/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Diff of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.17 by edhill, Thu Jan 29 15:11:39 2004 UTC revision 1.47 by jmc, Tue Jan 9 01:02:48 2018 UTC
# Line 3  Line 3 
3    
4  %\section{Getting started}  %\section{Getting started}
5    
6  In this section, we describe how to use the model. In the first  We believe the best way to familiarize yourself with the
 section, we provide enough information to help you get started with  
 the model. We believe the best way to familiarize yourself with the  
7  model is to run the case study examples provided with the base  model is to run the case study examples provided with the base
8  version. Information on how to obtain, compile, and run the code is  version. Information on how to obtain, compile, and run the code is
9  found there as well as a brief description of the model structure  found here as well as a brief description of the model structure
10  directory and the case study examples.  The latter and the code  directory and the case study examples. Information is also provided
11  structure are described more fully in chapters  here on how to customize the code when you are ready to try implementing
12  \ref{chap:discretization} and \ref{chap:sarch}, respectively. Here, in  the configuration you have in mind.  The code and algorithm
13  this section, we provide information on how to customize the code when  are described more fully in chapters \ref{chap:discretization} and
14  you are ready to try implementing the configuration you have in mind.  \ref{chap:sarch}.
15    
16  \section{Where to find information}  \section{Where to find information}
17  \label{sect:whereToFindInfo}  \label{sec:whereToFindInfo}
18    \begin{rawhtml}
19    <!-- CMIREDIR:whereToFindInfo: -->
20    \end{rawhtml}
21    
22  A web site is maintained for release 2 (``Pelican'') of MITgcm:  There is a web-archived support mailing list for the model that
23  \begin{rawhtml} <A href=http://mitgcm.org/pelican/ target="idontexist"> \end{rawhtml}  you can email at \texttt{MITgcm-support@mitgcm.org} after subscribing to:
24    \begin{rawhtml} <A href=http://mailman.mitgcm.org/mailman/listinfo/mitgcm-support/ target="idontexist"> \end{rawhtml}
25  \begin{verbatim}  \begin{verbatim}
26  http://mitgcm.org/pelican  http://mailman.mitgcm.org/mailman/listinfo/mitgcm-support/
27  \end{verbatim}  \end{verbatim}
28  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
29  Here you will find an on-line version of this document, a  or browse at:
30  ``browsable'' copy of the code and a searchable database of the model  \begin{rawhtml} <A href=http://mailman.mitgcm.org/pipermail/mitgcm-support/ target="idontexist"> \end{rawhtml}
 and site, as well as links for downloading the model and  
 documentation, to data-sources, and other related sites.  
   
 There is also a web-archived support mailing list for the model that  
 you can email at \texttt{MITgcm-support@mitgcm.org} or browse at:  
 \begin{rawhtml} <A href=http://mitgcm.org/mailman/listinfo/mitgcm-support/ target="idontexist"> \end{rawhtml}  
31  \begin{verbatim}  \begin{verbatim}
32  http://mitgcm.org/mailman/listinfo/mitgcm-support/  http://mailman.mitgcm.org/pipermail/mitgcm-support/
 http://mitgcm.org/pipermail/mitgcm-support/  
33  \end{verbatim}  \end{verbatim}
34  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
 Essentially all of the MITgcm web pages can be searched using a  
 popular web crawler such as Google or through our own search facility:  
 \begin{rawhtml} <A href=http://mitgcm.org/mailman/htdig/ target="idontexist"> \end{rawhtml}  
 \begin{verbatim}  
 http://mitgcm.org/htdig/  
 \end{verbatim}  
 \begin{rawhtml} </A> \end{rawhtml}  
 %%% http://www.google.com/search?q=hydrostatic+site%3Amitgcm.org  
   
   
35    
36  \section{Obtaining the code}  \section{Obtaining the code}
37  \label{sect:obtainingCode}  \label{sec:obtainingCode}
38    \begin{rawhtml}
39    <!-- CMIREDIR:obtainingCode: -->
40    \end{rawhtml}
41    
42  MITgcm can be downloaded from our system by following  MITgcm can be downloaded from our system by following
43  the instructions below. As a courtesy we ask that you send e-mail to us at  the instructions below. As a courtesy we ask that you send e-mail to us at
# Line 79  provide easy support for maintenance upd Line 67  provide easy support for maintenance upd
67    
68  \end{enumerate}  \end{enumerate}
69    
70    \subsection{Method 1 - Checkout from CVS}
71    \label{sec:cvs_checkout}
72    
73  If CVS is available on your system, we strongly encourage you to use it. CVS  If CVS is available on your system, we strongly encourage you to use it. CVS
74  provides an efficient and elegant way of organizing your code and keeping  provides an efficient and elegant way of organizing your code and keeping
75  track of your changes. If CVS is not available on your machine, you can also  track of your changes. If CVS is not available on your machine, you can also
76  download a tar file.  download a tar file.
77    
78  Before you can use CVS, the following environment variable(s) should  Before you can use CVS, the following environment variable(s) should
79  be set within your shell.  For a csh or tcsh shell, put the following  be set within your shell.  For a csh or tcsh shell, put the following
80  \begin{verbatim}  \begin{verbatim}
81  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack
82  \end{verbatim}  \end{verbatim}
83  in your .cshrc or .tcshrc file.  For bash or sh shells, put:  in your \texttt{.cshrc} or \texttt{.tcshrc} file.  For bash or sh
84    shells, put:
85  \begin{verbatim}  \begin{verbatim}
86  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
87  \end{verbatim}  \end{verbatim}
88  in your .profile or .bashrc file.  in your \texttt{.profile} or \texttt{.bashrc} file.
   
