/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Diff of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.6 by adcroft, Thu Oct 18 18:44:14 2001 UTC revision 1.47 by jmc, Tue Jan 9 01:02:48 2018 UTC
# Line 3  Line 3 
3    
4  %\section{Getting started}  %\section{Getting started}
5    
6  In this section, we describe how to use the model. In the first  We believe the best way to familiarize yourself with the
 section, we provide enough information to help you get started with  
 the model. We believe the best way to familiarize yourself with the  
7  model is to run the case study examples provided with the base  model is to run the case study examples provided with the base
8  version. Information on how to obtain, compile, and run the code is  version. Information on how to obtain, compile, and run the code is
9  found there as well as a brief description of the model structure  found here as well as a brief description of the model structure
10  directory and the case study examples.  The latter and the code  directory and the case study examples. Information is also provided
11  structure are described more fully in chapters  here on how to customize the code when you are ready to try implementing
12  \ref{chap:discretization} and \ref{chap:sarch}, respectively. Here, in  the configuration you have in mind.  The code and algorithm
13  this section, we provide information on how to customize the code when  are described more fully in chapters \ref{chap:discretization} and
14  you are ready to try implementing the configuration you have in mind.  \ref{chap:sarch}.
15    
16  \section{Where to find information}  \section{Where to find information}
17  \label{sect:whereToFindInfo}  \label{sec:whereToFindInfo}
18    \begin{rawhtml}
19    <!-- CMIREDIR:whereToFindInfo: -->
20    \end{rawhtml}
21    
22  A web site is maintained for release 1 (Sealion) of MITgcm:  There is a web-archived support mailing list for the model that
23    you can email at \texttt{MITgcm-support@mitgcm.org} after subscribing to:
24    \begin{rawhtml} <A href=http://mailman.mitgcm.org/mailman/listinfo/mitgcm-support/ target="idontexist"> \end{rawhtml}
25  \begin{verbatim}  \begin{verbatim}
26  http://mitgcm.org/sealion  http://mailman.mitgcm.org/mailman/listinfo/mitgcm-support/
27  \end{verbatim}  \end{verbatim}
28  Here you will find an on-line version of this document, a  \begin{rawhtml} </A> \end{rawhtml}
29  ``browsable'' copy of the code and a searchable database of the model  or browse at:
30  and site, as well as links for downloading the model and  \begin{rawhtml} <A href=http://mailman.mitgcm.org/pipermail/mitgcm-support/ target="idontexist"> \end{rawhtml}
 documentation, to data-sources and other related sites.  
   
 There is also a support news group for the model that you can email at  
 \texttt{support@mitgcm.org} or browse at:  
31  \begin{verbatim}  \begin{verbatim}
32  news://mitgcm.org/mitgcm.support  http://mailman.mitgcm.org/pipermail/mitgcm-support/
33  \end{verbatim}  \end{verbatim}
34  A mail to the email list will reach all the developers and be archived  \begin{rawhtml} </A> \end{rawhtml}
 on the newsgroup. A users email list will be established at some time  
 in the future.  
   
