow internet connections or on machines with
116  information is required by CVS to keep track of your file versions with  restricted storage space.  Table \ref{tab:cvsModules} contains a list
117  respect to the repository. Don't edit the files in \textit{CVS}!  of CVS aliases
118  You can also use CVS to download code updates.  More extensive  \begin{table}[htb]
119  information on using CVS for maintaining MITgcm code can be found    \centering
120  \begin{rawhtml} <A href=http://mitgcm.org/usingcvstoget.html target="idontexist"> \end{rawhtml}    \begin{tabular}[htb]{|lp{3.25in}|}\hline
121        \textbf{Alias Name}    &  \textbf{Information (directories) Contained}  \\\hline
122        \texttt{MITgcm\_code}  &  Only the source code -- none of the verification examples.  \\
123        \texttt{MITgcm\_verif\_basic}
124        &  Source code plus a small set of the verification examples
125        (\texttt{global\_ocean.90x40x15}, \texttt{aim.5l\_cs}, \texttt{hs94.128x64x5},
126        \texttt{front\_relax}, and \texttt{plume\_on\_slope}).  \\
127        \texttt{MITgcm\_verif\_atmos}  &  Source code plus all of the atmospheric examples.  \\
128        \texttt{MITgcm\_verif\_ocean}  &  Source code plus all of the oceanic examples.  \\
129        \texttt{MITgcm\_verif\_all}    &  Source code plus all of the
130        verification examples. \\\hline
131      \end{tabular}
132      \caption{MITgcm CVS Modules}
133      \label{tab:cvsModules}
134    \end{table}
135    
136    The checkout process creates a directory called \texttt{MITgcm}. If
137    the directory \texttt{MITgcm} exists this command updates your code
138    based on the repository. Each directory in the source tree contains a
139    directory \texttt{CVS}. This information is required by CVS to keep
140    track of your file versions with respect to the repository. Don't edit
141    the files in \texttt{CVS}!  You can also use CVS to download code
142    updates.  More extensive information on using CVS for maintaining
143    MITgcm code can be found
144    \begin{rawhtml} <A href="http://mitgcm.org/usingcvstoget.html" target="idontexist"> \end{rawhtml}
145  here  here
146  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
147  .  .
148    It is important to note that the CVS aliases in Table
149    \ref{tab:cvsModules} cannot be used in conjunction with the CVS
150    \texttt{-d DIRNAME} option.  However, the \texttt{MITgcm} directories
151    they create can be changed to a different name following the check-out:
152    \begin{verbatim}
153       %  cvs co MITgcm_verif_basic
154       %  mv MITgcm MITgcm_verif_basic
155    \end{verbatim}
156    
157    \subsubsection{Upgrading from an earlier version}
158    
159    If you already have an earlier version of the code you can ``upgrade''
160    your copy instead of downloading the entire repository again. First,
161    ``cd'' (change directory) to the top of your working copy:
162    \begin{verbatim}
163    % cd MITgcm
164    \end{verbatim}
165    and then issue the cvs update command such as:
166    \begin{verbatim}
167    % cvs -q update -r checkpoint52i_post -d -P
168    \end{verbatim}
169    This will update the ``tag'' to ``checkpoint52i\_post'', add any new
170    directories (-d) and remove any empty directories (-P). The -q option
171    means be quiet which will reduce the number of messages you'll see in
172    the terminal. If you have modified the code prior to upgrading, CVS
173    will try to merge your changes with the upgrades. If there is a
174    conflict between your modifications and the upgrade, it will report
175    that file with a ``C'' in front, e.g.:
176    \begin{verbatim}
177    C model/src/ini_parms.F
178    \end{verbatim}
179    If the list of conflicts scrolled off the screen, you can re-issue the
180    cvs update command and it will report the conflicts. Conflicts are
181    indicated in the code by the delimites ``$<<<<<<<$'', ``======='' and
182    ``$>>>>>>>$''. For example,
183    {\small
184    \begin{verbatim}
185    <<<<<<< ini_parms.F
186         & bottomDragLinear,myOwnBottomDragCoefficient,
187    =======
188         & bottomDragLinear,bottomDragQuadratic,
189    >>>>>>> 1.18
190    \end{verbatim}
191    }
192    means that you added ``myOwnBottomDragCoefficient'' to a namelist at
193    the same time and place that we added ``bottomDragQuadratic''. You
194    need to resolve this conflict and in this case the line should be
195    changed to:
196    {\small
197    \begin{verbatim}
198         & bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient,
199    \end{verbatim}
200    }
201    and the lines with the delimiters ($<<<<<<$,======,$>>>>>>$) be deleted.
202    Unless you are making modifications which exactly parallel
203    developments we make, these types of conflicts should be rare.
204    
205    \paragraph*{Upgrading to the current pre-release version}
206    
207    We don't make a ``release'' for every little patch and bug fix in
208    order to keep the frequency of upgrades to a minimum. However, if you
209    have run into a problem for which ``we have already fixed in the
210    latest code'' and we haven't made a ``tag'' or ``release'' since that
211    patch then you'll need to get the latest code:
212    \begin{verbatim}
213    % cvs -q update -A -d -P
214    \end{verbatim}
215    Unlike, the ``check-out'' and ``update'' procedures above, there is no
216    ``tag'' or release name. The -A tells CVS to upgrade to the
217    very latest version. As a rule, we don't recommend this since you
218    might upgrade while we are in the processes of checking in the code so
219    that you may only have part of a patch. Using this method of updating
220    also means we can't tell what version of the code you are working
221    with. So please be sure you understand what you're doing.
222    
223    \subsection{Method 2 - Tar file download}
 \paragraph*{Conventional download method}  
224  \label{sect:conventionalDownload}  \label{sect:conventionalDownload}
225    
226  If you do not have CVS on your system, you can download the model as a  If you do not have CVS on your system, you can download the model as a
227  tar file from the reference web site at:  tar file from the web site at:
228  \begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml}
229  \begin{verbatim}  \begin{verbatim}
230  http://mitgcm.org/download/  http://mitgcm.org/download/
# Line 114  http://mitgcm.org/download/ Line 232  http://mitgcm.org/download/
232  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
233  The tar file still contains CVS information which we urge you not to  The tar file still contains CVS information which we urge you not to
234  delete; even if you do not use CVS yourself the information can help  delete; even if you do not use CVS yourself the information can help
235  us if you should need to send us your copy of the code.  us if you should need to send us your copy of the code.  If a recent
236    tar file does not exist, then please contact the developers through
237    the
238    \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
239    MITgcm-support@mitgcm.org
240    \begin{rawhtml} </A> \end{rawhtml}
241    mailing list.
242    
243  \section{Model and directory structure}  \section{Model and directory structure}
244    \begin{rawhtml}
245  The ``numerical'' model is contained within a execution environment support  <!-- CMIREDIR:directory_structure: -->
246  wrapper. This wrapper is designed to provide a general framework for  \end{rawhtml}
247  grid-point models. MITgcmUV is a specific numerical model that uses the  
248  framework. Under this structure the model is split into execution  The ``numerical'' model is contained within a execution environment
249  environment support code and conventional numerical model code. The  support wrapper. This wrapper is designed to provide a general
250  execution environment support code is held under the \textit{eesupp}  framework for grid-point models. MITgcmUV is a specific numerical
251  directory. The grid point model code is held under the \textit{model}  model that uses the framework. Under this structure the model is split
252  directory. Code execution actually starts in the \textit{eesupp} routines  into execution environment support code and conventional numerical
253  and not in the \textit{model} routines. For this reason the top-level  model code. The execution environment support code is held under the
254  \textit{MAIN.F} is in the \textit{eesupp/src} directory. In general,  \texttt{eesupp} directory. The grid point model code is held under the
255  end-users should not need to worry about this level. The top-level routine  \texttt{model} directory. Code execution actually starts in the
256  for the numerical part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F%  \texttt{eesupp} routines and not in the \texttt{model} routines. For
257  }. Here is a brief description of the directory structure of the model under  this reason the top-level \texttt{MAIN.F} is in the
258  the root tree (a detailed description is given in section 3: Code structure).  \texttt{eesupp/src} directory. In general, end-users should not need
259    to worry about this level. The top-level routine for the numerical
260  \begin{itemize}  part of the code is in \texttt{model/src/THE\_MODEL\_MAIN.F}. Here is
261  \item \textit{bin}: this directory is initially empty. It is the default  a brief description of the directory structure of the model under the
262  directory in which to compile the code.  root tree (a detailed description is given in section 3: Code
263    structure).
264  \item \textit{diags}: contains the code relative to time-averaged  
265  diagnostics. It is subdivided into two subdirectories \textit{inc} and  \begin{itemize}
266  \textit{src} that contain include files (*.\textit{h} files) and fortran  
267  subroutines (*.\textit{F} files), respectively.  \item \texttt{doc}: contains brief documentation notes.
268      
269  \item \textit{doc}: contains brief documentation notes.  \item \texttt{eesupp}: contains the execution environment source code.
270      Also subdivided into two subdirectories \texttt{inc} and
271  \item \textit{eesupp}: contains the execution environment source code. Also    \texttt{src}.
272  subdivided into two subdirectories \textit{inc} and \textit{src}.    
273    \item \texttt{model}: this directory contains the main source code.
274  \item \textit{exe}: this directory is initially empty. It is the default    Also subdivided into two subdirectories \texttt{inc} and
275  directory in which to execute the code.    \texttt{src}.
276      
277  \item \textit{model}: this directory contains the main source code. Also  \item \texttt{pkg}: contains the source code for the packages. Each
278  subdivided into two subdirectories \textit{inc} and \textit{src}.    package corresponds to a subdirectory. For example, \texttt{gmredi}
279      contains the code related to the Gent-McWilliams/Redi scheme,
280  \item \textit{pkg}: contains the source code for the packages. Each package    \texttt{aim} the code relative to the atmospheric intermediate
281  corresponds to a subdirectory. For example, \textit{gmredi} contains the    physics. The packages are described in detail in chapter \ref{chap.packagesI}.
282  code related to the Gent-McWilliams/Redi scheme, \textit{aim} the code    
283  relative to the atmospheric intermediate physics. The packages are described  \item \texttt{tools}: this directory contains various useful tools.
284  in detail in section 3.    For example, \texttt{genmake2} is a script written in csh (C-shell)
285      that should be used to generate your makefile. The directory
286  \item \textit{tools}: this directory contains various useful tools. For    \texttt{adjoint} contains the makefile specific to the Tangent
287  example, \textit{genmake} is a script written in csh (C-shell) that should    linear and Adjoint Compiler (TAMC) that generates the adjoint code.
288  be used to generate your makefile. The directory \textit{adjoint} contains    The latter is described in detail in part \ref{chap.ecco}.
289  the makefile specific to the Tangent linear and Adjoint Compiler (TAMC) that    This directory also contains the subdirectory build\_options, which
290  generates the adjoint code. The latter is described in details in part V.    contains the `optfiles' with the compiler options for the different
291      compilers and machines that can run MITgcm.
292  \item \textit{utils}: this directory contains various utilities. The    
293  subdirectory \textit{knudsen2} contains code and a makefile that  \item \texttt{utils}: this directory contains various utilities. The
294  compute coefficients of the polynomial approximation to the knudsen    subdirectory \texttt{knudsen2} contains code and a makefile that
295  formula for an ocean nonlinear equation of state. The \textit{matlab}    compute coefficients of the polynomial approximation to the knudsen
296  subdirectory contains matlab scripts for reading model output directly    formula for an ocean nonlinear equation of state. The
297  into matlab. \textit{scripts} contains C-shell post-processing    \texttt{matlab} subdirectory contains matlab scripts for reading
298  scripts for joining processor-based and tiled-based model output.    model output directly into matlab. \texttt{scripts} contains C-shell
299      post-processing scripts for joining processor-based and tiled-based
300  \item \textit{verification}: this directory contains the model examples. See    model output. The subdirectory exch2 contains the code needed for
301  section \ref{sect:modelExamples}.    the exch2 package to work with different combinations of domain
302      decompositions.
303      
304    \item \texttt{verification}: this directory contains the model
305      examples. See section \ref{sect:modelExamples}.
306    
307    \item \texttt{jobs}: contains sample job scripts for running MITgcm.
308      
309    \item \texttt{lsopt}: Line search code used for optimization.
310      
311    \item \texttt{optim}: Interface between MITgcm and line search code.
312      
313  \end{itemize}  \end{itemize}
314    
315  \section{Example experiments}  \section[Building MITgcm]{Building the code}
 \label{sect:modelExamples}  
   