89    
90  To get MITgcm through CVS, first register with the MITgcm CVS server  To get MITgcm through CVS, first register with the MITgcm CVS server
91  using command:  using command:
# Line 105  You only need to do a ``cvs login'' once Line 96  You only need to do a ``cvs login'' once
96    
97  To obtain the latest sources type:  To obtain the latest sources type:
98  \begin{verbatim}  \begin{verbatim}
99  % cvs co MITgcm  % cvs co -P MITgcm
100  \end{verbatim}  \end{verbatim}
101  or to get a specific release type:  or to get a specific release type:
102  \begin{verbatim}  \begin{verbatim}
103  % cvs co -P -r checkpoint52i_post  MITgcm  % cvs co -P -r checkpoint52i_post MITgcm
104  \end{verbatim}  \end{verbatim}
105    The CVS command ``\texttt{cvs co}'' is the abreviation of the full-name
106    ``\texttt{cvs checkout}'' command and using the option ``-P'' (\texttt{cvs co -P})
107    will prevent to download unnecessary empty directories.
108    
109  The MITgcm web site contains further directions concerning the source  The MITgcm web site contains further directions concerning the source
110  code and CVS.  It also contains a web interface to our CVS archive so  code and CVS.  It also contains a web interface to our CVS archive so
111  that one may easily view the state of files, revisions, and other  that one may easily view the state of files, revisions, and other
112  development milestones:  development milestones:
113  \begin{rawhtml} <A href=''http://mitgcm.org/download'' target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href="http://mitgcm.org/viewvc/MITgcm/MITgcm/" target="idontexist"> \end{rawhtml}
114  \begin{verbatim}  \begin{verbatim}
115  http://mitgcm.org/source_code.html  http://mitgcm.org/viewvc/MITgcm/MITgcm/
116  \end{verbatim}  \end{verbatim}
117  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
118    
119    As a convenience, the MITgcm CVS server contains aliases which are
120    named subsets of the codebase.  These aliases can be especially
121    helpful when used over slow internet connections or on machines with
122    restricted storage space.  Table \ref{tab:cvsModules} contains a list
123    of CVS aliases
124    \begin{table}[htb]
125      \centering
126      \begin{tabular}[htb]{|lp{3.25in}|}\hline
127        \textbf{Alias Name}    &  \textbf{Information (directories) Contained}  \\\hline
128        \texttt{MITgcm\_code}  &  Only the source code -- none of the verification examples.  \\
129        \texttt{MITgcm\_verif\_basic}
130        &  Source code plus a small set of the verification examples
131        (\texttt{global\_ocean.90x40x15}, \texttt{aim.5l\_cs}, \texttt{hs94.128x64x5},
132        \texttt{front\_relax}, and \texttt{plume\_on\_slope}).  \\
133        \texttt{MITgcm\_verif\_atmos}  &  Source code plus all of the atmospheric examples.  \\
134        \texttt{MITgcm\_verif\_ocean}  &  Source code plus all of the oceanic examples.  \\
135        \texttt{MITgcm\_verif\_all}    &  Source code plus all of the
136        verification examples. \\\hline
137      \end{tabular}
138      \caption{MITgcm CVS Modules}
139      \label{tab:cvsModules}
140    \end{table}
141    
142  The checkout process creates a directory called \textit{MITgcm}. If  The checkout process creates a directory called \texttt{MITgcm}. If
143  the directory \textit{MITgcm} exists this command updates your code  the directory \texttt{MITgcm} exists this command updates your code
144  based on the repository. Each directory in the source tree contains a  based on the repository. Each directory in the source tree contains a
145  directory \textit{CVS}. This information is required by CVS to keep  directory \texttt{CVS}. This information is required by CVS to keep
146  track of your file versions with respect to the repository. Don't edit  track of your file versions with respect to the repository. Don't edit
147  the files in \textit{CVS}!  You can also use CVS to download code  the files in \texttt{CVS}!  You can also use CVS to download code
148  updates.  More extensive information on using CVS for maintaining  updates.  More extensive information on using CVS for maintaining
149  MITgcm code can be found  MITgcm code can be found
150  \begin{rawhtml} <A href=''http://mitgcm.org/usingcvstoget.html'' target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href="http://mitgcm.org/public/using_cvs.html" target="idontexist"> \end{rawhtml}
151  here  here
152  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}.
153  .  It is important to note that the CVS aliases in Table
154    \ref{tab:cvsModules} cannot be used in conjunction with the CVS
155    \texttt{-d DIRNAME} option.  However, the \texttt{MITgcm} directories
156  \paragraph*{Conventional download method}  they create can be changed to a different name following the check-out:
157  \label{sect:conventionalDownload}  \begin{verbatim}
158       %  cvs co -P MITgcm_verif_basic
159       %  mv MITgcm MITgcm_verif_basic
160    \end{verbatim}
161    
162  If you do not have CVS on your system, you can download the model as a  Note that it is possible to checkout code without ``cvs login'' and without
163  tar file from the web site at:  setting any shell environment variables by specifying the pserver name and
164  \begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml}  password in one line, for example:
165  \begin{verbatim}  \begin{verbatim}
166  http://mitgcm.org/download/     %  cvs -d :pserver:cvsanon:cvsanon@mitgcm.org:/u/gcmpack co -P MITgcm
167  \end{verbatim}  \end{verbatim}
 \begin{rawhtml} </A> \end{rawhtml}  
 The tar file still contains CVS information which we urge you not to  
 delete; even if you do not use CVS yourself the information can help  
 us if you should need to send us your copy of the code.  If a recent  
 tar file does not exist, then please contact the developers through  
 the  
 \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}  
 MITgcm-support@mitgcm.org  
 \begin{rawhtml} </A> \end{rawhtml}  
 mailing list.  
168    
169  \paragraph*{Upgrading from an earlier version}  \subsubsection{Upgrading from an earlier version}
170    
171  If you already have an earlier version of the code you can ``upgrade''  If you already have an earlier version of the code you can ``upgrade''
172  your copy instead of downloading the entire repository again. First,  your copy instead of downloading the entire repository again. First,
# Line 166  your copy instead of downloading the ent Line 176  your copy instead of downloading the ent
176  \end{verbatim}  \end{verbatim}
177  and then issue the cvs update command such as:  and then issue the cvs update command such as:
178  \begin{verbatim}  \begin{verbatim}
179  % cvs -q update -r checkpoint52i_post -d -P  % cvs -q update -d -P -r checkpoint52i_post
180  \end{verbatim}  \end{verbatim}
181  This will update the ``tag'' to ``checkpoint52i\_post'', add any new  This will update the ``tag'' to ``checkpoint52i\_post'', add any new
182  directories (-d) and remove any empty directories (-P). The -q option  directories (-d) and remove any empty directories (-P). The -q option
# Line 212  have run into a problem for which ``we h Line 222  have run into a problem for which ``we h
222  latest code'' and we haven't made a ``tag'' or ``release'' since that  latest code'' and we haven't made a ``tag'' or ``release'' since that
223  patch then you'll need to get the latest code:  patch then you'll need to get the latest code:
224  \begin{verbatim}  \begin{verbatim}
225  % cvs -q update -A -d -P  % cvs -q update -d -P -A
226  \end{verbatim}  \end{verbatim}
227  Unlike, the ``check-out'' and ``update'' procedures above, there is no  Unlike, the ``check-out'' and ``update'' procedures above, there is no
228  ``tag'' or release name. The -A tells CVS to upgrade to the  ``tag'' or release name. The -A tells CVS to upgrade to the
# Line 222  that you may only have part of a patch. Line 232  that you may only have part of a patch.
232  also means we can't tell what version of the code you are working  also means we can't tell what version of the code you are working
233  with. So please be sure you understand what you're doing.  with. So please be sure you understand what you're doing.
234    
235    \subsection{Method 2 - Tar file download}
236    \label{sec:conventionalDownload}
237    
238    If you do not have CVS on your system, you can download the model as a
239    tar file from the web site at:
240    \begin{rawhtml} <A href=http://mitgcm.org/download/ target="idontexist"> \end{rawhtml}
241    \begin{verbatim}
242    http://mitgcm.org/download/
243    \end{verbatim}
244    \begin{rawhtml} </A> \end{rawhtml}
245    The tar file still contains CVS information which we urge you not to
246    delete; even if you do not use CVS yourself the information can help
247    us if you should need to send us your copy of the code.  If a recent
248    tar file does not exist, then please contact the developers through
249    the
250    \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
251    MITgcm-support@mitgcm.org
252    \begin{rawhtml} </A> \end{rawhtml}
253    mailing list.
254    
255  \section{Model and directory structure}  \section{Model and directory structure}
256    \begin{rawhtml}
257    <!-- CMIREDIR:directory_structure: -->
258    \end{rawhtml}
259    
260  The ``numerical'' model is contained within a execution environment  The ``numerical'' model is contained within a execution environment
261  support wrapper. This wrapper is designed to provide a general  support wrapper. This wrapper is designed to provide a general
# Line 230  framework for grid-point models. MITgcmU Line 263  framework for grid-point models. MITgcmU
263  model that uses the framework. Under this structure the model is split  model that uses the framework. Under this structure the model is split
264  into execution environment support code and conventional numerical  into execution environment support code and conventional numerical
265  model code. The execution environment support code is held under the  model code. The execution environment support code is held under the
266  \textit{eesupp} directory. The grid point model code is held under the  \texttt{eesupp} directory. The grid point model code is held under the
267  \textit{model} directory. Code execution actually starts in the  \texttt{model} directory. Code execution actually starts in the
268  \textit{eesupp} routines and not in the \textit{model} routines. For  \texttt{eesupp} routines and not in the \texttt{model} routines. For
269  this reason the top-level \textit{MAIN.F} is in the  this reason the top-level \texttt{MAIN.F} is in the
270  \textit{eesupp/src} directory. In general, end-users should not need  \texttt{eesupp/src} directory. In general, end-users should not need
271  to worry about this level. The top-level routine for the numerical  to worry about this level. The top-level routine for the numerical
272  part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F}. Here is  part of the code is in \texttt{model/src/THE\_MODEL\_MAIN.F}. Here is
273  a brief description of the directory structure of the model under the  a brief description of the directory structure of the model under the
274  root tree (a detailed description is given in section 3: Code  root tree (a detailed description is given in section 3: Code
275  structure).  structure).
276    
277  \begin{itemize}  \begin{itemize}
278    
279  \item \textit{bin}: this directory is initially empty. It is the  \item \texttt{doc}: contains brief documentation notes.
280    default directory in which to compile the code.  
281      \item \texttt{eesupp}: contains the execution environment source code.
282  \item \textit{diags}: contains the code relative to time-averaged    Also subdivided into two subdirectories \texttt{inc} and
283    diagnostics. It is subdivided into two subdirectories \textit{inc}    \texttt{src}.
284    and \textit{src} that contain include files (*.\textit{h} files) and  
285    Fortran subroutines (*.\textit{F} files), respectively.  \item \texttt{model}: this directory contains the main source code.
286      Also subdivided into two subdirectories \texttt{inc} and
287  \item \textit{doc}: contains brief documentation notes.    \texttt{src}.
288      
289  \item \textit{eesupp}: contains the execution environment source code.  \item \texttt{pkg}: contains the source code for the packages. Each
290    Also subdivided into two subdirectories \textit{inc} and    package corresponds to a subdirectory. For example, \texttt{gmredi}
   \textit{src}.  
     