35    
36  \section{Obtaining the code}  \section{Obtaining the code}
37  \label{sect:obtainingCode}  \label{sec:obtainingCode}
38    \begin{rawhtml}
39    <!-- CMIREDIR:obtainingCode: -->
40    \end{rawhtml}
41    
42    MITgcm can be downloaded from our system by following
43    the instructions below. As a courtesy we ask that you send e-mail to us at
44    \begin{rawhtml} <A href=mailto:MITgcm-support@mitgcm.org> \end{rawhtml}
45    MITgcm-support@mitgcm.org
46    \begin{rawhtml} </A> \end{rawhtml}
47    to enable us to keep track of who's using the model and in what application.
48    You can download the model two ways:
49    
50    \begin{enumerate}
51    \item Using CVS software. CVS is a freely available source code management
52    tool. To use CVS you need to have the software installed. Many systems
53    come with CVS pre-installed, otherwise good places to look for
54    the software for a particular platform are
55    \begin{rawhtml} <A href=http://www.cvshome.org/ target="idontexist"> \end{rawhtml}
56    cvshome.org
57    \begin{rawhtml} </A> \end{rawhtml}
58    and
59    \begin{rawhtml} <A href=http://www.wincvs.org/ target="idontexist"> \end{rawhtml}
60    wincvs.org
61    \begin{rawhtml} </A> \end{rawhtml}
62    .
63    
64    \item Using a tar file. This method is simple and does not
65    require any special software. However, this method does not
66    provide easy support for maintenance updates.
67    
68    \end{enumerate}
69    
70    \subsection{Method 1 - Checkout from CVS}
71    \label{sec:cvs_checkout}
72    
73  If CVS is available on your system, we strongly encourage you to use it. CVS  If CVS is available on your system, we strongly encourage you to use it. CVS
74  provides an efficient and elegant way of organizing your code and keeping  provides an efficient and elegant way of organizing your code and keeping
75  track of your changes. If CVS is not available on your machine, you can also  track of your changes. If CVS is not available on your machine, you can also
76  download a tar file.  download a tar file.
77    
78  Before you can use CVS, the following environment variable has to be set in  Before you can use CVS, the following environment variable(s) should
79  your .cshrc or .tcshrc:  be set within your shell.  For a csh or tcsh shell, put the following
80  \begin{verbatim}  \begin{verbatim}
81  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/u0/gcmpack  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack
82  \end{verbatim}  \end{verbatim}
83    in your \texttt{.cshrc} or \texttt{.tcshrc} file.  For bash or sh
84  To start using CVS, "login" to the server using:  shells, put:
85  \begin{verbatim}  \begin{verbatim}
86  % cvs login ( CVS password: cvsanon )  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
87  \end{verbatim}  \end{verbatim}
88  You only need to do ``cvs login'' once.  in your \texttt{.profile} or \texttt{.bashrc} file.
89    
90  To obtain the source for the release:  To get MITgcm through CVS, first register with the MITgcm CVS server
91    using command:
92  \begin{verbatim}  \begin{verbatim}
93  % cvs co -d directory -P -r release1 MITgcmUV  % cvs login ( CVS password: cvsanon )
94  \end{verbatim}  \end{verbatim}
95    You only need to do a ``cvs login'' once.
96    
97  This creates a directory called \textit{directory}. If \textit{directory}  To obtain the latest sources type:
 exists this command updates your code based on the repository. Each  
 directory in the source tree contains a directory \textit{CVS}. This  
 information is required by CVS to keep track of your file versions with  
 respect to the repository. Don't edit the files in \textit{CVS}! To obtain a  
 different \textit{version} that is not the latest source:  
98  \begin{verbatim}  \begin{verbatim}
99  % cvs co -d directory -P -r version MITgcm  % cvs co -P MITgcm
100  \end{verbatim}  \end{verbatim}
101  or the latest development version:  or to get a specific release type:
102  \begin{verbatim}  \begin{verbatim}
103  % cvs co -d directory -P MITgcm  % cvs co -P -r checkpoint52i_post MITgcm
104  \end{verbatim}  \end{verbatim}
105    The CVS command ``\texttt{cvs co}'' is the abreviation of the full-name
106    ``\texttt{cvs checkout}'' command and using the option ``-P'' (\texttt{cvs co -P})
107    will prevent to download unnecessary empty directories.
108    
109    The MITgcm web site contains further directions concerning the source
110    code and CVS.  It also contains a web interface to our CVS archive so
111    that one may easily view the state of files, revisions, and other
112    development milestones:
113    \begin{rawhtml} <A href="http://mitgcm.org/viewvc/MITgcm/MITgcm/" target="idontexist"> \end{rawhtml}
114    \begin{verbatim}
115    http://mitgcm.org/viewvc/MITgcm/MITgcm/
116    \end{verbatim}
117    \begin{rawhtml} </A> \end{rawhtml}
118    
119    As a convenience, the MITgcm CVS server contains aliases which are
120    named subsets of the codebase.  These aliases can be especially
121    helpful when used over slow internet connections or on machines with
122    restricted storage space.  Table \ref{tab:cvsModules} contains a list
123    of CVS aliases
124    \begin{table}[htb]
125      \centering
126      \begin{tabular}[htb]{|lp{3.25in}|}\hline
127        \textbf{Alias Name}    &  \textbf{Information (directories) Contained}  \\\hline
128        \texttt{MITgcm\_code}  &  Only the source code -- none of the verification examples.  \\
129        \texttt{MITgcm\_verif\_basic}
130        &  Source code plus a small set of the verification examples
131        (\texttt{global\_ocean.90x40x15}, \texttt{aim.5l\_cs}, \texttt{hs94.128x64x5},
132        \texttt{front\_relax}, and \texttt{plume\_on\_slope}).  \\
133        \texttt{MITgcm\_verif\_atmos}  &  Source code plus all of the atmospheric examples.  \\
134        \texttt{MITgcm\_verif\_ocean}  &  Source code plus all of the oceanic examples.  \\
135        \texttt{MITgcm\_verif\_all}    &  Source code plus all of the
136        verification examples. \\\hline
137      \end{tabular}
138      \caption{MITgcm CVS Modules}
139      \label{tab:cvsModules}
140    \end{table}
141    
142    The checkout process creates a directory called \texttt{MITgcm}. If
143    the directory \texttt{MITgcm} exists this command updates your code
144    based on the repository. Each directory in the source tree contains a
145    directory \texttt{CVS}. This information is required by CVS to keep
146    track of your file versions with respect to the repository. Don't edit
147    the files in \texttt{CVS}!  You can also use CVS to download code
148    updates.  More extensive information on using CVS for maintaining
149    MITgcm code can be found
150    \begin{rawhtml} <A href="http://mitgcm.org/public/using_cvs.html" target="idontexist"> \end{rawhtml}
151    here
152    \begin{rawhtml} </A> \end{rawhtml}.
153    It is important to note that the CVS aliases in Table
154    \ref{tab:cvsModules} cannot be used in conjunction with the CVS
155    \texttt{-d DIRNAME} option.  However, the \texttt{MITgcm} directories
156    they create can be changed to a different name following the check-out:
157    \begin{verbatim}
158       %  cvs co -P MITgcm_verif_basic
159       %  mv MITgcm MITgcm_verif_basic
160    \end{verbatim}
161    
162    Note that it is possible to checkout code without ``cvs login'' and without
163    setting any shell environment variables by specifying the pserver name and
164    password in one line, for example:
165    \begin{verbatim}
166       %  cvs -d :pserver:cvsanon:cvsanon@mitgcm.org:/u/gcmpack co -P MITgcm
167    \end{verbatim}
168    
169    \subsubsection{Upgrading from an earlier version}
170    
171    If you already have an earlier version of the code you can ``upgrade''
172    your copy instead of downloading the entire repository again. First,
173    ``cd'' (change directory) to the top of your working copy:
174    \begin{verbatim}
175    % cd MITgcm
176    \end{verbatim}
177    and then issue the cvs update command such as:
178    \begin{verbatim}
179    % cvs -q update -d -P -r checkpoint52i_post
180    \end{verbatim}
181    This will update the ``tag'' to ``checkpoint52i\_post'', add any new
182    directories (-d) and remove any empty directories (-P). The -q option
183    means be quiet which will reduce the number of messages you'll see in
184    the terminal. If you have modified the code prior to upgrading, CVS
185    will try to merge your changes with the upgrades. If there is a
186    conflict between your modifications and the upgrade, it will report
187    that file with a ``C'' in front, e.g.:
188    \begin{verbatim}
189    C model/src/ini_parms.F
190    \end{verbatim}
191    If the list of conflicts scrolled off the screen, you can re-issue the
192    cvs update command and it will report the conflicts. Conflicts are
193    indicated in the code by the delimites ``$<<<<<<<$'', ``======='' and
194    ``$>>>>>>>$''. For example,
195    {\small
196    \begin{verbatim}
197    <<<<<<< ini_parms.F
198         & bottomDragLinear,myOwnBottomDragCoefficient,
199    =======
200         & bottomDragLinear,bottomDragQuadratic,
201    >>>>>>> 1.18
202    \end{verbatim}
203    }
204    means that you added ``myOwnBottomDragCoefficient'' to a namelist at
205    the same time and place that we added ``bottomDragQuadratic''. You
206    need to resolve this conflict and in this case the line should be
207    changed to:
208    {\small
209    \begin{verbatim}
210         & bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient,
211    \end{verbatim}
212    }
213    and the lines with the delimiters ($<<<<<<$,======,$>>>>>>$) be deleted.
214    Unless you are making modifications which exactly parallel
215    developments we make, these types of conflicts should be rare.
216    
217    \paragraph*{Upgrading to the current pre-release version}
218    
219    We don't make a ``release'' for every little patch and bug fix in
220    order to keep the frequency of upgrades to a minimum. However, if you
221    have run into a problem for which ``we have already fixed in the
222    latest code'' and we haven't made a ``tag'' or ``release'' since that
223    patch then you'll need to get the latest code:
224    \begin{verbatim}
225    % cvs -q update -d -P -A
226    \end{verbatim}
227    Unlike, the ``check-out'' and ``update'' procedures above, there is no
228    ``tag'' or release name. The -A tells CVS to upgrade to the
229    very latest version. As a rule, we don't recommend this since you
230    might upgrade while we are in the processes of checking in the code so
231    that you may only have part of a patch. Using this method of updating
232    also means we can't tell what version of the code you are working
233    with. So please be sure you understand what you're doing.
234    
235  \paragraph*{Conventional download method}  \subsection{Method 2 - Tar file download}
236  \label{sect:conventionalDownload}  \label{sec:conventionalDownload}
237    
238  If you do not have CVS on your system, you can download the model as a  If you do not have CVS on your system, you can download the model as a
239  tar file from the reference web site at:  tar file from the web site at:
240    \begin{rawhtml} <A href=http://mitgcm.org/download/ target="idontexist"> \end{rawhtml}
241  \begin{verbatim}  \begin{verbatim}
242  http://mitgcm.org/download/  http://mitgcm.org/download/
243  \end{verbatim}  \end{verbatim}
244    \begin{rawhtml} </A> \end{rawhtml}
245  The tar file still contains CVS information which we urge you not to  The tar file still contains CVS information which we urge you not to
246  delete; even if you do not use CVS yourself the information can help  delete; even if you do not use CVS yourself the information can help
247  us if you should need to send us your copy of the code.  us if you should need to send us your copy of the code.  If a recent
248    tar file does not exist, then please contact the developers through
249    the
250    \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
251    MITgcm-support@mitgcm.org
252    \begin{rawhtml} </A> \end{rawhtml}
253    mailing list.
254    
255  \section{Model and directory structure}  \section{Model and directory structure}
256    \begin{rawhtml}
257    <!-- CMIREDIR:directory_structure: -->
258    \end{rawhtml}
259    
260    The ``numerical'' model is contained within a execution environment
261    support wrapper. This wrapper is designed to provide a general
262    framework for grid-point models. MITgcmUV is a specific numerical
263    model that uses the framework. Under this structure the model is split
264    into execution environment support code and conventional numerical
265    model code. The execution environment support code is held under the
266    \texttt{eesupp} directory. The grid point model code is held under the
267    \texttt{model} directory. Code execution actually starts in the
268    \texttt{eesupp} routines and not in the \texttt{model} routines. For
269    this reason the top-level \texttt{MAIN.F} is in the
270    \texttt{eesupp/src} directory. In general, end-users should not need
271    to worry about this level. The top-level routine for the numerical
272    part of the code is in \texttt{model/src/THE\_MODEL\_MAIN.F}. Here is
273    a brief description of the directory structure of the model under the
274    root tree (a detailed description is given in section 3: Code
275    structure).
276    
277    \begin{itemize}
278    
279    \item \texttt{doc}: contains brief documentation notes.
280    
281    \item \texttt{eesupp}: contains the execution environment source code.
282      Also subdivided into two subdirectories \texttt{inc} and
283      \texttt{src}.
284    
285    \item \texttt{model}: this directory contains the main source code.
286      Also subdivided into two subdirectories \texttt{inc} and
287      \texttt{src}.
288    
289    \item \texttt{pkg}: contains the source code for the packages. Each
290      package corresponds to a subdirectory. For example, \texttt{gmredi}
291      contains the code related to the Gent-McWilliams/Redi scheme,
292      \texttt{aim} the code relative to the atmospheric intermediate
293      physics. The packages are described in detail in chapter \ref{chap:packagesI}.
294    
295    \item \texttt{tools}: this directory contains various useful tools.
296      For example, \texttt{genmake2} is a script written in csh (C-shell)
297      that should be used to generate your makefile. The directory
298      \texttt{adjoint} contains the makefile specific to the Tangent
299      linear and Adjoint Compiler (TAMC) that generates the adjoint code.
300      The latter is described in detail in part \ref{chap.ecco}.
301      This directory also contains the subdirectory build\_options, which
302      contains the `optfiles' with the compiler options for the different
303      compilers and machines that can run MITgcm.
304    
305    \item \texttt{utils}: this directory contains various utilities. The
306      subdirectory \texttt{knudsen2} contains code and a makefile that
307      compute coefficients of the polynomial approximation to the knudsen
308      formula for an ocean nonlinear equation of state. The
309      \texttt{matlab} subdirectory contains matlab scripts for reading
310      model output directly into matlab. \texttt{scripts} contains C-shell
311      post-processing scripts for joining processor-based and tiled-based
312      model output. The subdirectory exch2 contains the code needed for
313      the exch2 package to work with different combinations of domain
314      decompositions.
315    
316    \item \texttt{verification}: this directory contains the model
317      examples. See section \ref{sec:modelExamples}.
318    
319    \item \texttt{jobs}: contains sample job scripts for running MITgcm.
320    
321    \item \texttt{lsopt}: Line search code used for optimization.
322    
323    \item \texttt{optim}: Interface between MITgcm and line search code.
324    
325    \end{itemize}
326    
327    \section[Building MITgcm]{Building the code}
328    \label{sec:buildingCode}
329    \begin{rawhtml}
330    <!-- CMIREDIR:buildingCode: -->
331    \end{rawhtml}
332    
333    To compile the code, we use the \texttt{make} program. This uses a
334    file (\texttt{Makefile}) that allows us to pre-process source files,
335    specify compiler and optimization options and also figures out any
336    file dependencies. We supply a script (\texttt{genmake2}), described
337    in section \ref{sec:genmake}, that automatically creates the
338    \texttt{Makefile} for you. You then need to build the dependencies and
339    compile the code.
340    
341    As an example, assume that you want to build and run experiment
342    \texttt{verification/exp2}. The are multiple ways and places to
343    actually do this but here let's build the code in
344    \texttt{verification/exp2/build}:
345    \begin{verbatim}
346    % cd verification/exp2/build
347    \end{verbatim}
348    First, build the \texttt{Makefile}:
349    \begin{verbatim}
350    % ../../../tools/genmake2 -mods=../code
351    \end{verbatim}
352    The command line option tells \texttt{genmake} to override model source
353    code with any files in the directory \texttt{../code/}.
354    
355    On many systems, the \texttt{genmake2} program will be able to
356    automatically recognize the hardware, find compilers and other tools
357    within the user's path (``\texttt{echo \$PATH}''), and then choose an
358    appropriate set of options from the files (``optfiles'') contained in
359    the \texttt{tools/build\_options} directory.  Under some
360    circumstances, a user may have to create a new ``optfile'' in order to
361    specify the exact combination of compiler, compiler flags, libraries,
362    and other options necessary to build a particular configuration of
363    MITgcm.  In such cases, it is generally helpful to read the existing
364    ``optfiles'' and mimic their syntax.
365    
366    Through the MITgcm-support list, the MITgcm developers are willing to
367    provide help writing or modifing ``optfiles''.  And we encourage users
368    to post new ``optfiles'' (particularly ones for new machines or
369    architectures) to the
370    \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
371    MITgcm-support@mitgcm.org
372    \begin{rawhtml} </A> \end{rawhtml}
373    list.
374    
375  The ``numerical'' model is contained within a execution environment support  To specify an optfile to \texttt{genmake2}, the syntax is:
 wrapper. This wrapper is designed to provide a general framework for  
 grid-point models. MITgcmUV is a specific numerical model that uses the  
 framework. Under this structure the model is split into execution  
 environment support code and conventional numerical model code. The  
 execution environment support code is held under the \textit{eesupp}  
 directory. The grid point model code is held under the \textit{model}  
 directory. Code execution actually starts in the \textit{eesupp} routines  
 and not in the \textit{model} routines. For this reason the top-level  
 \textit{MAIN.F} is in the \textit{eesupp/src} directory. In general,  
 end-users should not need to worry about this level. The top-level routine  
 for the numerical part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F%  
 }. Here is a brief description of the directory structure of the model under  
 the root tree (a detailed description is given in section 3: Code structure).  
   
 \begin{itemize}  
 \item \textit{bin}: this directory is initially empty. It is the default  
 directory in which to compile the code.  
   