 The MITgcm distribution comes with a set of twenty-four pre-configured  
 numerical experiments. Some of these examples experiments are tests of  
 individual parts of the model code, but many are fully fledged numerical  
 simulations. A few of the examples are used for tutorial documentation  
 in sections \ref{sec:eg-baro} - \ref{sec:eg-global}. The other examples  
 follow the same general structure as the tutorial examples. However,  
 they only include brief instructions in a text file called {\it README}.  
 The examples are located in subdirectories under  
 the directory \textit{verification}. Each  
 example is briefly described below.  
   
 \subsection{Full list of model examples}  
   
 \begin{enumerate}  
 \item \textit{exp0} - single layer, ocean double gyre (barotropic with  
 free-surface). This experiment is described in detail in section  
 \ref{sec:eg-baro}.  
   
 \item \textit{exp1} - Four layer, ocean double gyre. This experiment is described in detail in section  
 \ref{sec:eg-baroc}.  
   
 \item \textit{exp2} - 4x4 degree global ocean simulation with steady  
 climatological forcing. This experiment is described in detail in section  
 \ref{sec:eg-global}.  
   
 \item \textit{exp4} - Flow over a Gaussian bump in open-water or channel  
 with open boundaries.  
   
 \item \textit{exp5} - Inhomogenously forced ocean convection in a doubly  
 periodic box.  
   
 \item \textit{front\_relax} - Relaxation of an ocean thermal front (test for  
 Gent/McWilliams scheme). 2D (Y-Z).  
   
 \item \textit{internal wave} - Ocean internal wave forced by open boundary  
 conditions.  
   
 \item \textit{natl\_box} - Eastern subtropical North Atlantic with KPP  
 scheme; 1 month integration  
   
 \item \textit{hs94.1x64x5} - Zonal averaged atmosphere using Held and Suarez  
 '94 forcing.  
   
 \item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and Suarez  
 '94 forcing.  
   
 \item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and  
 Suarez '94 forcing on the cubed sphere.  
   
 \item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics. Global  
 Zonal Mean configuration, 1x64x5 resolution.  
   
 \item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate Atmospheric  
 physics, equatorial Slice configuration.  
 2D (X-Z).  
   
 \item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric  
 physics. 3D Equatorial Channel configuration.  
   
 \item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics.  
 Global configuration, on latitude longitude grid with 128x64x5 grid points  
 ($2.8^\circ{\rm degree}$ resolution).  
   
 \item \textit{adjustment.128x64x1} Barotropic adjustment  
 problem on latitude longitude grid with 128x64 grid points ($2.8^\circ{\rm degree}$ resolution).  
   
 \item \textit{adjustment.cs-32x32x1}  
 Barotropic adjustment  
 problem on cube sphere grid with 32x32 points per face ( roughly  
 $2.8^\circ{\rm degree}$ resolution).  
   
 \item \textit{advect\_cs} Two-dimensional passive advection test on  
 cube sphere grid.  
   
 \item \textit{advect\_xy} Two-dimensional (horizontal plane) passive advection  
 test on cartesian grid.  
   
 \item \textit{advect\_yz} Two-dimensional (vertical plane) passive advection test on cartesian grid.  
   
 \item \textit{carbon} Simple passive tracer experiment. Includes derivative  
 calculation. Described in detail in section \ref{sec:eg-carbon-ad}.  
   
 \item \textit{flt\_example} Example of using float package.  
   
 \item \textit{global\_ocean.90x40x15} Global circulation with  
 GM, flux boundary conditions and poles.  
   
 \item \textit{solid-body.cs-32x32x1} Solid body rotation test for cube sphere  
 grid.  
   
 \end{enumerate}  
   
 \subsection{Directory structure of model examples}  
   
 Each example directory has the following subdirectories:  
   
 \begin{itemize}  
 \item \textit{code}: contains the code particular to the example. At a  
 minimum, this directory includes the following files:  
   
 \begin{itemize}  
 \item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to the  
 ``execution environment'' part of the code. The default version is located  
 in \textit{eesupp/inc}.  
   
 \item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to the  
 ``numerical model'' part of the code. The default version is located in  
 \textit{model/inc}.  
   
 \item \textit{code/SIZE.h}: declares size of underlying computational grid.  
 The default version is located in \textit{model/inc}.  
 \end{itemize}  
   
 In addition, other include files and subroutines might be present in \textit{%  
 code} depending on the particular experiment. See section 2 for more details.  
   
 \item \textit{input}: contains the input data files required to run the  
 example. At a mimimum, the \textit{input} directory contains the following  
 files:  
   
 \begin{itemize}  
 \item \textit{input/data}: this file, written as a namelist, specifies the  
 main parameters for the experiment.  
   
 \item \textit{input/data.pkg}: contains parameters relative to the packages  
 used in the experiment.  
   
 \item \textit{input/eedata}: this file contains ``execution environment''  
 data. At present, this consists of a specification of the number of threads  
 to use in $X$ and $Y$ under multithreaded execution.  
 \end{itemize}  
   
 In addition, you will also find in this directory the forcing and topography  
 files as well as the files describing the initial state of the experiment.  
 This varies from experiment to experiment. See section 2 for more details.  
   
 \item \textit{results}: this directory contains the output file \textit{%  
 output.txt} produced by the simulation example. This file is useful for  
 comparison with your own output when you run the experiment.  
 \end{itemize}  
   
 Once you have chosen the example you want to run, you are ready to compile  
 the code.  
   