 \item \textit{exe}: this directory is initially empty. It is the  
   default directory in which to execute the code.  
     
 \item \textit{model}: this directory contains the main source code.  
   Also subdivided into two subdirectories \textit{inc} and  
   \textit{src}.  
     
 \item \textit{pkg}: contains the source code for the packages. Each  
   package corresponds to a subdirectory. For example, \textit{gmredi}  
291    contains the code related to the Gent-McWilliams/Redi scheme,    contains the code related to the Gent-McWilliams/Redi scheme,
292    \textit{aim} the code relative to the atmospheric intermediate    \texttt{aim} the code relative to the atmospheric intermediate
293    physics. The packages are described in detail in section 3.    physics. The packages are described in detail in chapter \ref{chap:packagesI}.
294      
295  \item \textit{tools}: this directory contains various useful tools.  \item \texttt{tools}: this directory contains various useful tools.
296    For example, \textit{genmake2} is a script written in csh (C-shell)    For example, \texttt{genmake2} is a script written in csh (C-shell)
297    that should be used to generate your makefile. The directory    that should be used to generate your makefile. The directory
298    \textit{adjoint} contains the makefile specific to the Tangent    \texttt{adjoint} contains the makefile specific to the Tangent
299    linear and Adjoint Compiler (TAMC) that generates the adjoint code.    linear and Adjoint Compiler (TAMC) that generates the adjoint code.
300    The latter is described in details in part V.    The latter is described in detail in part \ref{chap.ecco}.
301        This directory also contains the subdirectory build\_options, which
302  \item \textit{utils}: this directory contains various utilities. The    contains the `optfiles' with the compiler options for the different
303    subdirectory \textit{knudsen2} contains code and a makefile that    compilers and machines that can run MITgcm.
304    
305    \item \texttt{utils}: this directory contains various utilities. The
306      subdirectory \texttt{knudsen2} contains code and a makefile that
307    compute coefficients of the polynomial approximation to the knudsen    compute coefficients of the polynomial approximation to the knudsen
308    formula for an ocean nonlinear equation of state. The    formula for an ocean nonlinear equation of state. The
309    \textit{matlab} subdirectory contains matlab scripts for reading    \texttt{matlab} subdirectory contains matlab scripts for reading
310    model output directly into matlab. \textit{scripts} contains C-shell    model output directly into matlab. \texttt{scripts} contains C-shell
311    post-processing scripts for joining processor-based and tiled-based    post-processing scripts for joining processor-based and tiled-based
312    model output.    model output. The subdirectory exch2 contains the code needed for
313        the exch2 package to work with different combinations of domain
314  \item \textit{verification}: this directory contains the model    decompositions.
   examples. See section \ref{sect:modelExamples}.  
   