 \item \textit{diags}: contains the code relative to time-averaged  
 diagnostics. It is subdivided into two subdirectories \textit{inc} and  
 \textit{src} that contain include files (*.\textit{h} files) and fortran  
 subroutines (*.\textit{F} files), respectively.  
   
 \item \textit{doc}: contains brief documentation notes.  
   
 \item \textit{eesupp}: contains the execution environment source code. Also  
 subdivided into two subdirectories \textit{inc} and \textit{src}.  
   
 \item \textit{exe}: this directory is initially empty. It is the default  
 directory in which to execute the code.  
   
 \item \textit{model}: this directory contains the main source code. Also  
 subdivided into two subdirectories \textit{inc} and \textit{src}.  
   
 \item \textit{pkg}: contains the source code for the packages. Each package  
 corresponds to a subdirectory. For example, \textit{gmredi} contains the  
 code related to the Gent-McWilliams/Redi scheme, \textit{aim} the code  
 relative to the atmospheric intermediate physics. The packages are described  
 in detail in section 3.  
   
 \item \textit{tools}: this directory contains various useful tools. For  
 example, \textit{genmake} is a script written in csh (C-shell) that should  
 be used to generate your makefile. The directory \textit{adjoint} contains  
 the makefile specific to the Tangent linear and Adjoint Compiler (TAMC) that  
 generates the adjoint code. The latter is described in details in part V.  
   
 \item \textit{utils}: this directory contains various utilities. The  
 subdirectory \textit{knudsen2} contains code and a makefile that  
 compute coefficients of the polynomial approximation to the knudsen  
 formula for an ocean nonlinear equation of state. The \textit{matlab}  
 subdirectory contains matlab scripts for reading model output directly  
 into matlab. \textit{scripts} contains C-shell post-processing  
 scripts for joining processor-based and tiled-based model output.  
   
 \item \textit{verification}: this directory contains the model examples. See  
 section \ref{sect:modelExamples}.  
 \end{itemize}  
   
 \section{Example experiments}  
 \label{sect:modelExamples}  
   
 Now that you have successfully downloaded the model code we recommend that  
 you first try to run the examples provided with the base version. You will  
 probably want to run the example that is the closest to the configuration  
 you will use eventually. The examples are located in subdirectories under  
 the directory \textit{verification} and are briefly described below (a full  
 description is given in section 2):  
   
 \subsection{List of model examples}  
   
 \begin{itemize}  
 \item \textit{exp0} - single layer, ocean double gyre (barotropic with  
 free-surface).  
   
 \item \textit{exp1} - 4 layers, ocean double gyre.  
   
 \item \textit{exp2} - 4x4 degree global ocean simulation with steady  
 climatological forcing.  
   
 \item \textit{exp4} - flow over a Gaussian bump in open-water or channel  
 with open boundaries.  
   
 \item \textit{exp5} - inhomogenously forced ocean convection in a doubly  
 periodic box.  
   
 \item \textit{front\_relax} - relaxation of an ocean thermal front (test for  
 Gent/McWilliams scheme). 2D (Y-Z).  
   
 \item \textit{internal wave} - ocean internal wave forced by open boundary  
 conditions.  
   
 \item \textit{natl\_box} - eastern subtropical North Atlantic with KPP  
 scheme; 1 month integration  
   
 \item \textit{hs94.1x64x5} - zonal averaged atmosphere using Held and Suarez  
 '94 forcing.  
   
 \item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and Suarez  
 '94 forcing.  
   
 \item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and  
 Suarez '94 forcing on the cubed sphere.  
   
 \item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics, 5 layers  
 Molteni physics package. Global Zonal Mean configuration, 1x64x5 resolution.  
   
 \item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate Atmospheric  
 physics, 5 layers Molteni physics package. Equatorial Slice configuration.  
 2D (X-Z).  
   
 \item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric  
 physics, 5 layers Molteni physics package. 3D Equatorial Channel  
 configuration (not completely tested).  
   
 \item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics, 5 layers  
 Molteni physics package. Global configuration, 128x64x5 resolution.  
   
 \item \textit{adjustment.128x64x1}  
   
 \item \textit{adjustment.cs-32x32x1}  
 \end{itemize}  
   
 \subsection{Directory structure of model examples}  
   
 Each example directory has the following subdirectories:  
   
 \begin{itemize}  
 \item \textit{code}: contains the code particular to the example. At a  
 minimum, this directory includes the following files:  
   
 \begin{itemize}  
 \item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to the  
 ``execution environment'' part of the code. The default version is located  
 in \textit{eesupp/inc}.  
   
 \item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to the  
 ``numerical model'' part of the code. The default version is located in  
 \textit{model/inc}.  
   
 \item \textit{code/SIZE.h}: declares size of underlying computational grid.  
 The default version is located in \textit{model/inc}.  
 \end{itemize}  
   
 In addition, other include files and subroutines might be present in \textit{%  
 code} depending on the particular experiment. See section 2 for more details.  
   
 \item \textit{input}: contains the input data files required to run the  
 example. At a mimimum, the \textit{input} directory contains the following  
 files:  
   
 \begin{itemize}  
 \item \textit{input/data}: this file, written as a namelist, specifies the  
 main parameters for the experiment.  
   
 \item \textit{input/data.pkg}: contains parameters relative to the packages  
 used in the experiment.  
   
 \item \textit{input/eedata}: this file contains ``execution environment''  
 data. At present, this consists of a specification of the number of threads  
 to use in $X$ and $Y$ under multithreaded execution.  
 \end{itemize}  
   
 In addition, you will also find in this directory the forcing and topography  
 files as well as the files describing the initial state of the experiment.  
 This varies from experiment to experiment. See section 2 for more details.  
   
 \item \textit{results}: this directory contains the output file \textit{%  
 output.txt} produced by the simulation example. This file is useful for  
 comparison with your own output when you run the experiment.  
 \end{itemize}  
   
 Once you have chosen the example you want to run, you are ready to compile  
 the code.  
   
 \section{Building the code}  
 \label{sect:buildingCode}  
   
 To compile the code, we use the {\em make} program. This uses a file  
 ({\em Makefile}) that allows us to pre-process source files, specify  
 compiler and optimization options and also figures out any file  
 dependancies. We supply a script ({\em genmake}), described in section  
 \ref{sect:genmake}, that automatically creates the {\em Makefile} for  
 you. You then need to build the dependancies and compile the code.  
   
 As an example, let's assume that you want to build and run experiment  
 \textit{verification/exp2}. The are multiple ways and places to actually  
 do this but here let's build the code in  
 \textit{verification/exp2/input}:  
376  \begin{verbatim}  \begin{verbatim}
377  % cd verification/exp2/input  % ../../../tools/genmake2 -mods=../code -of /path/to/optfile
378  \end{verbatim}  \end{verbatim}
 First, build the {\em Makefile}:  
 \begin{verbatim}  
 % ../../../tools/genmake -mods=../code  
 \end{verbatim}  
 The command line option tells {\em genmake} to override model source  
 code with any files in the directory {\em ./code/}.  
379    
380  If there is no \textit{.genmakerc} in the \textit{input} directory, you have  Once a \texttt{Makefile} has been generated, we create the
381  to use the following options when invoking \textit{genmake}:  dependencies with the command:
 \begin{verbatim}  
 % ../../../tools/genmake  -mods=../code  
 \end{verbatim}  
   
 Next, create the dependancies:  
382  \begin{verbatim}  \begin{verbatim}
383  % make depend  % make depend
384  \end{verbatim}  \end{verbatim}
385  This modifies {\em Makefile} by attaching a [long] list of files on  This modifies the \texttt{Makefile} by attaching a (usually, long)
386  which other files depend. The purpose of this is to reduce  list of files upon which other files depend. The purpose of this is to
387  re-compilation if and when you start to modify the code. {\tt make  reduce re-compilation if and when you start to modify the code. The
388  depend} also created links from the model source to this directory.  {\tt make depend} command also creates links from the model source to
389    this directory.  It is important to note that the {\tt make depend}
390    stage will occasionally produce warnings or errors since the
391    dependency parsing tool is unable to find all of the necessary header
392    files (\textit{eg.}  \texttt{netcdf.inc}).  In these circumstances, it
393    is usually OK to ignore the warnings/errors and proceed to the next
394    step.
395    
396  Now compile the code:  Next one can compile the code using:
397  \begin{verbatim}  \begin{verbatim}
398  % make  % make
399  \end{verbatim}  \end{verbatim}
400  The {\tt make} command creates an executable called \textit{mitgcmuv}.  The {\tt make} command creates an executable called \texttt{mitgcmuv}.
401    Additional make ``targets'' are defined within the makefile to aid in
402    the production of adjoint and other versions of MITgcm.  On SMP
403    (shared multi-processor) systems, the build process can often be sped
404    up appreciably using the command:
405    \begin{verbatim}
406    % make -j 2
407    \end{verbatim}
408    where the ``2'' can be replaced with a number that corresponds to the
409    number of CPUs available.
410    
411  Now you are ready to run the model. General instructions for doing so are  Now you are ready to run the model. General instructions for doing so are
412  given in section \ref{sect:runModel}. Here, we can run the model with:  given in section \ref{sec:runModel}. Here, we can run the model by
413    first creating links to all the input files:
414    \begin{verbatim}
415    ln -s ../input/* .
416    \end{verbatim}
417    and then calling the executable with:
418  \begin{verbatim}  \begin{verbatim}
419  ./mitgcmuv > output.txt  ./mitgcmuv > output.txt
420  \end{verbatim}  \end{verbatim}
421  where we are re-directing the stream of text output to the file {\em  where we are re-directing the stream of text output to the file
422  output.txt}.  \texttt{output.txt}.
   