 \section{Building the code}  
316  \label{sect:buildingCode}  \label{sect:buildingCode}
317    \begin{rawhtml}
318    <!-- CMIREDIR:buildingCode: -->
319    \end{rawhtml}
320    
321    To compile the code, we use the \texttt{make} program. This uses a
322    file (\texttt{Makefile}) that allows us to pre-process source files,
323    specify compiler and optimization options and also figures out any
324    file dependencies. We supply a script (\texttt{genmake2}), described
325    in section \ref{sect:genmake}, that automatically creates the
326    \texttt{Makefile} for you. You then need to build the dependencies and
327    compile the code.
328    
329    As an example, assume that you want to build and run experiment
330    \texttt{verification/exp2}. The are multiple ways and places to
331    actually do this but here let's build the code in
332    \texttt{verification/exp2/build}:
333    \begin{verbatim}
334    % cd verification/exp2/build
335    \end{verbatim}
336    First, build the \texttt{Makefile}:
337    \begin{verbatim}
338    % ../../../tools/genmake2 -mods=../code
339    \end{verbatim}
340    The command line option tells \texttt{genmake} to override model source
341    code with any files in the directory \texttt{../code/}.
342    
343    On many systems, the \texttt{genmake2} program will be able to
344    automatically recognize the hardware, find compilers and other tools
345    within the user's path (``\texttt{echo \$PATH}''), and then choose an
346    appropriate set of options from the files (``optfiles'') contained in
347    the \texttt{tools/build\_options} directory.  Under some
348    circumstances, a user may have to create a new ``optfile'' in order to
349    specify the exact combination of compiler, compiler flags, libraries,
350    and other options necessary to build a particular configuration of
351    MITgcm.  In such cases, it is generally helpful to read the existing
352    ``optfiles'' and mimic their syntax.
353    
354    Through the MITgcm-support list, the MITgcm developers are willing to
355    provide help writing or modifing ``optfiles''.  And we encourage users
356    to post new ``optfiles'' (particularly ones for new machines or
357    architectures) to the
358    \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
359    MITgcm-support@mitgcm.org
360    \begin{rawhtml} </A> \end{rawhtml}
361    list.
362    
363  To compile the code, we use the {\em make} program. This uses a file  To specify an optfile to \texttt{genmake2}, the syntax is:
 ({\em Makefile}) that allows us to pre-process source files, specify  
 compiler and optimization options and also figures out any file  
 dependancies. We supply a script ({\em genmake}), described in section  
 \ref{sect:genmake}, that automatically creates the {\em Makefile} for  
 you. You then need to build the dependancies and compile the code.  
   
 As an example, let's assume that you want to build and run experiment  
 \textit{verification/exp2}. The are multiple ways and places to actually  
 do this but here let's build the code in  
 \textit{verification/exp2/input}:  
 \begin{verbatim}  
 % cd verification/exp2/input  
 \end{verbatim}  
 First, build the {\em Makefile}:  
 \begin{verbatim}  
 % ../../../tools/genmake -mods=../code  
 \end{verbatim}  
 The command line option tells {\em genmake} to override model source  
 code with any files in the directory {\em ./code/}.  
   
 If there is no \textit{.genmakerc} in the \textit{input} directory, you have  
 to use the following options when invoking \textit{genmake}:  
364  \begin{verbatim}  \begin{verbatim}
365  % ../../../tools/genmake  -mods=../code  % ../../../tools/genmake2 -mods=../code -of /path/to/optfile
366  \end{verbatim}  \end{verbatim}
367    
368  Next, create the dependancies:  Once a \texttt{Makefile} has been generated, we create the
369    dependencies with the command:
370  \begin{verbatim}  \begin{verbatim}
371  % make depend  % make depend
372  \end{verbatim}  \end{verbatim}
373  This modifies {\em Makefile} by attaching a [long] list of files on  This modifies the \texttt{Makefile} by attaching a (usually, long)
374  which other files depend. The purpose of this is to reduce  list of files upon which other files depend. The purpose of this is to
375  re-compilation if and when you start to modify the code. {\tt make  reduce re-compilation if and when you start to modify the code. The
376  depend} also created links from the model source to this directory.  {\tt make depend} command also creates links from the model source to
377    this directory.  It is important to note that the {\tt make depend}
378    stage will occasionally produce warnings or errors since the
379    dependency parsing tool is unable to find all of the necessary header
380    files (\textit{eg.}  \texttt{netcdf.inc}).  In these circumstances, it
381    is usually OK to ignore the warnings/errors and proceed to the next
382    step.
383    
384  Now compile the code:  Next one can compile the code using:
385  \begin{verbatim}  \begin{verbatim}
386  % make  % make
387  \end{verbatim}  \end{verbatim}
388  The {\tt make} command creates an executable called \textit{mitgcmuv}.  The {\tt make} command creates an executable called \texttt{mitgcmuv}.
389    Additional make ``targets'' are defined within the makefile to aid in
390    the production of adjoint and other versions of MITgcm.  On SMP
391    (shared multi-processor) systems, the build process can often be sped
392    up appreciably using the command:
393    \begin{verbatim}
394    % make -j 2
395    \end{verbatim}
396    where the ``2'' can be replaced with a number that corresponds to the
397    number of CPUs available.
398    
399  Now you are ready to run the model. General instructions for doing so are  Now you are ready to run the model. General instructions for doing so are
400  given in section \ref{sect:runModel}. Here, we can run the model with:  given in section \ref{sect:runModel}. Here, we can run the model by
401    first creating links to all the input files:
402    \begin{verbatim}
403    ln -s ../input/* .
404    \end{verbatim}
405    and then calling the executable with:
406  \begin{verbatim}  \begin{verbatim}
407  ./mitgcmuv > output.txt  ./mitgcmuv > output.txt
408  \end{verbatim}  \end{verbatim}
409  where we are re-directing the stream of text output to the file {\em  where we are re-directing the stream of text output to the file
410  output.txt}.  \texttt{output.txt}.
   