 \end{itemize}  
   
 \section{Example experiments}  
 \label{sect:modelExamples}  
   
 %% a set of twenty-four pre-configured numerical experiments  
   
 The MITgcm distribution comes with more than a dozen pre-configured  
 numerical experiments. Some of these example experiments are tests of  
 individual parts of the model code, but many are fully fledged  
 numerical simulations. A few of the examples are used for tutorial  
 documentation in sections \ref{sect:eg-baro} - \ref{sect:eg-global}.  
 The other examples follow the same general structure as the tutorial  
 examples. However, they only include brief instructions in a text file  
 called {\it README}.  The examples are located in subdirectories under  
 the directory \textit{verification}. Each example is briefly described  
 below.  
   
 \subsection{Full list of model examples}  
   
 \begin{enumerate}  
     
 \item \textit{exp0} - single layer, ocean double gyre (barotropic with  
   free-surface). This experiment is described in detail in section  
   \ref{sect:eg-baro}.  
   
 \item \textit{exp1} - Four layer, ocean double gyre. This experiment  
   is described in detail in section \ref{sect:eg-baroc}.  
     
 \item \textit{exp2} - 4x4 degree global ocean simulation with steady  
   climatological forcing. This experiment is described in detail in  
   section \ref{sect:eg-global}.  
     
 \item \textit{exp4} - Flow over a Gaussian bump in open-water or  
   channel with open boundaries.  
     
 \item \textit{exp5} - Inhomogenously forced ocean convection in a  
   doubly periodic box.  
   
 \item \textit{front\_relax} - Relaxation of an ocean thermal front (test for  
 Gent/McWilliams scheme). 2D (Y-Z).  
   
 \item \textit{internal wave} - Ocean internal wave forced by open  
   boundary conditions.  
     
 \item \textit{natl\_box} - Eastern subtropical North Atlantic with KPP  
   scheme; 1 month integration  
     
 \item \textit{hs94.1x64x5} - Zonal averaged atmosphere using Held and  
   Suarez '94 forcing.  
     
 \item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and  
   Suarez '94 forcing.  
     
 \item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and  
   Suarez '94 forcing on the cubed sphere.  
     
 \item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics.  
   Global Zonal Mean configuration, 1x64x5 resolution.  
     
 \item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate  
   Atmospheric physics, equatorial Slice configuration.  2D (X-Z).  
     
 \item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric  
   physics. 3D Equatorial Channel configuration.  
     
 \item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics.  
   Global configuration, on latitude longitude grid with 128x64x5 grid  
   points ($2.8^\circ{\rm degree}$ resolution).  
     
 \item \textit{adjustment.128x64x1} Barotropic adjustment problem on  
   latitude longitude grid with 128x64 grid points ($2.8^\circ{\rm  
     degree}$ resolution).  
     
 \item \textit{adjustment.cs-32x32x1} Barotropic adjustment problem on  
   cube sphere grid with 32x32 points per face ( roughly $2.8^\circ{\rm  
     degree}$ resolution).  
     
 \item \textit{advect\_cs} Two-dimensional passive advection test on  
   cube sphere grid.  
     
 \item \textit{advect\_xy} Two-dimensional (horizontal plane) passive  
   advection test on Cartesian grid.  
     
 \item \textit{advect\_yz} Two-dimensional (vertical plane) passive  
   advection test on Cartesian grid.  
     
 \item \textit{carbon} Simple passive tracer experiment. Includes  
   derivative calculation. Described in detail in section  
   \ref{sect:eg-carbon-ad}.  
   
 \item \textit{flt\_example} Example of using float package.  
     
 \item \textit{global\_ocean.90x40x15} Global circulation with GM, flux  
   boundary conditions and poles.  
   
 \item \textit{global\_ocean\_pressure} Global circulation in pressure  
   coordinate (non-Boussinesq ocean model). Described in detail in  
   section \ref{sect:eg-globalpressure}.  
     
 \item \textit{solid-body.cs-32x32x1} Solid body rotation test for cube  
   sphere grid.  
315    
316  \end{enumerate}  \item \texttt{verification}: this directory contains the model
317      examples. See section \ref{sec:modelExamples}.
 \subsection{Directory structure of model examples}  
318    
319  Each example directory has the following subdirectories:  \item \texttt{jobs}: contains sample job scripts for running MITgcm.
320    
321  \begin{itemize}  \item \texttt{lsopt}: Line search code used for optimization.
 \item \textit{code}: contains the code particular to the example. At a  
   minimum, this directory includes the following files:  
322    
323    \begin{itemize}  \item \texttt{optim}: Interface between MITgcm and line search code.
   \item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to  
     the ``execution environment'' part of the code. The default  
     version is located in \textit{eesupp/inc}.  
     
   \item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to  
     the ``numerical model'' part of the code. The default version is  
     located in \textit{model/inc}.  
     
   \item \textit{code/SIZE.h}: declares size of underlying  
     computational grid.  The default version is located in  
     \textit{model/inc}.  
   \end{itemize}  
     
   In addition, other include files and subroutines might be present in  
   \textit{code} depending on the particular experiment. See Section 2  
   for more details.  
     
 \item \textit{input}: contains the input data files required to run  
   the example. At a minimum, the \textit{input} directory contains the  
   following files:  
324    
   \begin{itemize}  
   \item \textit{input/data}: this file, written as a namelist,  
     specifies the main parameters for the experiment.  
     
   \item \textit{input/data.pkg}: contains parameters relative to the  
     packages used in the experiment.  
     
   \item \textit{input/eedata}: this file contains ``execution  
     environment'' data. At present, this consists of a specification  
     of the number of threads to use in $X$ and $Y$ under multithreaded  
     execution.  
   \end{itemize}  
     
   In addition, you will also find in this directory the forcing and  
   topography files as well as the files describing the initial state  
   of the experiment.  This varies from experiment to experiment. See  
   section 2 for more details.  
   