423    
424  \subsection{Building/compiling the code elsewhere}  \subsection{Building/compiling the code elsewhere}
425    
426  In the example above (section \ref{sect:buildingCode}) we built the  In the example above (section \ref{sec:buildingCode}) we built the
427  executable in the {\em input} directory of the experiment for  executable in the {\em input} directory of the experiment for
428  convenience. You can also configure and compile the code in other  convenience. You can also configure and compile the code in other
429  locations, for example on a scratch disk with out having to copy the  locations, for example on a scratch disk with out having to copy the
430  entire source tree. The only requirement to do so is you have {\tt  entire source tree. The only requirement to do so is you have {\tt
431  genmake} in your path or you know the absolute path to {\tt genmake}.    genmake2} in your path or you know the absolute path to {\tt
432      genmake2}.
433    
434  The following sections outline some possible methods of organizing you  The following sections outline some possible methods of organizing
435  source and data.  your source and data.
436    
437  \subsubsection{Building from the {\em ../code directory}}  \subsubsection{Building from the {\em ../code directory}}
438    
439  This is just as simple as building in the {\em input/} directory:  This is just as simple as building in the {\em input/} directory:
440  \begin{verbatim}  \begin{verbatim}
441  % cd verification/exp2/code  % cd verification/exp2/code
442  % ../../../tools/genmake  % ../../../tools/genmake2
443  % make depend  % make depend
444  % make  % make
445  \end{verbatim}  \end{verbatim}
# Line 347  files must be in the same place. If you Line 450  files must be in the same place. If you
450  % cp ../code/mitgcmuv ./  % cp ../code/mitgcmuv ./
451  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
452  \end{verbatim}  \end{verbatim}
453  or if you will be making muliple runs with the same executable:  or if you will be making multiple runs with the same executable:
454  \begin{verbatim}  \begin{verbatim}
455  % cd ../  % cd ../
456  % cp -r input run1  % cp -r input run1
# Line 359  or if you will be making muliple runs wi Line 462  or if you will be making muliple runs wi
462  \subsubsection{Building from a new directory}  \subsubsection{Building from a new directory}
463    
464  Since the {\em input} directory contains input files it is often more  Since the {\em input} directory contains input files it is often more
465  useful to keep {\em input} prestine and build in a new directory  useful to keep {\em input} pristine and build in a new directory
466  within {\em verification/exp2/}:  within {\em verification/exp2/}:
467  \begin{verbatim}  \begin{verbatim}
468  % cd verification/exp2  % cd verification/exp2
469  % mkdir build  % mkdir build
470  % cd build  % cd build
471  % ../../../tools/genmake -mods=../code  % ../../../tools/genmake2 -mods=../code
472  % make depend  % make depend
473  % make  % make
474  \end{verbatim}  \end{verbatim}
# Line 387  running in a new directory each time mig Line 490  running in a new directory each time mig
490  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
491  \end{verbatim}  \end{verbatim}
492    
493  \subsubsection{Building from on a scratch disk}  \subsubsection{Building on a scratch disk}
494    
495  Model object files and output data can use up large amounts of disk  Model object files and output data can use up large amounts of disk
496  space so it is often the case that you will be operating on a large  space so it is often the case that you will be operating on a large
# Line 395  scratch disk. Assuming the model source Line 498  scratch disk. Assuming the model source
498  following commands will build the model in {\em /scratch/exp2-run1}:  following commands will build the model in {\em /scratch/exp2-run1}:
499  \begin{verbatim}  \begin{verbatim}
500  % cd /scratch/exp2-run1  % cd /scratch/exp2-run1
501  % ~/MITgcm/tools/genmake -rootdir=~/MITgcm -mods=~/MITgcm/verification/exp2/code  % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \
502      -mods=~/MITgcm/verification/exp2/code
503  % make depend  % make depend
504  % make  % make
505  \end{verbatim}  \end{verbatim}
# Line 411  the one experiment: Line 515  the one experiment:
515  % cd /scratch/exp2  % cd /scratch/exp2
516  % mkdir build  % mkdir build
517  % cd build  % cd build
518  % ~/MITgcm/tools/genmake -rootdir=~/MITgcm -mods=~/MITgcm/verification/exp2/code  % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \
519      -mods=~/MITgcm/verification/exp2/code
520  % make depend  % make depend
521  % make  % make
522  % cd ../  % cd ../
# Line 420  the one experiment: Line 525  the one experiment:
525  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
526  \end{verbatim}  \end{verbatim}
527    
528    \subsection{Using \texttt{genmake2}}
529    \label{sec:genmake}
530    
531    To compile the code, first use the program \texttt{genmake2} (located
532    in the \texttt{tools} directory) to generate a Makefile.
533    \texttt{genmake2} is a shell script written to work with all
534    ``sh''--compatible shells including bash v1, bash v2, and Bourne.
535    %Internally, \texttt{genmake2} determines the locations of needed
536    %files, the compiler, compiler options, libraries, and Unix tools.  It
537    %relies upon a number of ``optfiles'' located in the
538    %\texttt{tools/build\_options} directory.
539    \texttt{genmake2} parses information from the following sources:
540    \begin{description}
541    \item[-] a {\em gemake\_local} file if one is found in the current
542      directory
543    \item[-] command-line options
544    \item[-] an "options file" as specified by the command-line option
545      \texttt{--optfile=/PATH/FILENAME}
546    \item[-] a {\em packages.conf} file (if one is found) with the
547      specific list of packages to compile. The search path for
548      file {\em packages.conf} is, first, the current directory and
549      then each of the "MODS" directories in the given order (see below).
550    \end{description}
551    
552    \subsubsection{Optfiles in \texttt{tools/build\_options} directory:}
553    
554    The purpose of the optfiles is to provide all the compilation options
555    for particular ``platforms'' (where ``platform'' roughly means the
556    combination of the hardware and the compiler) and code configurations.
557    Given the combinations of possible compilers and library dependencies
558    ({\it eg.}  MPI and NetCDF) there may be numerous optfiles available
559    for a single machine.  The naming scheme for the majority of the
560    optfiles shipped with the code is
561    \begin{center}
562      {\bf OS\_HARDWARE\_COMPILER }
563    \end{center}
564    where
565    \begin{description}
566    \item[OS] is the name of the operating system (generally the
567      lower-case output of the {\tt 'uname'} command)
568    \item[HARDWARE] is a string that describes the CPU type and
569      corresponds to output from the  {\tt 'uname -m'} command:
570      \begin{description}
571      \item[ia32] is for ``x86'' machines such as i386, i486, i586, i686,
572        and athlon
573      \item[ia64] is for Intel IA64 systems (eg. Itanium, Itanium2)
574      \item[amd64] is AMD x86\_64 systems
575      \item[ppc] is for Mac PowerPC systems
576      \end{description}
577    \item[COMPILER] is the compiler name (generally, the name of the
578      FORTRAN executable)
579    \end{description}
580    
581    In many cases, the default optfiles are sufficient and will result in
582    usable Makefiles.  However, for some machines or code configurations,
583    new ``optfiles'' must be written. To create a new optfile, it is
584    generally best to start with one of the defaults and modify it to suit
585    your needs.  Like \texttt{genmake2}, the optfiles are all written
586    using a simple ``sh''--compatible syntax.  While nearly all variables
587    used within \texttt{genmake2} may be specified in the optfiles, the
588    critical ones that should be defined are:
589    
590    \begin{description}
591    \item[FC] the FORTRAN compiler (executable) to use
592    \item[DEFINES] the command-line DEFINE options passed to the compiler
593    \item[CPP] the C pre-processor to use
594    \item[NOOPTFLAGS] options flags for special files that should not be
595      optimized
596    \end{description}
597    
598    For example, the optfile for a typical Red Hat Linux machine (``ia32''
599    architecture) using the GCC (g77) compiler is
600    \begin{verbatim}
601    FC=g77
602    DEFINES='-D_BYTESWAPIO -DWORDLENGTH=4'
603    CPP='cpp  -traditional -P'
604    NOOPTFLAGS='-O0'
605    #  For IEEE, use the "-ffloat-store" option
606    if test "x$IEEE" = x ; then
607        FFLAGS='-Wimplicit -Wunused -Wuninitialized'
608        FOPTIM='-O3 -malign-double -funroll-loops'
609    else
610        FFLAGS='-Wimplicit -Wunused -ffloat-store'
611        FOPTIM='-O0 -malign-double'
612    fi
613    \end{verbatim}
614    
615    If you write an optfile for an unrepresented machine or compiler, you
616    are strongly encouraged to submit the optfile to the MITgcm project
617    for inclusion.  Please send the file to the
618    \begin{rawhtml} <A href="mail-to:MITgcm-support@mitgcm.org"> \end{rawhtml}
619    \begin{center}
620      MITgcm-support@mitgcm.org
621    \end{center}
622    \begin{rawhtml} </A> \end{rawhtml}
623    mailing list.
624    
625    \subsubsection{Command-line options:}
626    
627    In addition to the optfiles, \texttt{genmake2} supports a number of
628    helpful command-line options.  A complete list of these options can be
629    obtained from:
630    \begin{verbatim}
631    % genmake2 -h
632    \end{verbatim}
633    
634    The most important command-line options are:
635    \begin{description}
636    
637    \item[\texttt{--optfile=/PATH/FILENAME}] specifies the optfile that
638      should be used for a particular build.
639    
640      If no "optfile" is specified (either through the command line or the
641      MITGCM\_OPTFILE environment variable), genmake2 will try to make a
642      reasonable guess from the list provided in {\em
643        tools/build\_options}.  The method used for making this guess is
644      to first determine the combination of operating system and hardware
645      (eg. "linux\_ia32") and then find a working FORTRAN compiler within
646      the user's path.  When these three items have been identified,
647      genmake2 will try to find an optfile that has a matching name.
648    
649    \item[\texttt{--mods='DIR1 DIR2 DIR3 ...'}] specifies a list of
650      directories containing ``modifications''.  These directories contain
651      files with names that may (or may not) exist in the main MITgcm
652      source tree but will be overridden by any identically-named sources
653      within the ``MODS'' directories.
654    
655      The order of precedence for this "name-hiding" is as follows:
656      \begin{itemize}
657      \item ``MODS'' directories (in the order given)
658      \item Packages either explicitly specified or provided by default
659        (in the order given)
660      \item Packages included due to package dependencies (in the order
661        that that package dependencies are parsed)
662      \item The "standard dirs" (which may have been specified by the
663        ``-standarddirs'' option)
664      \end{itemize}
665    
666    \item[\texttt{--pgroups=/PATH/FILENAME}] specifies the file
667      where package groups are defined. If not set, the package-groups
668      definition will be read from {\em pkg/pkg\_groups}.
669      It also contains the default list of packages (defined
670      as the group ``{\it default\_pkg\_list}'' which is used
671      when no specific package list ({\em packages.conf})
672      is found in current directory or in any "MODS" directory.
673    
674    \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file
675      used for packages.
676    
677      If not specified, the default dependency file {\em pkg/pkg\_depend}
678      is used.  The syntax for this file is parsed on a line-by-line basis
679      where each line containes either a comment ("\#") or a simple
680      "PKGNAME1 (+|-)PKGNAME2" pairwise rule where the "+" or "-" symbol
681      specifies a "must be used with" or a "must not be used with"
682      relationship, respectively.  If no rule is specified, then it is
683      assumed that the two packages are compatible and will function
684      either with or without each other.
685    
686    \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or
687      automatic differentiation options file to be used.  The file is
688      analogous to the ``optfile'' defined above but it specifies
689      information for the AD build process.
690    
691      The default file is located in {\em
692        tools/adjoint\_options/adjoint\_default} and it defines the "TAF"
693      and "TAMC" compilers.  An alternate version is also available at
694      {\em tools/adjoint\_options/adjoint\_staf} that selects the newer
695      "STAF" compiler.  As with any compilers, it is helpful to have their
696      directories listed in your {\tt \$PATH} environment variable.
697    
698    \item[\texttt{--mpi}] This option enables certain MPI features (using
699      CPP \texttt{\#define}s) within the code and is necessary for MPI
700      builds (see Section \ref{sec:mpi-build}).
701    
702    \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of
703      soft-links and other bugs common with the \texttt{make} versions
704      provided by commercial Unix vendors, GNU \texttt{make} (sometimes
705      called \texttt{gmake}) should be preferred.  This option provides a
706      means for specifying the make executable to be used.
707    
708    \item[\texttt{--bash=/path/to/sh}] On some (usually older UNIX)
709      machines, the ``bash'' shell is unavailable.  To run on these
710      systems, \texttt{genmake2} can be invoked using an ``sh'' (that is,
711      a Bourne, POSIX, or compatible) shell.  The syntax in these
712      circumstances is:
713      \begin{center}
714        \texttt{\%  /bin/sh genmake2 -bash=/bin/sh [...options...]}
715      \end{center}
716      where \texttt{/bin/sh} can be replaced with the full path and name
717      of the desired shell.
718    
719    \end{description}
720    
721    \subsection{Building with MPI}
722    \label{sec:mpi-build}
723    
724    Building MITgcm to use MPI libraries can be complicated due to the
725    variety of different MPI implementations available, their dependencies
726    or interactions with different compilers, and their often ad-hoc
727    locations within file systems.  For these reasons, its generally a
728    good idea to start by finding and reading the documentation for your
729    machine(s) and, if necessary, seeking help from your local systems
730    administrator.
731    
732    The steps for building MITgcm with MPI support are:
733    \begin{enumerate}
734    
735    \item Determine the locations of your MPI-enabled compiler and/or MPI
736      libraries and put them into an options file as described in Section
737      \ref{sec:genmake}.  One can start with one of the examples in:
738      \begin{rawhtml} <A
739        href="http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/build_options/">
740      \end{rawhtml}
741      \begin{center}
742        \texttt{MITgcm/tools/build\_options/}
743      \end{center}
744      \begin{rawhtml} </A> \end{rawhtml}
745      such as \texttt{linux\_ia32\_g77+mpi\_cg01} or
746      \texttt{linux\_ia64\_efc+mpi} and then edit it to suit the machine at
747      hand.  You may need help from your user guide or local systems
748      administrator to determine the exact location of the MPI libraries.
749      If libraries are not installed, MPI implementations and related
750      tools are available including:
751      \begin{itemize}
752      \item \begin{rawhtml} <A
753          href="http://www-unix.mcs.anl.gov/mpi/mpich/">
754        \end{rawhtml}
755        MPICH
756        \begin{rawhtml} </A> \end{rawhtml}
757    
758      \item \begin{rawhtml} <A
759          href="http://www.lam-mpi.org/">
760        \end{rawhtml}
761        LAM/MPI
762        \begin{rawhtml} </A> \end{rawhtml}
763    
764      \item \begin{rawhtml} <A
765          href="http://www.osc.edu/~pw/mpiexec/">
766        \end{rawhtml}
767        MPIexec
768        \begin{rawhtml} </A> \end{rawhtml}
769      \end{itemize}
770    
771    \item Build the code with the \texttt{genmake2} \texttt{-mpi} option
772      (see Section \ref{sec:genmake}) using commands such as:
773    {\footnotesize \begin{verbatim}
774      %  ../../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE
775      %  make depend
776      %  make
777    \end{verbatim} }
778    
779    \item Run the code with the appropriate MPI ``run'' or ``exec''
780      program provided with your particular implementation of MPI.
781      Typical MPI packages such as MPICH will use something like:
782    \begin{verbatim}
783      %  mpirun -np 4 -machinefile mf ./mitgcmuv
784    \end{verbatim}
785      Sightly more complicated scripts may be needed for many machines
786      since execution of the code may be controlled by both the MPI
787      library and a job scheduling and queueing system such as PBS,
788      LoadLeveller, Condor, or any of a number of similar tools.  A few
789      example scripts (those used for our \begin{rawhtml} <A
790        href="http://mitgcm.org/public/testing.html"> \end{rawhtml}regular
791      verification runs\begin{rawhtml} </A> \end{rawhtml}) are available
792      at:
793      \begin{rawhtml} <A
794        href="http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/example_scripts/">
795      \end{rawhtml}
796      {\footnotesize \tt
797        http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/example\_scripts/ }
798      \begin{rawhtml} </A> \end{rawhtml}
799      or at:
800      \begin{rawhtml} <A
801        href="http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/test_scripts/">
802      \end{rawhtml}
803      {\footnotesize \tt
804        http://mitgcm.org/viewvc/MITgcm/MITgcm\_contrib/test\_scripts/ }
805      \begin{rawhtml} </A> \end{rawhtml}
806    
807    \end{enumerate}
808    
809    An example of the above process on the MITgcm cluster (``cg01'') using
810    the GNU g77 compiler and the mpich MPI library is:
811    
812    {\footnotesize \begin{verbatim}
813      %  cd MITgcm/verification/exp5
814      %  mkdir build
815      %  cd build
816      %  ../../../tools/genmake2 -mpi -mods=../code \
817           -of=../../../tools/build_options/linux_ia32_g77+mpi_cg01
818      %  make depend
819      %  make
820      %  cd ../input
821      %  /usr/local/pkg/mpi/mpi-1.2.4..8a-gm-1.5/g77/bin/mpirun.ch_gm \
822           -machinefile mf --gm-kill 5 -v -np 2  ../build/mitgcmuv
823    \end{verbatim} }
824    
825    \section[Running MITgcm]{Running the model in prognostic mode}
826    \label{sec:runModel}
827    \begin{rawhtml}
828    <!-- CMIREDIR:runModel: -->
829    \end{rawhtml}
830    
831    If compilation finished succesfully (section \ref{sec:buildingCode})
832    then an executable called \texttt{mitgcmuv} will now exist in the
833    local directory.
834    
835  \subsection{\textit{genmake}}  To run the model as a single process (\textit{ie.} not in parallel)
836  \label{sect:genmake}  simply type:
   