411    
412  \subsection{Building/compiling the code elsewhere}  \subsection{Building/compiling the code elsewhere}
413    
# Line 385  executable in the {\em input} directory Line 416  executable in the {\em input} directory
416  convenience. You can also configure and compile the code in other  convenience. You can also configure and compile the code in other
417  locations, for example on a scratch disk with out having to copy the  locations, for example on a scratch disk with out having to copy the
418  entire source tree. The only requirement to do so is you have {\tt  entire source tree. The only requirement to do so is you have {\tt
419  genmake} in your path or you know the absolute path to {\tt genmake}.    genmake2} in your path or you know the absolute path to {\tt
420      genmake2}.
421    
422  The following sections outline some possible methods of organizing you  The following sections outline some possible methods of organizing
423  source and data.  your source and data.
424    
425  \subsubsection{Building from the {\em ../code directory}}  \subsubsection{Building from the {\em ../code directory}}
426    
427  This is just as simple as building in the {\em input/} directory:  This is just as simple as building in the {\em input/} directory:
428  \begin{verbatim}  \begin{verbatim}
429  % cd verification/exp2/code  % cd verification/exp2/code
430  % ../../../tools/genmake  % ../../../tools/genmake2
431  % make depend  % make depend
432  % make  % make
433  \end{verbatim}  \end{verbatim}
# Line 406  files must be in the same place. If you Line 438  files must be in the same place. If you
438  % cp ../code/mitgcmuv ./  % cp ../code/mitgcmuv ./
439  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
440  \end{verbatim}  \end{verbatim}
441  or if you will be making muliple runs with the same executable:  or if you will be making multiple runs with the same executable:
442  \begin{verbatim}  \begin{verbatim}
443  % cd ../  % cd ../
444  % cp -r input run1  % cp -r input run1
# Line 418  or if you will be making muliple runs wi Line 450  or if you will be making muliple runs wi
450  \subsubsection{Building from a new directory}  \subsubsection{Building from a new directory}
451    
452  Since the {\em input} directory contains input files it is often more  Since the {\em input} directory contains input files it is often more
453  useful to keep {\em input} prestine and build in a new directory  useful to keep {\em input} pristine and build in a new directory
454  within {\em verification/exp2/}:  within {\em verification/exp2/}:
455  \begin{verbatim}  \begin{verbatim}
456  % cd verification/exp2  % cd verification/exp2
457  % mkdir build  % mkdir build
458  % cd build  % cd build
459  % ../../../tools/genmake -mods=../code  % ../../../tools/genmake2 -mods=../code
460  % make depend  % make depend
461  % make  % make
462  \end{verbatim}  \end{verbatim}
# Line 446  running in a new directory each time mig Line 478  running in a new directory each time mig
478  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
479  \end{verbatim}  \end{verbatim}
480    
481  \subsubsection{Building from on a scratch disk}  \subsubsection{Building on a scratch disk}
482    
483  Model object files and output data can use up large amounts of disk  Model object files and output data can use up large amounts of disk
484  space so it is often the case that you will be operating on a large  space so it is often the case that you will be operating on a large
# Line 454  scratch disk. Assuming the model source Line 486  scratch disk. Assuming the model source
486  following commands will build the model in {\em /scratch/exp2-run1}:  following commands will build the model in {\em /scratch/exp2-run1}:
487  \begin{verbatim}  \begin{verbatim}
488  % cd /scratch/exp2-run1  % cd /scratch/exp2-run1
489  % ~/MITgcm/tools/genmake -rootdir=~/MITgcm -mods=~/MITgcm/verification/exp2/code  % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \
490      -mods=~/MITgcm/verification/exp2/code
491  % make depend  % make depend
492  % make  % make
493  \end{verbatim}  \end{verbatim}
# Line 470  the one experiment: Line 503  the one experiment:
503  % cd /scratch/exp2  % cd /scratch/exp2
504  % mkdir build  % mkdir build
505  % cd build  % cd build
506  % ~/MITgcm/tools/genmake -rootdir=~/MITgcm -mods=~/MITgcm/verification/exp2/code  % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \
507      -mods=~/MITgcm/verification/exp2/code
508  % make depend  % make depend
509  % make  % make
510  % cd ../  % cd ../
# Line 480  the one experiment: Line 514  the one experiment:
514  \end{verbatim}  \end{verbatim}
515    
516    
517    \subsection{Using \texttt{genmake2}}
 \subsection{\textit{genmake}}  
518  \label{sect:genmake}  \label{sect:genmake}
519    
520  To compile the code, use the script \textit{genmake} located in the \textit{%  To compile the code, first use the program \texttt{genmake2} (located
521  tools} directory. \textit{genmake} is a script that generates the makefile.  in the \texttt{tools} directory) to generate a Makefile.
522  It has been written so that the code can be compiled on a wide diversity of  \texttt{genmake2} is a shell script written to work with all
523  machines and systems. However, if it doesn't work the first time on your  ``sh''--compatible shells including bash v1, bash v2, and Bourne.
524  platform, you might need to edit certain lines of \textit{genmake} in the  Internally, \texttt{genmake2} determines the locations of needed
525  section containing the setups for the different machines. The file is  files, the compiler, compiler options, libraries, and Unix tools.  It
526  structured like this:  relies upon a number of ``optfiles'' located in the
527  \begin{verbatim}  \texttt{tools/build\_options} directory.
528          .  
529          .  The purpose of the optfiles is to provide all the compilation options
530          .  for particular ``platforms'' (where ``platform'' roughly means the
531  general instructions (machine independent)  combination of the hardware and the compiler) and code configurations.
532          .  Given the combinations of possible compilers and library dependencies
533          .  ({\it eg.}  MPI and NetCDF) there may be numerous optfiles available
534          .  for a single machine.  The naming scheme for the majority of the
535      - setup machine 1  optfiles shipped with the code is
536      - setup machine 2  \begin{center}
537      - setup machine 3    {\bf OS\_HARDWARE\_COMPILER }
538      - setup machine 4  \end{center}
539         etc  where
540          .  \begin{description}
541          .  \item[OS] is the name of the operating system (generally the
542          .    lower-case output of the {\tt 'uname'} command)
543  \end{verbatim}  \item[HARDWARE] is a string that describes the CPU type and
544      corresponds to output from the  {\tt 'uname -m'} command:
545  For example, the setup corresponding to a DEC alpha machine is reproduced    \begin{description}
546  here:    \item[ia32] is for ``x86'' machines such as i386, i486, i586, i686,
547  \begin{verbatim}      and athlon
548    case OSF1+mpi:    \item[ia64] is for Intel IA64 systems (eg. Itanium, Itanium2)
549      echo "Configuring for DEC Alpha"    \item[amd64] is AMD x86\_64 systems
550      set CPP        = ( '/usr/bin/cpp -P' )    \item[ppc] is for Mac PowerPC systems
551      set DEFINES    = ( ${DEFINES}  '-DTARGET_DEC -DWORDLENGTH=1' )    \end{description}
552      set KPP        = ( 'kapf' )  \item[COMPILER] is the compiler name (generally, the name of the
553      set KPPFILES   = ( 'main.F' )    FORTRAN executable)
554      set KFLAGS1    = ( '-scan=132 -noconc -cmp=' )  \end{description}
555      set FC         = ( 'f77' )  
556      set FFLAGS     = ( '-convert big_endian -r8 -extend_source -automatic -call_shared -notransform_loops -align dcommons' )  In many cases, the default optfiles are sufficient and will result in
557      set FOPTIM     = ( '-O5 -fast -tune host -inline all' )  usable Makefiles.  However, for some machines or code configurations,
558      set NOOPTFLAGS = ( '-O0' )  new ``optfiles'' must be written. To create a new optfile, it is
559      set LIBS       = ( '-lfmpi -lmpi -lkmp_osfp10 -pthread' )  generally best to start with one of the defaults and modify it to suit
560      set NOOPTFILES = ( 'barrier.F different_multiple.F external_fields_load.F')  your needs.  Like \texttt{genmake2}, the optfiles are all written
561      set RMFILES    = ( '*.p.out' )  using a simple ``sh''--compatible syntax.  While nearly all variables
562      breaksw  used within \texttt{genmake2} may be specified in the optfiles, the
563  \end{verbatim}  critical ones that should be defined are:
564    
565  Typically, these are the lines that you might need to edit to make \textit{%  \begin{description}
566  genmake} work on your platform if it doesn't work the first time. \textit{%  \item[FC] the FORTRAN compiler (executable) to use
567  genmake} understands several options that are described here:  \item[DEFINES] the command-line DEFINE options passed to the compiler
568    \item[CPP] the C pre-processor to use
569  \begin{itemize}  \item[NOOPTFLAGS] options flags for special files that should not be
570  \item -rootdir=dir    optimized
571    \end{description}
572  indicates where the model root directory is relative to the directory where  
573  you are compiling. This option is not needed if you compile in the \textit{%  For example, the optfile for a typical Red Hat Linux machine (``ia32''
574  bin} directory (which is the default compilation directory) or within the  architecture) using the GCC (g77) compiler is
575  \textit{verification} tree.  \begin{verbatim}
576    FC=g77
577  \item -mods=dir1,dir2,...  DEFINES='-D_BYTESWAPIO -DWORDLENGTH=4'
578    CPP='cpp  -traditional -P'
579  indicates the relative or absolute paths directories where the sources  NOOPTFLAGS='-O0'
580  should take precedence over the default versions (located in \textit{model},  #  For IEEE, use the "-ffloat-store" option
581  \textit{eesupp},...). Typically, this option is used when running the  if test "x$IEEE" = x ; then
582  examples, see below.      FFLAGS='-Wimplicit -Wunused -Wuninitialized'
583        FOPTIM='-O3 -malign-double -funroll-loops'
584  \item -enable=pkg1,pkg2,...  else
585        FFLAGS='-Wimplicit -Wunused -ffloat-store'
586  enables packages source code \textit{pkg1}, \textit{pkg2},... when creating      FOPTIM='-O0 -malign-double'
587  the makefile.  fi
588    \end{verbatim}
589  \item -disable=pkg1,pkg2,...  
590    If you write an optfile for an unrepresented machine or compiler, you
591  disables packages source code \textit{pkg1}, \textit{pkg2},... when creating  are strongly encouraged to submit the optfile to the MITgcm project
592  the makefile.  for inclusion.  Please send the file to the
593    \begin{rawhtml} <A href="mail-to:MITgcm-support@mitgcm.org"> \end{rawhtml}
594  \item -platform=machine  \begin{center}
595      MITgcm-support@mitgcm.org
596  specifies the platform for which you want the makefile. In general, you  \end{center}
597  won't need this option. \textit{genmake} will select the right machine for  \begin{rawhtml} </A> \end{rawhtml}
598  you (the one you're working on!). However, this option is useful if you have  mailing list.
 a choice of several compilers on one machine and you want to use the one  
 that is not the default (ex: \texttt{pgf77} instead of \texttt{f77} under  
 Linux).  
   