 \item \textit{results}: this directory contains the output file  
   \textit{output.txt} produced by the simulation example. This file is  
   useful for comparison with your own output when you run the  
   experiment.  
325  \end{itemize}  \end{itemize}
326    
327  Once you have chosen the example you want to run, you are ready to  \section[Building MITgcm]{Building the code}
328  compile the code.  \label{sec:buildingCode}
329    \begin{rawhtml}
330  \section{Building the code}  <!-- CMIREDIR:buildingCode: -->
331  \label{sect:buildingCode}  \end{rawhtml}
332    
333  To compile the code, we use the {\em make} program. This uses a file  To compile the code, we use the \texttt{make} program. This uses a
334  ({\em Makefile}) that allows us to pre-process source files, specify  file (\texttt{Makefile}) that allows us to pre-process source files,
335  compiler and optimization options and also figures out any file  specify compiler and optimization options and also figures out any
336  dependencies. We supply a script ({\em genmake2}), described in  file dependencies. We supply a script (\texttt{genmake2}), described
337  section \ref{sect:genmake}, that automatically creates the {\em  in section \ref{sec:genmake}, that automatically creates the
338    Makefile} for you. You then need to build the dependencies and  \texttt{Makefile} for you. You then need to build the dependencies and
339  compile the code.  compile the code.
340    
341  As an example, let's assume that you want to build and run experiment  As an example, assume that you want to build and run experiment
342  \textit{verification/exp2}. The are multiple ways and places to  \texttt{verification/exp2}. The are multiple ways and places to
343  actually do this but here let's build the code in  actually do this but here let's build the code in
344  \textit{verification/exp2/input}:  \texttt{verification/exp2/build}:
345  \begin{verbatim}  \begin{verbatim}
346  % cd verification/exp2/input  % cd verification/exp2/build
347  \end{verbatim}  \end{verbatim}
348  First, build the {\em Makefile}:  First, build the \texttt{Makefile}:
349  \begin{verbatim}  \begin{verbatim}
350  % ../../../tools/genmake2 -mods=../code  % ../../../tools/genmake2 -mods=../code
351  \end{verbatim}  \end{verbatim}
352  The command line option tells {\em genmake} to override model source  The command line option tells \texttt{genmake} to override model source
353  code with any files in the directory {\em ./code/}.  code with any files in the directory \texttt{../code/}.
354    
355  On many systems, the {\em genmake2} program will be able to  On many systems, the \texttt{genmake2} program will be able to
356  automatically recognize the hardware, find compilers and other tools  automatically recognize the hardware, find compilers and other tools
357  within the user's path (``echo \$PATH''), and then choose an  within the user's path (``\texttt{echo \$PATH}''), and then choose an
358  appropriate set of options from the files contained in the {\em  appropriate set of options from the files (``optfiles'') contained in
359    tools/build\_options} directory.  Under some circumstances, a user  the \texttt{tools/build\_options} directory.  Under some
360  may have to create a new ``optfile'' in order to specify the exact  circumstances, a user may have to create a new ``optfile'' in order to
361  combination of compiler, compiler flags, libraries, and other options  specify the exact combination of compiler, compiler flags, libraries,
362  necessary to build a particular configuration of MITgcm.  In such  and other options necessary to build a particular configuration of
363  cases, it is generally helpful to read the existing ``optfiles'' and  MITgcm.  In such cases, it is generally helpful to read the existing
364  mimic their syntax.  ``optfiles'' and mimic their syntax.
365    
366  Through the MITgcm-support list, the MITgcm developers are willing to  Through the MITgcm-support list, the MITgcm developers are willing to
367  provide help writing or modifing ``optfiles''.  And we encourage users  provide help writing or modifing ``optfiles''.  And we encourage users
368  to post new ``optfiles'' (particularly ones for new machines or  to post new ``optfiles'' (particularly ones for new machines or
369  architectures) to the  architectures) to the
370  \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}  \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
371  MITgcm-support@mitgcm.org  MITgcm-support@mitgcm.org
372  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
373  list.  list.
374    
375  To specify an optfile to {\em genmake2}, the syntax is:  To specify an optfile to \texttt{genmake2}, the syntax is:
376  \begin{verbatim}  \begin{verbatim}
377  % ../../../tools/genmake2 -mods=../code -of /path/to/optfile  % ../../../tools/genmake2 -mods=../code -of /path/to/optfile
378  \end{verbatim}  \end{verbatim}
379    
380  Once a {\em Makefile} has been generated, we create the dependencies:  Once a \texttt{Makefile} has been generated, we create the
381    dependencies with the command:
382  \begin{verbatim}  \begin{verbatim}
383  % make depend  % make depend
384  \end{verbatim}  \end{verbatim}
385  This modifies the {\em Makefile} by attaching a [long] list of files  This modifies the \texttt{Makefile} by attaching a (usually, long)
386  upon which other files depend. The purpose of this is to reduce  list of files upon which other files depend. The purpose of this is to
387  re-compilation if and when you start to modify the code. The {\tt make  reduce re-compilation if and when you start to modify the code. The
388    depend} command also creates links from the model source to this  {\tt make depend} command also creates links from the model source to
389  directory.  this directory.  It is important to note that the {\tt make depend}
390    stage will occasionally produce warnings or errors since the
391    dependency parsing tool is unable to find all of the necessary header
392    files (\textit{eg.}  \texttt{netcdf.inc}).  In these circumstances, it
393    is usually OK to ignore the warnings/errors and proceed to the next
394    step.
395    
396  Next compile the code:  Next one can compile the code using:
397  \begin{verbatim}  \begin{verbatim}
398  % make  % make
399  \end{verbatim}  \end{verbatim}
400  The {\tt make} command creates an executable called \textit{mitgcmuv}.  The {\tt make} command creates an executable called \texttt{mitgcmuv}.
401  Additional make ``targets'' are defined within the makefile to aid in  Additional make ``targets'' are defined within the makefile to aid in
402  the production of adjoint and other versions of MITgcm.  the production of adjoint and other versions of MITgcm.  On SMP
403    (shared multi-processor) systems, the build process can often be sped
404    up appreciably using the command:
405    \begin{verbatim}
406    % make -j 2
407    \end{verbatim}
408    where the ``2'' can be replaced with a number that corresponds to the
409    number of CPUs available.
410    
411  Now you are ready to run the model. General instructions for doing so are  Now you are ready to run the model. General instructions for doing so are
412  given in section \ref{sect:runModel}. Here, we can run the model with:  given in section \ref{sec:runModel}. Here, we can run the model by
413    first creating links to all the input files:
414    \begin{verbatim}
415    ln -s ../input/* .
416    \end{verbatim}
417    and then calling the executable with:
418  \begin{verbatim}  \begin{verbatim}
419  ./mitgcmuv > output.txt  ./mitgcmuv > output.txt
420  \end{verbatim}  \end{verbatim}
421  where we are re-directing the stream of text output to the file {\em  where we are re-directing the stream of text output to the file
422  output.txt}.  \texttt{output.txt}.
   