 To compile the code, use the script \textit{genmake} located in the \textit{%  
 tools} directory. \textit{genmake} is a script that generates the makefile.  
 It has been written so that the code can be compiled on a wide diversity of  
 machines and systems. However, if it doesn't work the first time on your  
 platform, you might need to edit certain lines of \textit{genmake} in the  
 section containing the setups for the different machines. The file is  
 structured like this:  
 \begin{verbatim}  
         .  
         .  
         .  
 general instructions (machine independent)  
         .  
         .  
         .  
     - setup machine 1  
     - setup machine 2  
     - setup machine 3  
     - setup machine 4  
        etc  
         .  
         .  
         .  
 \end{verbatim}  
   
 For example, the setup corresponding to a DEC alpha machine is reproduced  
 here:  
 \begin{verbatim}  
   case OSF1+mpi:  
     echo "Configuring for DEC Alpha"  
     set CPP        = ( '/usr/bin/cpp -P' )  
     set DEFINES    = ( ${DEFINES}  '-DTARGET_DEC -DWORDLENGTH=1' )  
     set KPP        = ( 'kapf' )  
     set KPPFILES   = ( 'main.F' )  
     set KFLAGS1    = ( '-scan=132 -noconc -cmp=' )  
     set FC         = ( 'f77' )  
     set FFLAGS     = ( '-convert big_endian -r8 -extend_source -automatic -call_shared -notransform_loops -align dcommons' )  
     set FOPTIM     = ( '-O5 -fast -tune host -inline all' )  
     set NOOPTFLAGS = ( '-O0' )  
     set LIBS       = ( '-lfmpi -lmpi -lkmp_osfp10 -pthread' )  
     set NOOPTFILES = ( 'barrier.F different_multiple.F external_fields_load.F')  
     set RMFILES    = ( '*.p.out' )  
     breaksw  
 \end{verbatim}  
   
 Typically, these are the lines that you might need to edit to make \textit{%  
 genmake} work on your platform if it doesn't work the first time. \textit{%  
 genmake} understands several options that are described here:  
   
 \begin{itemize}  
 \item -rootdir=dir  
   
 indicates where the model root directory is relative to the directory where  
 you are compiling. This option is not needed if you compile in the \textit{%  
 bin} directory (which is the default compilation directory) or within the  
 \textit{verification} tree.  
   
 \item -mods=dir1,dir2,...  
   
 indicates the relative or absolute paths directories where the sources  
 should take precedence over the default versions (located in \textit{model},  
 \textit{eesupp},...). Typically, this option is used when running the  
 examples, see below.  
   
 \item -enable=pkg1,pkg2,...  
   
 enables packages source code \textit{pkg1}, \textit{pkg2},... when creating  
 the makefile.  
   
 \item -disable=pkg1,pkg2,...  
   
 disables packages source code \textit{pkg1}, \textit{pkg2},... when creating  
 the makefile.  
   
 \item -platform=machine  
   
 specifies the platform for which you want the makefile. In general, you  
 won't need this option. \textit{genmake} will select the right machine for  
 you (the one you're working on!). However, this option is useful if you have  
 a choice of several compilers on one machine and you want to use the one  
 that is not the default (ex: \texttt{pgf77} instead of \texttt{f77} under  
 Linux).  
   