 \item -mpi  
599    
600  this is used when you want to run the model in parallel processing mode  In addition to the optfiles, \texttt{genmake2} supports a number of
601  under mpi (see section on parallel computation for more details).  helpful command-line options.  A complete list of these options can be
602    obtained from:
603    \begin{verbatim}
604    % genmake2 -h
605    \end{verbatim}
606    
607    The most important command-line options are:
608    \begin{description}
609      
610    \item[\texttt{--optfile=/PATH/FILENAME}] specifies the optfile that
611      should be used for a particular build.
612      
613      If no "optfile" is specified (either through the command line or the
614      MITGCM\_OPTFILE environment variable), genmake2 will try to make a
615      reasonable guess from the list provided in {\em
616        tools/build\_options}.  The method used for making this guess is
617      to first determine the combination of operating system and hardware
618      (eg. "linux\_ia32") and then find a working FORTRAN compiler within
619      the user's path.  When these three items have been identified,
620      genmake2 will try to find an optfile that has a matching name.
621      
622    \item[\texttt{--pdefault='PKG1 PKG2 PKG3 ...'}] specifies the default
623      set of packages to be used.  The normal order of precedence for
624      packages is as follows:
625      \begin{enumerate}
626      \item If available, the command line (\texttt{--pdefault}) settings
627        over-rule any others.
628    
629      \item Next, \texttt{genmake2} will look for a file named
630        ``\texttt{packages.conf}'' in the local directory or in any of the
631        directories specified with the \texttt{--mods} option.
632        
633      \item Finally, if neither of the above are available,
634        \texttt{genmake2} will use the \texttt{/pkg/pkg\_default} file.
635      \end{enumerate}
636      
637    \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file
638      used for packages.
639      
640      If not specified, the default dependency file {\em pkg/pkg\_depend}
641      is used.  The syntax for this file is parsed on a line-by-line basis
642      where each line containes either a comment ("\#") or a simple
643      "PKGNAME1 (+|-)PKGNAME2" pairwise rule where the "+" or "-" symbol
644      specifies a "must be used with" or a "must not be used with"
645      relationship, respectively.  If no rule is specified, then it is
646      assumed that the two packages are compatible and will function
647      either with or without each other.
648      
649    \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or
650      automatic differentiation options file to be used.  The file is
651      analogous to the ``optfile'' defined above but it specifies
652      information for the AD build process.
653      
654      The default file is located in {\em
655        tools/adjoint\_options/adjoint\_default} and it defines the "TAF"
656      and "TAMC" compilers.  An alternate version is also available at
657      {\em tools/adjoint\_options/adjoint\_staf} that selects the newer
658      "STAF" compiler.  As with any compilers, it is helpful to have their
659      directories listed in your {\tt \$PATH} environment variable.
660      
661    \item[\texttt{--mods='DIR1 DIR2 DIR3 ...'}] specifies a list of
662      directories containing ``modifications''.  These directories contain
663      files with names that may (or may not) exist in the main MITgcm
664      source tree but will be overridden by any identically-named sources
665      within the ``MODS'' directories.
666      
667      The order of precedence for this "name-hiding" is as follows:
668      \begin{itemize}
669      \item ``MODS'' directories (in the order given)
670      \item Packages either explicitly specified or provided by default
671        (in the order given)
672      \item Packages included due to package dependencies (in the order
673        that that package dependencies are parsed)
674      \item The "standard dirs" (which may have been specified by the
675        ``-standarddirs'' option)
676      \end{itemize}
677      
678    \item[\texttt{--mpi}] This option enables certain MPI features (using
679      CPP \texttt{\#define}s) within the code and is necessary for MPI
680      builds (see Section \ref{sect:mpi-build}).
681      
682    \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of
683      soft-links and other bugs common with the \texttt{make} versions
684      provided by commercial Unix vendors, GNU \texttt{make} (sometimes
685      called \texttt{gmake}) should be preferred.  This option provides a
686      means for specifying the make executable to be used.
687      
688    \item[\texttt{--bash=/path/to/sh}] On some (usually older UNIX)
689      machines, the ``bash'' shell is unavailable.  To run on these
690      systems, \texttt{genmake2} can be invoked using an ``sh'' (that is,
691      a Bourne, POSIX, or compatible) shell.  The syntax in these
692      circumstances is:
693      \begin{center}
694        \texttt{\%  /bin/sh genmake2 -bash=/bin/sh [...options...]}
695      \end{center}
696      where \texttt{/bin/sh} can be replaced with the full path and name
697      of the desired shell.
698    
699    \end{description}
700    
701    
702    \subsection{Building with MPI}
703    \label{sect:mpi-build}
704    
705    Building MITgcm to use MPI libraries can be complicated due to the
706    variety of different MPI implementations available, their dependencies
707    or interactions with different compilers, and their often ad-hoc
708    locations within file systems.  For these reasons, its generally a
709    good idea to start by finding and reading the documentation for your
710    machine(s) and, if necessary, seeking help from your local systems
711    administrator.
712    
713  \item -jam  The steps for building MITgcm with MPI support are:
714    \begin{enumerate}
715      
716    \item Determine the locations of your MPI-enabled compiler and/or MPI
717      libraries and put them into an options file as described in Section
718      \ref{sect:genmake}.  One can start with one of the examples in:
719      \begin{rawhtml} <A
720        href="http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm/tools/build_options/">
721      \end{rawhtml}
722      \begin{center}
723        \texttt{MITgcm/tools/build\_options/}
724      \end{center}
725      \begin{rawhtml} </A> \end{rawhtml}
726      such as \texttt{linux\_ia32\_g77+mpi\_cg01} or
727      \texttt{linux\_ia64\_efc+mpi} and then edit it to suit the machine at
728      hand.  You may need help from your user guide or local systems
729      administrator to determine the exact location of the MPI libraries.
730      If libraries are not installed, MPI implementations and related
731      tools are available including:
732      \begin{itemize}
733      \item \begin{rawhtml} <A
734          href="http://www-unix.mcs.anl.gov/mpi/mpich/">
735        \end{rawhtml}
736        MPICH
737        \begin{rawhtml} </A> \end{rawhtml}
738    
739      \item \begin{rawhtml} <A
740          href="http://www.lam-mpi.org/">
741        \end{rawhtml}
742        LAM/MPI
743        \begin{rawhtml} </A> \end{rawhtml}
744    
745      \item \begin{rawhtml} <A
746          href="http://www.osc.edu/~pw/mpiexec/">
747        \end{rawhtml}
748        MPIexec
749        \begin{rawhtml} </A> \end{rawhtml}
750      \end{itemize}
751      
752    \item Build the code with the \texttt{genmake2} \texttt{-mpi} option
753      (see Section \ref{sect:genmake}) using commands such as:
754    {\footnotesize \begin{verbatim}
755      %  ../../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE
756      %  make depend
757      %  make
758    \end{verbatim} }
759      
760    \item Run the code with the appropriate MPI ``run'' or ``exec''
761      program provided with your particular implementation of MPI.
762      Typical MPI packages such as MPICH will use something like:
763    \begin{verbatim}
764      %  mpirun -np 4 -machinefile mf ./mitgcmuv
765    \end{verbatim}
766      Sightly more complicated scripts may be needed for many machines
767      since execution of the code may be controlled by both the MPI
768      library and a job scheduling and queueing system such as PBS,
769      LoadLeveller, Condor, or any of a number of similar tools.  A few
770      example scripts (those used for our \begin{rawhtml} <A
771        href="http://mitgcm.org/testing.html"> \end{rawhtml}regular
772      verification runs\begin{rawhtml} </A> \end{rawhtml}) are available
773      at:
774      \begin{rawhtml} <A
775        href="http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm_contrib/test_scripts/">
776      \end{rawhtml}
777      {\footnotesize \tt
778        http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm\_contrib/test\_scripts/ }
779      \begin{rawhtml} </A> \end{rawhtml}
780    
781  this is used when you want to run the model in parallel processing mode  \end{enumerate}
 under jam (see section on parallel computation for more details).  
 \end{itemize}  
782    
783  For some of the examples, there is a file called \textit{.genmakerc} in the  An example of the above process on the MITgcm cluster (``cg01'') using
784  \textit{input} directory that has the relevant \textit{genmake} options for  the GNU g77 compiler and the mpich MPI library is:
 that particular example. In this way you don't need to type the options when  
 invoking \textit{genmake}.  
785    
786    {\footnotesize \begin{verbatim}
787      %  cd MITgcm/verification/exp5
788      %  mkdir build
789      %  cd build
790      %  ../../../tools/genmake2 -mpi -mods=../code \
791           -of=../../../tools/build_options/linux_ia32_g77+mpi_cg01
792      %  make depend
793      %  make
794      %  cd ../input
795      %  /usr/local/pkg/mpi/mpi-1.2.4..8a-gm-1.5/g77/bin/mpirun.ch_gm \
796           -machinefile mf --gm-kill 5 -v -np 2  ../build/mitgcmuv
797    \end{verbatim} }
798    
799  \section{Running the model}  \section[Running MITgcm]{Running the model in prognostic mode}
800  \label{sect:runModel}  \label{sect:runModel}
801    \begin{rawhtml}
802    <!-- CMIREDIR:runModel: -->
803    \end{rawhtml}
804    
805    If compilation finished succesfully (section \ref{sect:buildingCode})
806    then an executable called \texttt{mitgcmuv} will now exist in the
807    local directory.
808    
809  If compilation finished succesfuully (section \ref{sect:buildModel})  To run the model as a single process (\textit{ie.} not in parallel)
810  then an executable called {\em mitgcmuv} will now exist in the local  simply type:
 directory.  
   