423    
424  \subsection{Building/compiling the code elsewhere}  \subsection{Building/compiling the code elsewhere}
425    
426  In the example above (section \ref{sect:buildingCode}) we built the  In the example above (section \ref{sec:buildingCode}) we built the
427  executable in the {\em input} directory of the experiment for  executable in the {\em input} directory of the experiment for
428  convenience. You can also configure and compile the code in other  convenience. You can also configure and compile the code in other
429  locations, for example on a scratch disk with out having to copy the  locations, for example on a scratch disk with out having to copy the
# Line 632  the one experiment: Line 525  the one experiment:
525  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
526  \end{verbatim}  \end{verbatim}
527    
528    \subsection{Using \texttt{genmake2}}
529    \label{sec:genmake}
 \subsection{Using \textit{genmake2}}  
 \label{sect:genmake}  
530    
531  To compile the code, first use the program \texttt{genmake2} (located  To compile the code, first use the program \texttt{genmake2} (located
532  in the \textit{tools} directory) to generate a Makefile.  in the \texttt{tools} directory) to generate a Makefile.
533  \texttt{genmake2} is a shell script written to work with all  \texttt{genmake2} is a shell script written to work with all
534  ``sh''--compatible shells including bash v1, bash v2, and Bourne.  ``sh''--compatible shells including bash v1, bash v2, and Bourne.
535  Internally, \texttt{genmake2} determines the locations of needed  %Internally, \texttt{genmake2} determines the locations of needed
536  files, the compiler, compiler options, libraries, and Unix tools.  It  %files, the compiler, compiler options, libraries, and Unix tools.  It
537  relies upon a number of ``optfiles'' located in the {\em  %relies upon a number of ``optfiles'' located in the
538    tools/build\_options} directory.  %\texttt{tools/build\_options} directory.
539    \texttt{genmake2} parses information from the following sources:
540    \begin{description}
541    \item[-] a {\em gemake\_local} file if one is found in the current
542      directory
543    \item[-] command-line options
544    \item[-] an "options file" as specified by the command-line option
545      \texttt{--optfile=/PATH/FILENAME}
546    \item[-] a {\em packages.conf} file (if one is found) with the
547      specific list of packages to compile. The search path for
548      file {\em packages.conf} is, first, the current directory and
549      then each of the "MODS" directories in the given order (see below).
550    \end{description}
551    
552    \subsubsection{Optfiles in \texttt{tools/build\_options} directory:}
553    
554  The purpose of the optfiles is to provide all the compilation options  The purpose of the optfiles is to provide all the compilation options
555  for particular ``platforms'' (where ``platform'' roughly means the  for particular ``platforms'' (where ``platform'' roughly means the
# Line 717  for inclusion.  Please send the file to Line 622  for inclusion.  Please send the file to
622  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
623  mailing list.  mailing list.
624    
625    \subsubsection{Command-line options:}
626    
627  In addition to the optfiles, \texttt{genmake2} supports a number of  In addition to the optfiles, \texttt{genmake2} supports a number of
628  helpful command-line options.  A complete list of these options can be  helpful command-line options.  A complete list of these options can be
629  obtained from:  obtained from:
# Line 726  obtained from: Line 633  obtained from:
633    
634  The most important command-line options are:  The most important command-line options are:
635  \begin{description}  \begin{description}
636      
637  \item[\texttt{--optfile=/PATH/FILENAME}] specifies the optfile that  \item[\texttt{--optfile=/PATH/FILENAME}] specifies the optfile that
638    should be used for a particular build.    should be used for a particular build.
639      
640    If no "optfile" is specified (either through the command line or the    If no "optfile" is specified (either through the command line or the
641    MITGCM\_OPTFILE environment variable), genmake2 will try to make a    MITGCM\_OPTFILE environment variable), genmake2 will try to make a
642    reasonable guess from the list provided in {\em    reasonable guess from the list provided in {\em
# Line 738  The most important command-line options Line 645  The most important command-line options
645    (eg. "linux\_ia32") and then find a working FORTRAN compiler within    (eg. "linux\_ia32") and then find a working FORTRAN compiler within
646    the user's path.  When these three items have been identified,    the user's path.  When these three items have been identified,
647    genmake2 will try to find an optfile that has a matching name.    genmake2 will try to find an optfile that has a matching name.
648      
649    \item[\texttt{--mods='DIR1 DIR2 DIR3 ...'}] specifies a list of
650      directories containing ``modifications''.  These directories contain
651      files with names that may (or may not) exist in the main MITgcm
652      source tree but will be overridden by any identically-named sources
653      within the ``MODS'' directories.
654    
655      The order of precedence for this "name-hiding" is as follows:
656      \begin{itemize}
657      \item ``MODS'' directories (in the order given)
658      \item Packages either explicitly specified or provided by default
659        (in the order given)
660      \item Packages included due to package dependencies (in the order
661        that that package dependencies are parsed)
662      \item The "standard dirs" (which may have been specified by the
663        ``-standarddirs'' option)
664      \end{itemize}
665    
666    \item[\texttt{--pgroups=/PATH/FILENAME}] specifies the file
667      where package groups are defined. If not set, the package-groups
668      definition will be read from {\em pkg/pkg\_groups}.
669      It also contains the default list of packages (defined
670      as the group ``{\it default\_pkg\_list}'' which is used
671      when no specific package list ({\em packages.conf})
672      is found in current directory or in any "MODS" directory.
673    
674  \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file  \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file
675    used for packages.    used for packages.
676      
677    If not specified, the default dependency file {\em pkg/pkg\_depend}    If not specified, the default dependency file {\em pkg/pkg\_depend}
678    is used.  The syntax for this file is parsed on a line-by-line basis    is used.  The syntax for this file is parsed on a line-by-line basis
679    where each line containes either a comment ("\#") or a simple    where each line containes either a comment ("\#") or a simple
# Line 750  The most important command-line options Line 682  The most important command-line options
682    relationship, respectively.  If no rule is specified, then it is    relationship, respectively.  If no rule is specified, then it is
683    assumed that the two packages are compatible and will function    assumed that the two packages are compatible and will function
684    either with or without each other.    either with or without each other.
685      
 \item[\texttt{--pdefault='PKG1 PKG2 PKG3 ...'}] specifies the default  
   set of packages to be used.  
     