 \item -mpi  
   
 this is used when you want to run the model in parallel processing mode  
 under mpi (see section on parallel computation for more details).  
   
 \item -jam  
   
 this is used when you want to run the model in parallel processing mode  
 under jam (see section on parallel computation for more details).  
 \end{itemize}  
   
 For some of the examples, there is a file called \textit{.genmakerc} in the  
 \textit{input} directory that has the relevant \textit{genmake} options for  
 that particular example. In this way you don't need to type the options when  
 invoking \textit{genmake}.  
   
   
 \section{Running the model}  
 \label{sect:runModel}  
   
 If compilation finished succesfuully (section \ref{sect:buildModel})  
 then an executable called {\em mitgcmuv} will now exist in the local  
 directory.  
   
 To run the model as a single process (ie. not in parallel) simply  
 type:  
837  \begin{verbatim}  \begin{verbatim}
838  % ./mitgcmuv  % ./mitgcmuv
839  \end{verbatim}  \end{verbatim}
# Line 543  do!). The above command will spew out ma Line 843  do!). The above command will spew out ma
843  your screen.  This output contains details such as parameter values as  your screen.  This output contains details such as parameter values as
844  well as diagnostics such as mean Kinetic energy, largest CFL number,  well as diagnostics such as mean Kinetic energy, largest CFL number,
845  etc. It is worth keeping this text output with the binary output so we  etc. It is worth keeping this text output with the binary output so we
846  normally re-direct the {\em stdout} stream as follows:  normally re-direct the \texttt{stdout} stream as follows:
847  \begin{verbatim}  \begin{verbatim}
848  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
849  \end{verbatim}  \end{verbatim}
850    In the event that the model encounters an error and stops, it is very
851    helpful to include the last few line of this \texttt{output.txt} file
852    along with the (\texttt{stderr}) error message within any bug reports.
853    
854    For the example experiments in \texttt{verification}, an example of the
855    output is kept in \texttt{results/output.txt} for comparison. You can
856    compare your \texttt{output.txt} with the corresponding one for that
857    experiment to check that the set-up works.
858    
859  For the example experiments in {\em vericication}, an example of the  \subsection{Output files}
 output is kept in {\em results/output.txt} for comparison. You can compare  
 your {\em output.txt} with this one to check that the set-up works.  
   
860    
861    The model produces various output files and, when using \texttt{mnc},
862    sometimes even directories.  Depending upon the I/O package(s)
863    selected at compile time (either \texttt{mdsio} or \texttt{mnc} or
864    both as determined by \texttt{code/packages.conf}) and the run-time
865    flags set (in \texttt{input/data.pkg}), the following output may
866    appear.
867    
868  \subsection{Output files}  \subsubsection{MDSIO output files}
869    
870  The model produces various output files. At a minimum, the instantaneous  The ``traditional'' output files are generated by the \texttt{mdsio}
871  ``state'' of the model is written out, which is made of the following files:  package.  At a minimum, the instantaneous ``state'' of the model is
872    written out, which is made of the following files:
873    
874  \begin{itemize}  \begin{itemize}
875  \item \textit{U.00000nIter} - zonal component of velocity field (m/s and $>  \item \texttt{U.00000nIter} - zonal component of velocity field (m/s
876  0 $ eastward).    and positive eastward).
877    
878  \item \textit{V.00000nIter} - meridional component of velocity field (m/s  \item \texttt{V.00000nIter} - meridional component of velocity field
879  and $> 0$ northward).    (m/s and positive northward).
880    
881  \item \textit{W.00000nIter} - vertical component of velocity field (ocean:  \item \texttt{W.00000nIter} - vertical component of velocity field
882  m/s and $> 0$ upward, atmosphere: Pa/s and $> 0$ towards increasing pressure    (ocean: m/s and positive upward, atmosphere: Pa/s and positive
883  i.e. downward).    towards increasing pressure i.e. downward).
884    
885  \item \textit{T.00000nIter} - potential temperature (ocean: $^{0}$C,  \item \texttt{T.00000nIter} - potential temperature (ocean:
886  atmosphere: $^{0}$K).    $^{\circ}\mathrm{C}$, atmosphere: $^{\circ}\mathrm{K}$).
887    
888  \item \textit{S.00000nIter} - ocean: salinity (psu), atmosphere: water vapor  \item \texttt{S.00000nIter} - ocean: salinity (psu), atmosphere: water
889  (g/kg).    vapor (g/kg).
890    
891  \item \textit{Eta.00000nIter} - ocean: surface elevation (m), atmosphere:  \item \texttt{Eta.00000nIter} - ocean: surface elevation (m),
892  surface pressure anomaly (Pa).    atmosphere: surface pressure anomaly (Pa).
893  \end{itemize}  \end{itemize}
894    
895  The chain \textit{00000nIter} consists of ten figures that specify the  The chain \texttt{00000nIter} consists of ten figures that specify the
896  iteration number at which the output is written out. For example, \textit{%  iteration number at which the output is written out. For example,
897  U.0000000300} is the zonal velocity at iteration 300.  \texttt{U.0000000300} is the zonal velocity at iteration 300.
898    
899  In addition, a ``pickup'' or ``checkpoint'' file called:  In addition, a ``pickup'' or ``checkpoint'' file called:
900    
901  \begin{itemize}  \begin{itemize}
902  \item \textit{pickup.00000nIter}  \item \texttt{pickup.00000nIter}
903  \end{itemize}  \end{itemize}
904    
905  is written out. This file represents the state of the model in a condensed  is written out. This file represents the state of the model in a condensed
# Line 595  form and is used for restarting the inte Line 907  form and is used for restarting the inte
907  there is an additional ``pickup'' file:  there is an additional ``pickup'' file:
908    
909  \begin{itemize}  \begin{itemize}
910  \item \textit{pickup\_cd.00000nIter}  \item \texttt{pickup\_cd.00000nIter}
911  \end{itemize}  \end{itemize}
912    
913  containing the D-grid velocity data and that has to be written out as well  containing the D-grid velocity data and that has to be written out as well
914  in order to restart the integration. Rolling checkpoint files are the same  in order to restart the integration. Rolling checkpoint files are the same
915  as the pickup files but are named differently. Their name contain the chain  as the pickup files but are named differently. Their name contain the chain
916  \textit{ckptA} or \textit{ckptB} instead of \textit{00000nIter}. They can be  \texttt{ckptA} or \texttt{ckptB} instead of \texttt{00000nIter}. They can be
917  used to restart the model but are overwritten every other time they are  used to restart the model but are overwritten every other time they are
918  output to save disk space during long integrations.  output to save disk space during long integrations.
919    
920    \subsubsection{MNC output files}
921    
922    Unlike the \texttt{mdsio} output, the \texttt{mnc}--generated output
923    is usually (though not necessarily) placed within a subdirectory with
924    a name such as \texttt{mnc\_test\_\${DATE}\_\${SEQ}}.
925    
926  \subsection{Looking at the output}  \subsection{Looking at the output}
927    
928  All the model data are written according to a ``meta/data'' file format.  The ``traditional'' or mdsio model data are written according to a
929  Each variable is associated with two files with suffix names \textit{.data}  ``meta/data'' file format.  Each variable is associated with two files
930  and \textit{.meta}. The \textit{.data} file contains the data written in  with suffix names \texttt{.data} and \texttt{.meta}. The
931  binary form (big\_endian by default). The \textit{.meta} file is a  \texttt{.data} file contains the data written in binary form
932  ``header'' file that contains information about the size and the structure  (big\_endian by default). The \texttt{.meta} file is a ``header'' file
933  of the \textit{.data} file. This way of organizing the output is  that contains information about the size and the structure of the
934  particularly useful when running multi-processors calculations. The base  \texttt{.data} file. This way of organizing the output is particularly
935  version of the model includes a few matlab utilities to read output files  useful when running multi-processors calculations. The base version of
936  written in this format. The matlab scripts are located in the directory  the model includes a few matlab utilities to read output files written
937  \textit{utils/matlab} under the root tree. The script \textit{rdmds.m} reads  in this format. The matlab scripts are located in the directory
938  the data. Look at the comments inside the script to see how to use it.  \texttt{utils/matlab} under the root tree. The script \texttt{rdmds.m}
939    reads the data. Look at the comments inside the script to see how to
940    use it.
941    
942  Some examples of reading and visualizing some output in {\em Matlab}:  Some examples of reading and visualizing some output in {\em Matlab}:
943  \begin{verbatim}  \begin{verbatim}
# Line 634  Some examples of reading and visualizing Line 954  Some examples of reading and visualizing
954  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end
955  \end{verbatim}  \end{verbatim}
956    
957  \section{Doing it yourself: customizing the code}  Similar scripts for netCDF output (\texttt{rdmnc.m}) are available and
958    they are described in Section \ref{sec:pkg:mnc}.
 When you are ready to run the model in the configuration you want, the  
 easiest thing is to use and adapt the setup of the case studies experiment  
 (described previously) that is the closest to your configuration. Then, the  
 amount of setup will be minimized. In this section, we focus on the setup  
 relative to the ''numerical model'' part of the code (the setup relative to  
 the ''execution environment'' part is covered in the parallel implementation  
 section) and on the variables and parameters that you are likely to change.  
   
 \subsection{Configuration and setup}  
   
 The CPP keys relative to the ''numerical model'' part of the code are all  
 defined and set in the file \textit{CPP\_OPTIONS.h }in the directory \textit{%  
 model/inc }or in one of the \textit{code }directories of the case study  
 experiments under \textit{verification.} The model parameters are defined  
 and declared in the file \textit{model/inc/PARAMS.h }and their default  
 values are set in the routine \textit{model/src/set\_defaults.F. }The  
 default values can be modified in the namelist file \textit{data }which  
 needs to be located in the directory where you will run the model. The  
 parameters are initialized in the routine \textit{model/src/ini\_parms.F}.  
 Look at this routine to see in what part of the namelist the parameters are  
 located.  
   
 In what follows the parameters are grouped into categories related to the  
 computational domain, the equations solved in the model, and the simulation  
 controls.  
   