 To run the model as a single process (ie. not in parallel) simply  
 type:  
811  \begin{verbatim}  \begin{verbatim}
812  % ./mitgcmuv  % ./mitgcmuv
813  \end{verbatim}  \end{verbatim}
# Line 602  do!). The above command will spew out ma Line 817  do!). The above command will spew out ma
817  your screen.  This output contains details such as parameter values as  your screen.  This output contains details such as parameter values as
818  well as diagnostics such as mean Kinetic energy, largest CFL number,  well as diagnostics such as mean Kinetic energy, largest CFL number,
819  etc. It is worth keeping this text output with the binary output so we  etc. It is worth keeping this text output with the binary output so we
820  normally re-direct the {\em stdout} stream as follows:  normally re-direct the \texttt{stdout} stream as follows:
821  \begin{verbatim}  \begin{verbatim}
822  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
823  \end{verbatim}  \end{verbatim}
824    In the event that the model encounters an error and stops, it is very
825  For the example experiments in {\em vericication}, an example of the  helpful to include the last few line of this \texttt{output.txt} file
826  output is kept in {\em results/output.txt} for comparison. You can compare  along with the (\texttt{stderr}) error message within any bug reports.
827  your {\em output.txt} with this one to check that the set-up works.  
828    For the example experiments in \texttt{verification}, an example of the
829    output is kept in \texttt{results/output.txt} for comparison. You can
830    compare your \texttt{output.txt} with the corresponding one for that
831    experiment to check that the set-up works.
832    
833    
834    
835  \subsection{Output files}  \subsection{Output files}
836    
837  The model produces various output files. At a minimum, the instantaneous  The model produces various output files and, when using \texttt{mnc},
838  ``state'' of the model is written out, which is made of the following files:  sometimes even directories.  Depending upon the I/O package(s)
839    selected at compile time (either \texttt{mdsio} or \texttt{mnc} or
840    both as determined by \texttt{code/packages.conf}) and the run-time
841    flags set (in \texttt{input/data.pkg}), the following output may
842    appear.
843    
844    
845    \subsubsection{MDSIO output files}
846    
847    The ``traditional'' output files are generated by the \texttt{mdsio}
848    package.  At a minimum, the instantaneous ``state'' of the model is
849    written out, which is made of the following files:
850    
851  \begin{itemize}  \begin{itemize}
852  \item \textit{U.00000nIter} - zonal component of velocity field (m/s and $>  \item \texttt{U.00000nIter} - zonal component of velocity field (m/s
853  0 $ eastward).    and positive eastward).
854    
855  \item \textit{V.00000nIter} - meridional component of velocity field (m/s  \item \texttt{V.00000nIter} - meridional component of velocity field
856  and $> 0$ northward).    (m/s and positive northward).
857    
858  \item \textit{W.00000nIter} - vertical component of velocity field (ocean:  \item \texttt{W.00000nIter} - vertical component of velocity field
859  m/s and $> 0$ upward, atmosphere: Pa/s and $> 0$ towards increasing pressure    (ocean: m/s and positive upward, atmosphere: Pa/s and positive
860  i.e. downward).    towards increasing pressure i.e. downward).
861    
862  \item \textit{T.00000nIter} - potential temperature (ocean: $^{0}$C,  \item \texttt{T.00000nIter} - potential temperature (ocean:
863  atmosphere: $^{0}$K).    $^{\circ}\mathrm{C}$, atmosphere: $^{\circ}\mathrm{K}$).
864    
865  \item \textit{S.00000nIter} - ocean: salinity (psu), atmosphere: water vapor  \item \texttt{S.00000nIter} - ocean: salinity (psu), atmosphere: water
866  (g/kg).    vapor (g/kg).
867    
868  \item \textit{Eta.00000nIter} - ocean: surface elevation (m), atmosphere:  \item \texttt{Eta.00000nIter} - ocean: surface elevation (m),
869  surface pressure anomaly (Pa).    atmosphere: surface pressure anomaly (Pa).
870  \end{itemize}  \end{itemize}
871    
872  The chain \textit{00000nIter} consists of ten figures that specify the  The chain \texttt{00000nIter} consists of ten figures that specify the
873  iteration number at which the output is written out. For example, \textit{%  iteration number at which the output is written out. For example,
874  U.0000000300} is the zonal velocity at iteration 300.  \texttt{U.0000000300} is the zonal velocity at iteration 300.
875    
876  In addition, a ``pickup'' or ``checkpoint'' file called:  In addition, a ``pickup'' or ``checkpoint'' file called:
877    
878  \begin{itemize}  \begin{itemize}
879  \item \textit{pickup.00000nIter}  \item \texttt{pickup.00000nIter}
880  \end{itemize}  \end{itemize}
881    
882  is written out. This file represents the state of the model in a condensed  is written out. This file represents the state of the model in a condensed
# Line 654  form and is used for restarting the inte Line 884  form and is used for restarting the inte
884  there is an additional ``pickup'' file:  there is an additional ``pickup'' file:
885    
886  \begin{itemize}  \begin{itemize}
887  \item \textit{pickup\_cd.00000nIter}  \item \texttt{pickup\_cd.00000nIter}
888  \end{itemize}  \end{itemize}
889    
890  containing the D-grid velocity data and that has to be written out as well  containing the D-grid velocity data and that has to be written out as well
891  in order to restart the integration. Rolling checkpoint files are the same  in order to restart the integration. Rolling checkpoint files are the same
892  as the pickup files but are named differently. Their name contain the chain  as the pickup files but are named differently. Their name contain the chain
893  \textit{ckptA} or \textit{ckptB} instead of \textit{00000nIter}. They can be  \texttt{ckptA} or \texttt{ckptB} instead of \texttt{00000nIter}. They can be
894  used to restart the model but are overwritten every other time they are  used to restart the model but are overwritten every other time they are
895  output to save disk space during long integrations.  output to save disk space during long integrations.
896    
897    
898    
899    \subsubsection{MNC output files}
900    
901    Unlike the \texttt{mdsio} output, the \texttt{mnc}--generated output
902    is usually (though not necessarily) placed within a subdirectory with
903    a name such as \texttt{mnc\_test\_\${DATE}\_\${SEQ}}.  The files
904    within this subdirectory are all in the ``self-describing'' netCDF
905    format and can thus be browsed and/or plotted using tools such as:
906    \begin{itemize}
907    \item \texttt{ncdump} is a utility which is typically included
908      with every netCDF install:
909      \begin{rawhtml} <A href="http://www.unidata.ucar.edu/packages/netcdf/"> \end{rawhtml}
910    \begin{verbatim}
911    http://www.unidata.ucar.edu/packages/netcdf/
912    \end{verbatim}
913      \begin{rawhtml} </A> \end{rawhtml} and it converts the netCDF
914      binaries into formatted ASCII text files.
915    
916    \item \texttt{ncview} utility is a very convenient and quick way
917      to plot netCDF data and it runs on most OSes:
918      \begin{rawhtml} <A href="http://meteora.ucsd.edu/~pierce/ncview_home_page.html"> \end{rawhtml}
919    \begin{verbatim}
920    http://meteora.ucsd.edu/~pierce/ncview_home_page.html
921    \end{verbatim}
922      \begin{rawhtml} </A> \end{rawhtml}
923      
924    \item MatLAB(c) and other common post-processing environments provide
925      various netCDF interfaces including:
926      \begin{rawhtml} <A href="http://mexcdf.sourceforge.net/"> \end{rawhtml}
927    \begin{verbatim}
928    http://mexcdf.sourceforge.net/
929    \end{verbatim}
930      \begin{rawhtml} </A> \end{rawhtml}
931      \begin{rawhtml} <A href="http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html"> \end{rawhtml}
932    \begin{verbatim}
933    http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html
934    \end{verbatim}
935      \begin{rawhtml} </A> \end{rawhtml}
936    \end{itemize}
937    
938    
939  \subsection{Looking at the output}  \subsection{Looking at the output}
940    
941  All the model data are written according to a ``meta/data'' file format.  The ``traditional'' or mdsio model data are written according to a
942  Each variable is associated with two files with suffix names \textit{.data}  ``meta/data'' file format.  Each variable is associated with two files
943  and \textit{.meta}. The \textit{.data} file contains the data written in  with suffix names \texttt{.data} and \texttt{.meta}. The
944  binary form (big\_endian by default). The \textit{.meta} file is a  \texttt{.data} file contains the data written in binary form
945  ``header'' file that contains information about the size and the structure  (big\_endian by default). The \texttt{.meta} file is a ``header'' file
946  of the \textit{.data} file. This way of organizing the output is  that contains information about the size and the structure of the
947  particularly useful when running multi-processors calculations. The base  \texttt{.data} file. This way of organizing the output is particularly
948  version of the model includes a few matlab utilities to read output files  useful when running multi-processors calculations. The base version of
949  written in this format. The matlab scripts are located in the directory  the model includes a few matlab utilities to read output files written
950  \textit{utils/matlab} under the root tree. The script \textit{rdmds.m} reads  in this format. The matlab scripts are located in the directory
951  the data. Look at the comments inside the script to see how to use it.  \texttt{utils/matlab} under the root tree. The script \texttt{rdmds.m}
952    reads the data. Look at the comments inside the script to see how to
953    use it.
954    
955  Some examples of reading and visualizing some output in {\em Matlab}:  Some examples of reading and visualizing some output in {\em Matlab}:
956  \begin{verbatim}  \begin{verbatim}
# Line 693  Some examples of reading and visualizing Line 967  Some examples of reading and visualizing
967  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end
968  \end{verbatim}  \end{verbatim}
969    
970  \section{Doing it yourself: customizing the code}  Similar scripts for netCDF output (\texttt{rdmnc.m}) are available and
971    they are described in Section \ref{sec:pkg:mnc}.
 When you are ready to run the model in the configuration you want, the  
 easiest thing is to use and adapt the setup of the case studies experiment  
 (described previously) that is the closest to your configuration. Then, the  
 amount of setup will be minimized. In this section, we focus on the setup  
 relative to the ''numerical model'' part of the code (the setup relative to  
 the ''execution environment'' part is covered in the parallel implementation  
 section) and on the variables and parameters that you are likely to change.  
   
 \subsection{Configuration and setup}  
   
 The CPP keys relative to the ''numerical model'' part of the code are all  
 defined and set in the file \textit{CPP\_OPTIONS.h }in the directory \textit{%  
 model/inc }or in one of the \textit{code }directories of the case study  
 experiments under \textit{verification.} The model parameters are defined  
 and declared in the file \textit{model/inc/PARAMS.h }and their default  
 values are set in the routine \textit{model/src/set\_defaults.F. }The  
 default values can be modified in the namelist file \textit{data }which  
 needs to be located in the directory where you will run the model. The  
 parameters are initialized in the routine \textit{model/src/ini\_parms.F}.  
 Look at this routine to see in what part of the namelist the parameters are  
 located.  
   
 In what follows the parameters are grouped into categories related to the  
 computational domain, the equations solved in the model, and the simulation  
 controls.  
   