   If not set, the default package list will be read from {\em  
     pkg/pkg\_default}  
     
686  \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or  \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or
687    automatic differentiation options file to be used.  The file is    automatic differentiation options file to be used.  The file is
688    analogous to the ``optfile'' defined above but it specifies    analogous to the ``optfile'' defined above but it specifies
689    information for the AD build process.    information for the AD build process.
690      
691    The default file is located in {\em    The default file is located in {\em
692      tools/adjoint\_options/adjoint\_default} and it defines the "TAF"      tools/adjoint\_options/adjoint\_default} and it defines the "TAF"
693    and "TAMC" compilers.  An alternate version is also available at    and "TAMC" compilers.  An alternate version is also available at
694    {\em tools/adjoint\_options/adjoint\_staf} that selects the newer    {\em tools/adjoint\_options/adjoint\_staf} that selects the newer
695    "STAF" compiler.  As with any compilers, it is helpful to have their    "STAF" compiler.  As with any compilers, it is helpful to have their
696    directories listed in your {\tt \$PATH} environment variable.    directories listed in your {\tt \$PATH} environment variable.
697      
698  \item[\texttt{--mods='DIR1 DIR2 DIR3 ...'}] specifies a list of  \item[\texttt{--mpi}] This option enables certain MPI features (using
699    directories containing ``modifications''.  These directories contain    CPP \texttt{\#define}s) within the code and is necessary for MPI
700    files with names that may (or may not) exist in the main MITgcm    builds (see Section \ref{sec:mpi-build}).
701    source tree but will be overridden by any identically-named sources  
   within the ``MODS'' directories.  
     
   The order of precedence for this "name-hiding" is as follows:  
   \begin{itemize}  
   \item ``MODS'' directories (in the order given)  
   \item Packages either explicitly specified or provided by default  
     (in the order given)  
   \item Packages included due to package dependencies (in the order  
     that that package dependencies are parsed)  
   \item The "standard dirs" (which may have been specified by the  
     ``-standarddirs'' option)  
   \end{itemize}  
     