 \subsection{Computational domain, geometry and time-discretization}  
959    
960    The MNC output files are all in the ``self-describing'' netCDF
961    format and can thus be browsed and/or plotted using tools such as:
962  \begin{itemize}  \begin{itemize}
963  \item dimensions  \item \texttt{ncdump} is a utility which is typically included
964  \end{itemize}    with every netCDF install:
965      \begin{rawhtml} <A href="http://www.unidata.ucar.edu/packages/netcdf/"> \end{rawhtml}
966  The number of points in the x, y,\textit{\ }and r\textit{\ }directions are  \begin{verbatim}
967  represented by the variables \textbf{sNx}\textit{, }\textbf{sNy}\textit{, }%  http://www.unidata.ucar.edu/packages/netcdf/
968  and \textbf{Nr}\textit{\ }respectively which are declared and set in the  \end{verbatim}
969  file \textit{model/inc/SIZE.h. }(Again, this assumes a mono-processor    \begin{rawhtml} </A> \end{rawhtml} and it converts the netCDF
970  calculation. For multiprocessor calculations see section on parallel    binaries into formatted ASCII text files.
 implementation.)  
   
 \begin{itemize}  
 \item grid  
 \end{itemize}  
   
 Three different grids are available: cartesian, spherical polar, and  
 curvilinear (including the cubed sphere). The grid is set through the  
 logical variables \textbf{usingCartesianGrid}\textit{, }\textbf{%  
 usingSphericalPolarGrid}\textit{, }and \textit{\ }\textbf{%  
 usingCurvilinearGrid}\textit{. }In the case of spherical and curvilinear  
 grids, the southern boundary is defined through the variable \textbf{phiMin}%  
 \textit{\ }which corresponds to the latitude of the southern most cell face  
 (in degrees). The resolution along the x and y directions is controlled by  
 the 1D arrays \textbf{delx}\textit{\ }and \textbf{dely}\textit{\ }(in meters  
 in the case of a cartesian grid, in degrees otherwise). The vertical grid  
 spacing is set through the 1D array \textbf{delz }for the ocean (in meters)  
 or \textbf{delp}\textit{\ }for the atmosphere (in Pa). The variable \textbf{%  
 Ro\_SeaLevel} represents the standard position of Sea-Level in ''R''  
 coordinate. This is typically set to 0m for the ocean (default value) and 10$%  
 ^{5}$Pa for the atmosphere. For the atmosphere, also set the logical  
 variable \textbf{groundAtK1} to '.\texttt{TRUE}.'. which put the first level  
 (k=1) at the lower boundary (ground).  
   
 For the cartesian grid case, the Coriolis parameter $f$ is set through the  
 variables \textbf{f0}\textit{\ }and \textbf{beta}\textit{\ }which correspond  
 to the reference Coriolis parameter (in s$^{-1}$) and $\frac{\partial f}{%  
 \partial y}$(in m$^{-1}$s$^{-1}$) respectively. If \textbf{beta }\textit{\ }%  
 is set to a nonzero value, \textbf{f0}\textit{\ }is the value of $f$ at the  
 southern edge of the domain.  
   
 \begin{itemize}  
 \item topography - full and partial cells  
 \end{itemize}  
   
 The domain bathymetry is read from a file that contains a 2D (x,y) map of  
 depths (in m) for the ocean or pressures (in Pa) for the atmosphere. The  
 file name is represented by the variable \textbf{bathyFile}\textit{. }The  
 file is assumed to contain binary numbers giving the depth (pressure) of the  
 model at each grid cell, ordered with the x coordinate varying fastest. The  
 points are ordered from low coordinate to high coordinate for both axes. The  
 model code applies without modification to enclosed, periodic, and double  
 periodic domains. Periodicity is assumed by default and is suppressed by  
 setting the depths to 0m for the cells at the limits of the computational  
 domain (note: not sure this is the case for the atmosphere). The precision  
 with which to read the binary data is controlled by the integer variable  
 \textbf{readBinaryPrec }which can take the value \texttt{32} (single  
 precision) or \texttt{64} (double precision). See the matlab program \textit{%  
 gendata.m }in the \textit{input }directories under \textit{verification }to  
 see how the bathymetry files are generated for the case study experiments.  
   
 To use the partial cell capability, the variable \textbf{hFacMin}\textit{\ }%  
 needs to be set to a value between 0 and 1 (it is set to 1 by default)  
 corresponding to the minimum fractional size of the cell. For example if the  
 bottom cell is 500m thick and \textbf{hFacMin}\textit{\ }is set to 0.1, the  
 actual thickness of the cell (i.e. used in the code) can cover a range of  
 discrete values 50m apart from 50m to 500m depending on the value of the  
 bottom depth (in \textbf{bathyFile}) at this point.  
   
 Note that the bottom depths (or pressures) need not coincide with the models  
 levels as deduced from \textbf{delz}\textit{\ }or\textit{\ }\textbf{delp}%  
 \textit{. }The model will interpolate the numbers in \textbf{bathyFile}%  
 \textit{\ }so that they match the levels obtained from \textbf{delz}\textit{%  
 \ }or\textit{\ }\textbf{delp}\textit{\ }and \textbf{hFacMin}\textit{. }  
   
 (Note: the atmospheric case is a bit more complicated than what is written  
 here I think. To come soon...)  
   
 \begin{itemize}  
 \item time-discretization  
 \end{itemize}  
   
 The time steps are set through the real variables \textbf{deltaTMom }and  
 \textbf{deltaTtracer }(in s) which represent the time step for the momentum  
 and tracer equations, respectively. For synchronous integrations, simply set  
 the two variables to the same value (or you can prescribe one time step only  
 through the variable \textbf{deltaT}). The Adams-Bashforth stabilizing  
 parameter is set through the variable \textbf{abEps }(dimensionless). The  
 stagger baroclinic time stepping can be activated by setting the logical  
 variable \textbf{staggerTimeStep }to '.\texttt{TRUE}.'.  
   
 \subsection{Equation of state}  
   
 First, because the model equations are written in terms of perturbations, a  
 reference thermodynamic state needs to be specified. This is done through  
 the 1D arrays \textbf{tRef}\textit{\ }and \textbf{sRef}. \textbf{tRef }%  
 specifies the reference potential temperature profile (in $^{o}$C for  
 the ocean and $^{o}$K for the atmosphere) starting from the level  
 k=1. Similarly, \textbf{sRef}\textit{\ }specifies the reference salinity  
 profile (in ppt) for the ocean or the reference specific humidity profile  
 (in g/kg) for the atmosphere.  
   
 The form of the equation of state is controlled by the character variables  
 \textbf{buoyancyRelation}\textit{\ }and \textbf{eosType}\textit{. }\textbf{%  
 buoyancyRelation}\textit{\ }is set to '\texttt{OCEANIC}' by default and  
 needs to be set to '\texttt{ATMOSPHERIC}' for atmosphere simulations. In  
 this case, \textbf{eosType}\textit{\ }must be set to '\texttt{IDEALGAS}'.  
 For the ocean, two forms of the equation of state are available: linear (set  
 \textbf{eosType}\textit{\ }to '\texttt{LINEAR}') and a polynomial  
 approximation to the full nonlinear equation ( set \textbf{eosType}\textit{\  
 }to '\texttt{POLYNOMIAL}'). In the linear case, you need to specify the  
 thermal and haline expansion coefficients represented by the variables  
 \textbf{tAlpha}\textit{\ }(in K$^{-1}$) and \textbf{sBeta}\textit{\ }(in ppt$%  
 ^{-1}$). For the nonlinear case, you need to generate a file of polynomial  
 coefficients called \textit{POLY3.COEFFS. }To do this, use the program  
 \textit{utils/knudsen2/knudsen2.f }under the model tree (a Makefile is  
 available in the same directory and you will need to edit the number and the  
 values of the vertical levels in \textit{knudsen2.f }so that they match  
 those of your configuration). \textit{\ }  
   
 \subsection{Momentum equations}  
   
 In this section, we only focus for now on the parameters that you are likely  
 to change, i.e. the ones relative to forcing and dissipation for example.  
 The details relevant to the vector-invariant form of the equations and the  
 various advection schemes are not covered for the moment. We assume that you  
 use the standard form of the momentum equations (i.e. the flux-form) with  
 the default advection scheme. Also, there are a few logical variables that  
 allow you to turn on/off various terms in the momentum equation. These  
 variables are called \textbf{momViscosity, momAdvection, momForcing,  
 useCoriolis, momPressureForcing, momStepping}\textit{, }and \textit{\ }%  
 \textbf{metricTerms }and are assumed to be set to '.\texttt{TRUE}.' here.  
 Look at the file \textit{model/inc/PARAMS.h }for a precise definition of  
 these variables.  
   
 \begin{itemize}  
 \item initialization  
 \end{itemize}  
   
 The velocity components are initialized to 0 unless the simulation is  
 starting from a pickup file (see section on simulation control parameters).  
   
 \begin{itemize}  
 \item forcing  
 \end{itemize}  
   
 This section only applies to the ocean. You need to generate wind-stress  
 data into two files \textbf{zonalWindFile}\textit{\ }and \textbf{%  
 meridWindFile }corresponding to the zonal and meridional components of the  
 wind stress, respectively (if you want the stress to be along the direction  
 of only one of the model horizontal axes, you only need to generate one  
 file). The format of the files is similar to the bathymetry file. The zonal  
 (meridional) stress data are assumed to be in Pa and located at U-points  
 (V-points). As for the bathymetry, the precision with which to read the  
 binary data is controlled by the variable \textbf{readBinaryPrec}.\textbf{\ }  
 See the matlab program \textit{gendata.m }in the \textit{input }directories  
 under \textit{verification }to see how simple analytical wind forcing data  
 are generated for the case study experiments.  
   
 There is also the possibility of prescribing time-dependent periodic  
 forcing. To do this, concatenate the successive time records into a single  
 file (for each stress component) ordered in a (x, y, t) fashion and set the  
 following variables: \textbf{periodicExternalForcing }to '.\texttt{TRUE}.',  
 \textbf{externForcingPeriod }to the period (in s) of which the forcing  
 varies (typically 1 month), and \textbf{externForcingCycle }to the repeat  
 time (in s) of the forcing (typically 1 year -- note: \textbf{%  
 externForcingCycle }must be a multiple of \textbf{externForcingPeriod}).  
 With these variables set up, the model will interpolate the forcing linearly  
 at each iteration.  
   