 \subsection{Computational domain, geometry and time-discretization}  
   
 \begin{itemize}  
 \item dimensions  
 \end{itemize}  
   
 The number of points in the x, y,\textit{\ }and r\textit{\ }directions are  
 represented by the variables \textbf{sNx}\textit{, }\textbf{sNy}\textit{, }%  
 and \textbf{Nr}\textit{\ }respectively which are declared and set in the  
 file \textit{model/inc/SIZE.h. }(Again, this assumes a mono-processor  
 calculation. For multiprocessor calculations see section on parallel  
 implementation.)  
   
 \begin{itemize}  
 \item grid  
 \end{itemize}  
   
 Three different grids are available: cartesian, spherical polar, and  
 curvilinear (including the cubed sphere). The grid is set through the  
 logical variables \textbf{usingCartesianGrid}\textit{, }\textbf{%  
 usingSphericalPolarGrid}\textit{, }and \textit{\ }\textbf{%  
 usingCurvilinearGrid}\textit{. }In the case of spherical and curvilinear  
 grids, the southern boundary is defined through the variable \textbf{phiMin}%  
 \textit{\ }which corresponds to the latitude of the southern most cell face  
 (in degrees). The resolution along the x and y directions is controlled by  
 the 1D arrays \textbf{delx}\textit{\ }and \textbf{dely}\textit{\ }(in meters  
 in the case of a cartesian grid, in degrees otherwise). The vertical grid  
 spacing is set through the 1D array \textbf{delz }for the ocean (in meters)  
 or \textbf{delp}\textit{\ }for the atmosphere (in Pa). The variable \textbf{%  
 Ro\_SeaLevel} represents the standard position of Sea-Level in ''R''  
 coordinate. This is typically set to 0m for the ocean (default value) and 10$%  
 ^{5}$Pa for the atmosphere. For the atmosphere, also set the logical  
 variable \textbf{groundAtK1} to '.\texttt{TRUE}.'. which put the first level  
 (k=1) at the lower boundary (ground).  
   
 For the cartesian grid case, the Coriolis parameter $f$ is set through the  
 variables \textbf{f0}\textit{\ }and \textbf{beta}\textit{\ }which correspond  
 to the reference Coriolis parameter (in s$^{-1}$) and $\frac{\partial f}{%  
 \partial y}$(in m$^{-1}$s$^{-1}$) respectively. If \textbf{beta }\textit{\ }%  
 is set to a nonzero value, \textbf{f0}\textit{\ }is the value of $f$ at the  
 southern edge of the domain.  
   
 \begin{itemize}  
 \item topography - full and partial cells  
 \end{itemize}  
   
 The domain bathymetry is read from a file that contains a 2D (x,y) map of  
 depths (in m) for the ocean or pressures (in Pa) for the atmosphere. The  
 file name is represented by the variable \textbf{bathyFile}\textit{. }The  
 file is assumed to contain binary numbers giving the depth (pressure) of the  
 model at each grid cell, ordered with the x coordinate varying fastest. The  
 points are ordered from low coordinate to high coordinate for both axes. The  
 model code applies without modification to enclosed, periodic, and double  
 periodic domains. Periodicity is assumed by default and is suppressed by  
 setting the depths to 0m for the cells at the limits of the computational  
 domain (note: not sure this is the case for the atmosphere). The precision  
 with which to read the binary data is controlled by the integer variable  
 \textbf{readBinaryPrec }which can take the value \texttt{32} (single  
 precision) or \texttt{64} (double precision). See the matlab program \textit{%  
 gendata.m }in the \textit{input }directories under \textit{verification }to  
 see how the bathymetry files are generated for the case study experiments.  
   
 To use the partial cell capability, the variable \textbf{hFacMin}\textit{\ }%  
 needs to be set to a value between 0 and 1 (it is set to 1 by default)  
 corresponding to the minimum fractional size of the cell. For example if the  
 bottom cell is 500m thick and \textbf{hFacMin}\textit{\ }is set to 0.1, the  
 actual thickness of the cell (i.e. used in the code) can cover a range of  
 discrete values 50m apart from 50m to 500m depending on the value of the  
 bottom depth (in \textbf{bathyFile}) at this point.  
   
 Note that the bottom depths (or pressures) need not coincide with the models  
 levels as deduced from \textbf{delz}\textit{\ }or\textit{\ }\textbf{delp}%  
 \textit{. }The model will interpolate the numbers in \textbf{bathyFile}%  
 \textit{\ }so that they match the levels obtained from \textbf{delz}\textit{%  
 \ }or\textit{\ }\textbf{delp}\textit{\ }and \textbf{hFacMin}\textit{. }  
   
 (Note: the atmospheric case is a bit more complicated than what is written  
 here I think. To come soon...)  
   
 \begin{itemize}  
 \item time-discretization  
 \end{itemize}  
   
 The time steps are set through the real variables \textbf{deltaTMom }and  
 \textbf{deltaTtracer }(in s) which represent the time step for the momentum  
 and tracer equations, respectively. For synchronous integrations, simply set  
 the two variables to the same value (or you can prescribe one time step only  
 through the variable \textbf{deltaT}). The Adams-Bashforth stabilizing  
 parameter is set through the variable \textbf{abEps }(dimensionless). The  
 stagger baroclinic time stepping can be activated by setting the logical  
 variable \textbf{staggerTimeStep }to '.\texttt{TRUE}.'.  
   
 \subsection{Equation of state}  
   
 First, because the model equations are written in terms of perturbations, a  
 reference thermodynamic state needs to be specified. This is done through  
 the 1D arrays \textbf{tRef}\textit{\ }and \textbf{sRef}. \textbf{tRef }%  
 specifies the reference potential temperature profile (in $^{o}$C for  
 the ocean and $^{o}$K for the atmosphere) starting from the level  
 k=1. Similarly, \textbf{sRef}\textit{\ }specifies the reference salinity  
 profile (in ppt) for the ocean or the reference specific humidity profile  
 (in g/kg) for the atmosphere.  
   
 The form of the equation of state is controlled by the character variables  
 \textbf{buoyancyRelation}\textit{\ }and \textbf{eosType}\textit{. }\textbf{%  
 buoyancyRelation}\textit{\ }is set to '\texttt{OCEANIC}' by default and  
 needs to be set to '\texttt{ATMOSPHERIC}' for atmosphere simulations. In  
 this case, \textbf{eosType}\textit{\ }must be set to '\texttt{IDEALGAS}'.  
 For the ocean, two forms of the equation of state are available: linear (set  
 \textbf{eosType}\textit{\ }to '\texttt{LINEAR}') and a polynomial  
 approximation to the full nonlinear equation ( set \textbf{eosType}\textit{\  
 }to '\texttt{POLYNOMIAL}'). In the linear case, you need to specify the  
 thermal and haline expansion coefficients represented by the variables  
 \textbf{tAlpha}\textit{\ }(in K$^{-1}$) and \textbf{sBeta}\textit{\ }(in ppt$%  
 ^{-1}$). For the nonlinear case, you need to generate a file of polynomial  
 coefficients called \textit{POLY3.COEFFS. }To do this, use the program  
 \textit{utils/knudsen2/knudsen2.f }under the model tree (a Makefile is  
 available in the same directory and you will need to edit the number and the  
 values of the vertical levels in \textit{knudsen2.f }so that they match  
 those of your configuration). \textit{\ }  
   
 \subsection{Momentum equations}  
   
 In this section, we only focus for now on the parameters that you are likely  
 to change, i.e. the ones relative to forcing and dissipation for example.  
 The details relevant to the vector-invariant form of the equations and the  
 various advection schemes are not covered for the moment. We assume that you  
 use the standard form of the momentum equations (i.e. the flux-form) with  
 the default advection scheme. Also, there are a few logical variables that  
 allow you to turn on/off various terms in the momentum equation. These  
 variables are called \textbf{momViscosity, momAdvection, momForcing,  
 useCoriolis, momPressureForcing, momStepping}\textit{, }and \textit{\ }%  
 \textbf{metricTerms }and are assumed to be set to '.\texttt{TRUE}.' here.  
 Look at the file \textit{model/inc/PARAMS.h }for a precise definition of  
 these variables.  
   
 \begin{itemize}  
 \item initialization  
 \end{itemize}  
   
 The velocity components are initialized to 0 unless the simulation is  
 starting from a pickup file (see section on simulation control parameters).  
   
 \begin{itemize}  
 \item forcing  
 \end{itemize}  
   
 This section only applies to the ocean. You need to generate wind-stress  
 data into two files \textbf{zonalWindFile}\textit{\ }and \textbf{%  
 meridWindFile }corresponding to the zonal and meridional components of the  
 wind stress, respectively (if you want the stress to be along the direction  
 of only one of the model horizontal axes, you only need to generate one  
 file). The format of the files is similar to the bathymetry file. The zonal  
 (meridional) stress data are assumed to be in Pa and located at U-points  
 (V-points). As for the bathymetry, the precision with which to read the  
 binary data is controlled by the variable \textbf{readBinaryPrec}.\textbf{\ }  
 See the matlab program \textit{gendata.m }in the \textit{input }directories  
 under \textit{verification }to see how simple analytical wind forcing data  
 are generated for the case study experiments.  
   
 There is also the possibility of prescribing time-dependent periodic  
 forcing. To do this, concatenate the successive time records into a single  
 file (for each stress component) ordered in a (x, y, t) fashion and set the  
 following variables: \textbf{periodicExternalForcing }to '.\texttt{TRUE}.',  
 \textbf{externForcingPeriod }to the period (in s) of which the forcing  
 varies (typically 1 month), and \textbf{externForcingCycle }to the repeat  
 time (in s) of the forcing (typically 1 year -- note: \textbf{%  
 externForcingCycle }must be a multiple of \textbf{externForcingPeriod}).  
 With these variables set up, the model will interpolate the forcing linearly  
 at each iteration.  
   
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
   
 The lateral eddy viscosity coefficient is specified through the variable  
 \textbf{viscAh}\textit{\ }(in m$^{2}$s$^{-1}$). The vertical eddy viscosity  
 coefficient is specified through the variable \textbf{viscAz }(in m$^{2}$s$%  
 ^{-1}$) for the ocean and \textbf{viscAp}\textit{\ }(in Pa$^{2}$s$^{-1}$)  
 for the atmosphere. The vertical diffusive fluxes can be computed implicitly  
 by setting the logical variable \textbf{implicitViscosity }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic mixing can be added as well through the variable  
 \textbf{viscA4}\textit{\ }(in m$^{4}$s$^{-1}$). On a spherical polar grid,  
 you might also need to set the variable \textbf{cosPower} which is set to 0  
 by default and which represents the power of cosine of latitude to multiply  
 viscosity. Slip or no-slip conditions at lateral and bottom boundaries are  
 specified through the logical variables \textbf{no\_slip\_sides}\textit{\ }%  
 and \textbf{no\_slip\_bottom}. If set to '\texttt{.FALSE.}', free-slip  
 boundary conditions are applied. If no-slip boundary conditions are applied  
 at the bottom, a bottom drag can be applied as well. Two forms are  
 available: linear (set the variable \textbf{bottomDragLinear}\textit{\ }in s$%  
 ^{-1}$) and quadratic (set the variable \textbf{bottomDragQuadratic}\textit{%  
 \ }in m$^{-1}$).  
   
 The Fourier and Shapiro filters are described elsewhere.  
   
 \begin{itemize}  
 \item C-D scheme  
 \end{itemize}  
   
 If you run at a sufficiently coarse resolution, you will need the C-D scheme  
 for the computation of the Coriolis terms. The variable\textbf{\ tauCD},  
 which represents the C-D scheme coupling timescale (in s) needs to be set.  
   
 \begin{itemize}  
 \item calculation of pressure/geopotential  
 \end{itemize}  
   
 First, to run a non-hydrostatic ocean simulation, set the logical variable  
 \textbf{nonHydrostatic} to '.\texttt{TRUE}.'. The pressure field is then  
 inverted through a 3D elliptic equation. (Note: this capability is not  
 available for the atmosphere yet.) By default, a hydrostatic simulation is  
 assumed and a 2D elliptic equation is used to invert the pressure field. The  
 parameters controlling the behaviour of the elliptic solvers are the  
 variables \textbf{cg2dMaxIters}\textit{\ }and \textbf{cg2dTargetResidual }%  
 for the 2D case and \textbf{cg3dMaxIters}\textit{\ }and \textbf{%  
 cg3dTargetResidual }for the 3D case. You probably won't need to alter the  
 default values (are we sure of this?).  
   
 For the calculation of the surface pressure (for the ocean) or surface  
 geopotential (for the atmosphere) you need to set the logical variables  
 \textbf{rigidLid} and \textbf{implicitFreeSurface}\textit{\ }(set one to '.%  
 \texttt{TRUE}.' and the other to '.\texttt{FALSE}.' depending on how you  
 want to deal with the ocean upper or atmosphere lower boundary).  
   
 \subsection{Tracer equations}  
   
 This section covers the tracer equations i.e. the potential temperature  
 equation and the salinity (for the ocean) or specific humidity (for the  
 atmosphere) equation. As for the momentum equations, we only describe for  
 now the parameters that you are likely to change. The logical variables  
 \textbf{tempDiffusion}\textit{, }\textbf{tempAdvection}\textit{, }\textbf{%  
 tempForcing}\textit{,} and \textbf{tempStepping} allow you to turn on/off  
 terms in the temperature equation (same thing for salinity or specific  
 humidity with variables \textbf{saltDiffusion}\textit{, }\textbf{%  
 saltAdvection}\textit{\ }etc). These variables are all assumed here to be  
 set to '.\texttt{TRUE}.'. Look at file \textit{model/inc/PARAMS.h }for a  
 precise definition.  
   
 \begin{itemize}  
 \item initialization  
 \end{itemize}  
   
 The initial tracer data can be contained in the binary files \textbf{%  
 hydrogThetaFile }and \textbf{hydrogSaltFile}. These files should contain 3D  
 data ordered in an (x, y, r) fashion with k=1 as the first vertical level.  
 If no file names are provided, the tracers are then initialized with the  
 values of \textbf{tRef }and \textbf{sRef }mentioned above (in the equation  
 of state section). In this case, the initial tracer data are uniform in x  
 and y for each depth level.  
   
 \begin{itemize}  
 \item forcing  
 \end{itemize}  
   
 This part is more relevant for the ocean, the procedure for the atmosphere  
 not being completely stabilized at the moment.  
   
 A combination of fluxes data and relaxation terms can be used for driving  
 the tracer equations. \ For potential temperature, heat flux data (in W/m$%  
 ^{2}$) can be stored in the 2D binary file \textbf{surfQfile}\textit{. }%  
 Alternatively or in addition, the forcing can be specified through a  
 relaxation term. The SST data to which the model surface temperatures are  
 restored to are supposed to be stored in the 2D binary file \textbf{%  
 thetaClimFile}\textit{. }The corresponding relaxation time scale coefficient  
 is set through the variable \textbf{tauThetaClimRelax}\textit{\ }(in s). The  
 same procedure applies for salinity with the variable names \textbf{EmPmRfile%  
 }\textit{, }\textbf{saltClimFile}\textit{, }and \textbf{tauSaltClimRelax}%  
 \textit{\ }for freshwater flux (in m/s) and surface salinity (in ppt) data  
 files and relaxation time scale coefficient (in s), respectively. Also for  
 salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on, natural  
 boundary conditions are applied i.e. when computing the surface salinity  
 tendency, the freshwater flux is multiplied by the model surface salinity  
 instead of a constant salinity value.  
   
 As for the other input files, the precision with which to read the data is  
 controlled by the variable \textbf{readBinaryPrec}. Time-dependent, periodic  
 forcing can be applied as well following the same procedure used for the  
 wind forcing data (see above).  
   
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
   
 Lateral eddy diffusivities for temperature and salinity/specific humidity  
 are specified through the variables \textbf{diffKhT }and \textbf{diffKhS }%  
 (in m$^{2}$/s). Vertical eddy diffusivities are specified through the  
 variables \textbf{diffKzT }and \textbf{diffKzS }(in m$^{2}$/s) for the ocean  
 and \textbf{diffKpT }and \textbf{diffKpS }(in Pa$^{2}$/s) for the  
 atmosphere. The vertical diffusive fluxes can be computed implicitly by  
 setting the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic diffusivities can be specified as well through  
 the coefficients \textbf{diffK4T }and \textbf{diffK4S }(in m$^{4}$/s). Note  
 that the cosine power scaling (specified through \textbf{cosPower }- see the  
 momentum equations section) is applied to the tracer diffusivities  
 (Laplacian and biharmonic) as well. The Gent and McWilliams parameterization  
 for oceanic tracers is described in the package section. Finally, note that  
 tracers can be also subject to Fourier and Shapiro filtering (see the  
 corresponding section on these filters).  
   
 \begin{itemize}  
 \item ocean convection  
 \end{itemize}  
   
 Two options are available to parameterize ocean convection: one is to use  
 the convective adjustment scheme. In this case, you need to set the variable  
 \textbf{cadjFreq}, which represents the frequency (in s) with which the  
 adjustment algorithm is called, to a non-zero value (if set to a negative  
 value by the user, the model will set it to the tracer time step). The other  
 option is to parameterize convection with implicit vertical diffusion. To do  
 this, set the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .' and the real variable \textbf{ivdc\_kappa }to a value (in m$^{2}$/s) you  
 wish the tracer vertical diffusivities to have when mixing tracers  
 vertically due to static instabilities. Note that \textbf{cadjFreq }and  
 \textbf{ivdc\_kappa }can not both have non-zero value.  
   
 \subsection{Simulation controls}  
   
 The model ''clock'' is defined by the variable \textbf{deltaTClock }(in s)  
 which determines the IO frequencies and is used in tagging output.  
 Typically, you will set it to the tracer time step for accelerated runs  
 (otherwise it is simply set to the default time step \textbf{deltaT}).  
 Frequency of checkpointing and dumping of the model state are referenced to  
 this clock (see below).  
   
 \begin{itemize}  
 \item run duration  
 \end{itemize}  
   
 The beginning of a simulation is set by specifying a start time (in s)  
 through the real variable \textbf{startTime }or by specifying an initial  
 iteration number through the integer variable \textbf{nIter0}. If these  
 variables are set to nonzero values, the model will look for a ''pickup''  
 file \textit{pickup.0000nIter0 }to restart the integration\textit{. }The end  
 of a simulation is set through the real variable \textbf{endTime }(in s).  
 Alternatively, you can specify instead the number of time steps to execute  
 through the integer variable \textbf{nTimeSteps}.  
   
 \begin{itemize}  
 \item frequency of output  
 \end{itemize}  
972    
 Real variables defining frequencies (in s) with which output files are  
 written on disk need to be set up. \textbf{dumpFreq }controls the frequency  
 with which the instantaneous state of the model is saved. \textbf{chkPtFreq }%  
 and \textbf{pchkPtFreq }control the output frequency of rolling and  
 permanent checkpoint files, respectively. See section 1.5.1 Output files for the  
 definition of model state and checkpoint files. In addition, time-averaged  
 fields can be written out by setting the variable \textbf{taveFreq} (in s).  
 The precision with which to write the binary data is controlled by the  
 integer variable w\textbf{riteBinaryPrec }(set it to \texttt{32} or \texttt{%  
 64}).  

Legend:
Removed from v.1.8  
changed lines
  Added in v.1.37

  ViewVC Help
Powered by ViewVC 1.1.22