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
   
 The lateral eddy viscosity coefficient is specified through the variable  
 \textbf{viscAh}\textit{\ }(in m$^{2}$s$^{-1}$). The vertical eddy viscosity  
 coefficient is specified through the variable \textbf{viscAz }(in m$^{2}$s$%  
 ^{-1}$) for the ocean and \textbf{viscAp}\textit{\ }(in Pa$^{2}$s$^{-1}$)  
 for the atmosphere. The vertical diffusive fluxes can be computed implicitly  
 by setting the logical variable \textbf{implicitViscosity }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic mixing can be added as well through the variable  
 \textbf{viscA4}\textit{\ }(in m$^{4}$s$^{-1}$). On a spherical polar grid,  
 you might also need to set the variable \textbf{cosPower} which is set to 0  
 by default and which represents the power of cosine of latitude to multiply  
 viscosity. Slip or no-slip conditions at lateral and bottom boundaries are  
 specified through the logical variables \textbf{no\_slip\_sides}\textit{\ }%  
 and \textbf{no\_slip\_bottom}. If set to '\texttt{.FALSE.}', free-slip  
 boundary conditions are applied. If no-slip boundary conditions are applied  
 at the bottom, a bottom drag can be applied as well. Two forms are  
 available: linear (set the variable \textbf{bottomDragLinear}\textit{\ }in s$%  
 ^{-1}$) and quadratic (set the variable \textbf{bottomDragQuadratic}\textit{%  
 \ }in m$^{-1}$).  
   
 The Fourier and Shapiro filters are described elsewhere.  
   
 \begin{itemize}  
 \item C-D scheme  
 \end{itemize}  
   
 If you run at a sufficiently coarse resolution, you will need the C-D scheme  
 for the computation of the Coriolis terms. The variable\textbf{\ tauCD},  
 which represents the C-D scheme coupling timescale (in s) needs to be set.  
   
 \begin{itemize}  
 \item calculation of pressure/geopotential  
 \end{itemize}  
   
 First, to run a non-hydrostatic ocean simulation, set the logical variable  
 \textbf{nonHydrostatic} to '.\texttt{TRUE}.'. The pressure field is then  
 inverted through a 3D elliptic equation. (Note: this capability is not  
 available for the atmosphere yet.) By default, a hydrostatic simulation is  
 assumed and a 2D elliptic equation is used to invert the pressure field. The  
 parameters controlling the behaviour of the elliptic solvers are the  
 variables \textbf{cg2dMaxIters}\textit{\ }and \textbf{cg2dTargetResidual }%  
 for the 2D case and \textbf{cg3dMaxIters}\textit{\ }and \textbf{%  
 cg3dTargetResidual }for the 3D case. You probably won't need to alter the  
 default values (are we sure of this?).  
   
 For the calculation of the surface pressure (for the ocean) or surface  
 geopotential (for the atmosphere) you need to set the logical variables  
 \textbf{rigidLid} and \textbf{implicitFreeSurface}\textit{\ }(set one to '.%  
 \texttt{TRUE}.' and the other to '.\texttt{FALSE}.' depending on how you  
 want to deal with the ocean upper or atmosphere lower boundary).  
   
 \subsection{Tracer equations}  
   
 This section covers the tracer equations i.e. the potential temperature  
 equation and the salinity (for the ocean) or specific humidity (for the  
 atmosphere) equation. As for the momentum equations, we only describe for  
 now the parameters that you are likely to change. The logical variables  
 \textbf{tempDiffusion}\textit{, }\textbf{tempAdvection}\textit{, }\textbf{%  
 tempForcing}\textit{,} and \textbf{tempStepping} allow you to turn on/off  
 terms in the temperature equation (same thing for salinity or specific  
 humidity with variables \textbf{saltDiffusion}\textit{, }\textbf{%  
 saltAdvection}\textit{\ }etc). These variables are all assumed here to be  
 set to '.\texttt{TRUE}.'. Look at file \textit{model/inc/PARAMS.h }for a  
 precise definition.  
   
 \begin{itemize}  
 \item initialization  
 \end{itemize}  
   
 The initial tracer data can be contained in the binary files \textbf{%  
 hydrogThetaFile }and \textbf{hydrogSaltFile}. These files should contain 3D  
 data ordered in an (x, y, r) fashion with k=1 as the first vertical level.  
 If no file names are provided, the tracers are then initialized with the  
 values of \textbf{tRef }and \textbf{sRef }mentioned above (in the equation  
 of state section). In this case, the initial tracer data are uniform in x  
 and y for each depth level.  
   
 \begin{itemize}  
 \item forcing  
 \end{itemize}  
   
 This part is more relevant for the ocean, the procedure for the atmosphere  
 not being completely stabilized at the moment.  
   
 A combination of fluxes data and relaxation terms can be used for driving  
 the tracer equations. \ For potential temperature, heat flux data (in W/m$%  
 ^{2}$) can be stored in the 2D binary file \textbf{surfQfile}\textit{. }%  
 Alternatively or in addition, the forcing can be specified through a  
 relaxation term. The SST data to which the model surface temperatures are  
 restored to are supposed to be stored in the 2D binary file \textbf{%  
 thetaClimFile}\textit{. }The corresponding relaxation time scale coefficient  
 is set through the variable \textbf{tauThetaClimRelax}\textit{\ }(in s). The  
 same procedure applies for salinity with the variable names \textbf{EmPmRfile%  
 }\textit{, }\textbf{saltClimFile}\textit{, }and \textbf{tauSaltClimRelax}%  
 \textit{\ }for freshwater flux (in m/s) and surface salinity (in ppt) data  
 files and relaxation time scale coefficient (in s), respectively. Also for  
 salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on, natural  
 boundary conditions are applied i.e. when computing the surface salinity  
 tendency, the freshwater flux is multiplied by the model surface salinity  
 instead of a constant salinity value.  
   
 As for the other input files, the precision with which to read the data is  
 controlled by the variable \textbf{readBinaryPrec}. Time-dependent, periodic  
 forcing can be applied as well following the same procedure used for the  
 wind forcing data (see above).  
   
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
   
 Lateral eddy diffusivities for temperature and salinity/specific humidity  
 are specified through the variables \textbf{diffKhT }and \textbf{diffKhS }%  
 (in m$^{2}$/s). Vertical eddy diffusivities are specified through the  
 variables \textbf{diffKzT }and \textbf{diffKzS }(in m$^{2}$/s) for the ocean  
 and \textbf{diffKpT }and \textbf{diffKpS }(in Pa$^{2}$/s) for the  
 atmosphere. The vertical diffusive fluxes can be computed implicitly by  
 setting the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic diffusivities can be specified as well through  
 the coefficients \textbf{diffK4T }and \textbf{diffK4S }(in m$^{4}$/s). Note  
 that the cosine power scaling (specified through \textbf{cosPower }- see the  
 momentum equations section) is applied to the tracer diffusivities  
 (Laplacian and biharmonic) as well. The Gent and McWilliams parameterization  
 for oceanic tracers is described in the package section. Finally, note that  
 tracers can be also subject to Fourier and Shapiro filtering (see the  
 corresponding section on these filters).  
   
 \begin{itemize}  
 \item ocean convection  
 \end{itemize}  
   
 Two options are available to parameterize ocean convection: one is to use  
 the convective adjustment scheme. In this case, you need to set the variable  
 \textbf{cadjFreq}, which represents the frequency (in s) with which the  
 adjustment algorithm is called, to a non-zero value (if set to a negative  
 value by the user, the model will set it to the tracer time step). The other  
 option is to parameterize convection with implicit vertical diffusion. To do  
 this, set the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .' and the real variable \textbf{ivdc\_kappa }to a value (in m$^{2}$/s) you  
 wish the tracer vertical diffusivities to have when mixing tracers  
 vertically due to static instabilities. Note that \textbf{cadjFreq }and  
 \textbf{ivdc\_kappa }can not both have non-zero value.  
   
 \subsection{Simulation controls}  
   
 The model ''clock'' is defined by the variable \textbf{deltaTClock }(in s)  
 which determines the IO frequencies and is used in tagging output.  
 Typically, you will set it to the tracer time step for accelerated runs  
 (otherwise it is simply set to the default time step \textbf{deltaT}).  
 Frequency of checkpointing and dumping of the model state are referenced to  
 this clock (see below).  
   
 \begin{itemize}  
 \item run duration  
 \end{itemize}  
971    
972  The beginning of a simulation is set by specifying a start time (in s)  \item \texttt{ncview} utility is a very convenient and quick way
973  through the real variable \textbf{startTime }or by specifying an initial    to plot netCDF data and it runs on most OSes:
974  iteration number through the integer variable \textbf{nIter0}. If these    \begin{rawhtml} <A href="http://meteora.ucsd.edu/~pierce/ncview_home_page.html"> \end{rawhtml}
975  variables are set to nonzero values, the model will look for a ''pickup''  \begin{verbatim}
976  file \textit{pickup.0000nIter0 }to restart the integration\textit{. }The end  http://meteora.ucsd.edu/~pierce/ncview_home_page.html
977  of a simulation is set through the real variable \textbf{endTime }(in s).  \end{verbatim}
978  Alternatively, you can specify instead the number of time steps to execute    \begin{rawhtml} </A> \end{rawhtml}
 through the integer variable \textbf{nTimeSteps}.  
979    
980  \begin{itemize}  \item MatLAB(c) and other common post-processing environments provide
981  \item frequency of output    various netCDF interfaces including:
982      \begin{rawhtml} <A href="http://mexcdf.sourceforge.net/"> \end{rawhtml}
983    \begin{verbatim}
984    http://mexcdf.sourceforge.net/
985    \end{verbatim}
986      \begin{rawhtml} </A> \end{rawhtml}
987      \begin{rawhtml} <A href="http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html"> \end{rawhtml}
988    \begin{verbatim}
989    http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html
990    \end{verbatim}
991      \begin{rawhtml} </A> \end{rawhtml}
992  \end{itemize}  \end{itemize}
993    
 Real variables defining frequencies (in s) with which output files are  
 written on disk need to be set up. \textbf{dumpFreq }controls the frequency  
 with which the instantaneous state of the model is saved. \textbf{chkPtFreq }%  
 and \textbf{pchkPtFreq }control the output frequency of rolling and  
 permanent checkpoint files, respectively. See section 1.5.1 Output files for the  
 definition of model state and checkpoint files. In addition, time-averaged  
 fields can be written out by setting the variable \textbf{taveFreq} (in s).  
 The precision with which to write the binary data is controlled by the  
 integer variable w\textbf{riteBinaryPrec }(set it to \texttt{32} or \texttt{%  
 64}).  

Legend:
Removed from v.1.6  
changed lines
  Added in v.1.47

  ViewVC Help
Powered by ViewVC 1.1.22