702  \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of  \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of
703    soft-links and other bugs common with the \texttt{make} versions    soft-links and other bugs common with the \texttt{make} versions
704    provided by commercial Unix vendors, GNU \texttt{make} (sometimes    provided by commercial Unix vendors, GNU \texttt{make} (sometimes
705    called \texttt{gmake}) should be preferred.  This option provides a    called \texttt{gmake}) should be preferred.  This option provides a
706    means for specifying the make executable to be used.    means for specifying the make executable to be used.
707    
708    \item[\texttt{--bash=/path/to/sh}] On some (usually older UNIX)
709      machines, the ``bash'' shell is unavailable.  To run on these
710      systems, \texttt{genmake2} can be invoked using an ``sh'' (that is,
711      a Bourne, POSIX, or compatible) shell.  The syntax in these
712      circumstances is:
713      \begin{center}
714        \texttt{\%  /bin/sh genmake2 -bash=/bin/sh [...options...]}
715      \end{center}
716      where \texttt{/bin/sh} can be replaced with the full path and name
717      of the desired shell.
718    
719  \end{description}  \end{description}
720    
721    \subsection{Building with MPI}
722    \label{sec:mpi-build}
723    
724    Building MITgcm to use MPI libraries can be complicated due to the
725    variety of different MPI implementations available, their dependencies
726    or interactions with different compilers, and their often ad-hoc
727    locations within file systems.  For these reasons, its generally a
728    good idea to start by finding and reading the documentation for your
729    machine(s) and, if necessary, seeking help from your local systems
730    administrator.
731    
732    The steps for building MITgcm with MPI support are:
733    \begin{enumerate}
734    
735    \item Determine the locations of your MPI-enabled compiler and/or MPI
736      libraries and put them into an options file as described in Section
737      \ref{sec:genmake}.  One can start with one of the examples in:
738      \begin{rawhtml} <A
739        href="http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/build_options/">
740      \end{rawhtml}
741      \begin{center}
742        \texttt{MITgcm/tools/build\_options/}
743      \end{center}
744      \begin{rawhtml} </A> \end{rawhtml}
745      such as \texttt{linux\_ia32\_g77+mpi\_cg01} or
746      \texttt{linux\_ia64\_efc+mpi} and then edit it to suit the machine at
747      hand.  You may need help from your user guide or local systems
748      administrator to determine the exact location of the MPI libraries.
749      If libraries are not installed, MPI implementations and related
750      tools are available including:
751      \begin{itemize}
752      \item \begin{rawhtml} <A
753          href="http://www-unix.mcs.anl.gov/mpi/mpich/">
754        \end{rawhtml}
755        MPICH
756        \begin{rawhtml} </A> \end{rawhtml}
757    
758      \item \begin{rawhtml} <A
759          href="http://www.lam-mpi.org/">
760        \end{rawhtml}
761        LAM/MPI
762        \begin{rawhtml} </A> \end{rawhtml}
763    
764      \item \begin{rawhtml} <A
765          href="http://www.osc.edu/~pw/mpiexec/">
766        \end{rawhtml}
767        MPIexec
768        \begin{rawhtml} </A> \end{rawhtml}
769      \end{itemize}
770    
771    \item Build the code with the \texttt{genmake2} \texttt{-mpi} option
772      (see Section \ref{sec:genmake}) using commands such as:
773    {\footnotesize \begin{verbatim}
774      %  ../../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE
775      %  make depend
776      %  make
777    \end{verbatim} }
778    
779    \item Run the code with the appropriate MPI ``run'' or ``exec''
780      program provided with your particular implementation of MPI.
781      Typical MPI packages such as MPICH will use something like:
782    \begin{verbatim}
783      %  mpirun -np 4 -machinefile mf ./mitgcmuv
784    \end{verbatim}
785      Sightly more complicated scripts may be needed for many machines
786      since execution of the code may be controlled by both the MPI
787      library and a job scheduling and queueing system such as PBS,
788      LoadLeveller, Condor, or any of a number of similar tools.  A few
789      example scripts (those used for our \begin{rawhtml} <A
790        href="http://mitgcm.org/public/testing.html"> \end{rawhtml}regular
791      verification runs\begin{rawhtml} </A> \end{rawhtml}) are available
792      at:
793      \begin{rawhtml} <A
794        href="http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/example_scripts/">
795      \end{rawhtml}
796      {\footnotesize \tt
797        http://mitgcm.org/viewvc/MITgcm/MITgcm/tools/example\_scripts/ }
798      \begin{rawhtml} </A> \end{rawhtml}
799      or at:
800      \begin{rawhtml} <A
801        href="http://mitgcm.org/viewvc/MITgcm/MITgcm_contrib/test_scripts/">
802      \end{rawhtml}
803      {\footnotesize \tt
804        http://mitgcm.org/viewvc/MITgcm/MITgcm\_contrib/test\_scripts/ }
805      \begin{rawhtml} </A> \end{rawhtml}
806    
807    \end{enumerate}
808    
809  \section{Running the model}  An example of the above process on the MITgcm cluster (``cg01'') using
810  \label{sect:runModel}  the GNU g77 compiler and the mpich MPI library is:
811    
812  If compilation finished succesfuully (section \ref{sect:buildModel})  {\footnotesize \begin{verbatim}
813  then an executable called {\em mitgcmuv} will now exist in the local    %  cd MITgcm/verification/exp5
814  directory.    %  mkdir build
815      %  cd build
816      %  ../../../tools/genmake2 -mpi -mods=../code \
817           -of=../../../tools/build_options/linux_ia32_g77+mpi_cg01
818      %  make depend
819      %  make
820      %  cd ../input
821      %  /usr/local/pkg/mpi/mpi-1.2.4..8a-gm-1.5/g77/bin/mpirun.ch_gm \
822           -machinefile mf --gm-kill 5 -v -np 2  ../build/mitgcmuv
823    \end{verbatim} }
824    
825    \section[Running MITgcm]{Running the model in prognostic mode}
826    \label{sec:runModel}
827    \begin{rawhtml}
828    <!-- CMIREDIR:runModel: -->
829    \end{rawhtml}
830    
831    If compilation finished succesfully (section \ref{sec:buildingCode})
832    then an executable called \texttt{mitgcmuv} will now exist in the
833    local directory.
834    
835  To run the model as a single process (ie. not in parallel) simply  To run the model as a single process (\textit{ie.} not in parallel)
836  type:  simply type:
837  \begin{verbatim}  \begin{verbatim}
838  % ./mitgcmuv  % ./mitgcmuv
839  \end{verbatim}  \end{verbatim}
# Line 814  do!). The above command will spew out ma Line 843  do!). The above command will spew out ma
843  your screen.  This output contains details such as parameter values as  your screen.  This output contains details such as parameter values as
844  well as diagnostics such as mean Kinetic energy, largest CFL number,  well as diagnostics such as mean Kinetic energy, largest CFL number,
845  etc. It is worth keeping this text output with the binary output so we  etc. It is worth keeping this text output with the binary output so we
846  normally re-direct the {\em stdout} stream as follows:  normally re-direct the \texttt{stdout} stream as follows:
847  \begin{verbatim}  \begin{verbatim}
848  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
849  \end{verbatim}  \end{verbatim}
850    In the event that the model encounters an error and stops, it is very
851  For the example experiments in {\em verification}, an example of the  helpful to include the last few line of this \texttt{output.txt} file
852  output is kept in {\em results/output.txt} for comparison. You can compare  along with the (\texttt{stderr}) error message within any bug reports.
853  your {\em output.txt} with this one to check that the set-up works.  
854    For the example experiments in \texttt{verification}, an example of the
855    output is kept in \texttt{results/output.txt} for comparison. You can
856    compare your \texttt{output.txt} with the corresponding one for that
857    experiment to check that the set-up works.
858    
859  \subsection{Output files}  \subsection{Output files}
860    
861  The model produces various output files. At a minimum, the instantaneous  The model produces various output files and, when using \texttt{mnc},
862  ``state'' of the model is written out, which is made of the following files:  sometimes even directories.  Depending upon the I/O package(s)
863    selected at compile time (either \texttt{mdsio} or \texttt{mnc} or
864    both as determined by \texttt{code/packages.conf}) and the run-time
865    flags set (in \texttt{input/data.pkg}), the following output may
866    appear.
867    
868    \subsubsection{MDSIO output files}
869    
870    The ``traditional'' output files are generated by the \texttt{mdsio}
871    package.  At a minimum, the instantaneous ``state'' of the model is
872    written out, which is made of the following files:
873    
874  \begin{itemize}  \begin{itemize}
875  \item \textit{U.00000nIter} - zonal component of velocity field (m/s and $>  \item \texttt{U.00000nIter} - zonal component of velocity field (m/s
876  0 $ eastward).    and positive eastward).
877    
878  \item \textit{V.00000nIter} - meridional component of velocity field (m/s  \item \texttt{V.00000nIter} - meridional component of velocity field
879  and $> 0$ northward).    (m/s and positive northward).
880    
881  \item \textit{W.00000nIter} - vertical component of velocity field (ocean:  \item \texttt{W.00000nIter} - vertical component of velocity field
882  m/s and $> 0$ upward, atmosphere: Pa/s and $> 0$ towards increasing pressure    (ocean: m/s and positive upward, atmosphere: Pa/s and positive
883  i.e. downward).    towards increasing pressure i.e. downward).
884    
885  \item \textit{T.00000nIter} - potential temperature (ocean: $^{0}$C,  \item \texttt{T.00000nIter} - potential temperature (ocean:
886  atmosphere: $^{0}$K).    $^{\circ}\mathrm{C}$, atmosphere: $^{\circ}\mathrm{K}$).
887    
888  \item \textit{S.00000nIter} - ocean: salinity (psu), atmosphere: water vapor  \item \texttt{S.00000nIter} - ocean: salinity (psu), atmosphere: water
889  (g/kg).    vapor (g/kg).
890    
891  \item \textit{Eta.00000nIter} - ocean: surface elevation (m), atmosphere:  \item \texttt{Eta.00000nIter} - ocean: surface elevation (m),
892  surface pressure anomaly (Pa).    atmosphere: surface pressure anomaly (Pa).
893  \end{itemize}  \end{itemize}
894    
895  The chain \textit{00000nIter} consists of ten figures that specify the  The chain \texttt{00000nIter} consists of ten figures that specify the
896  iteration number at which the output is written out. For example, \textit{%  iteration number at which the output is written out. For example,
897  U.0000000300} is the zonal velocity at iteration 300.  \texttt{U.0000000300} is the zonal velocity at iteration 300.
898    
899  In addition, a ``pickup'' or ``checkpoint'' file called:  In addition, a ``pickup'' or ``checkpoint'' file called:
900    
901  \begin{itemize}  \begin{itemize}
902  \item \textit{pickup.00000nIter}  \item \texttt{pickup.00000nIter}
903  \end{itemize}  \end{itemize}
904    
905  is written out. This file represents the state of the model in a condensed  is written out. This file represents the state of the model in a condensed
# Line 866  form and is used for restarting the inte Line 907  form and is used for restarting the inte
907  there is an additional ``pickup'' file:  there is an additional ``pickup'' file:
908    
909  \begin{itemize}  \begin{itemize}
910  \item \textit{pickup\_cd.00000nIter}  \item \texttt{pickup\_cd.00000nIter}
911  \end{itemize}  \end{itemize}
912    
913  containing the D-grid velocity data and that has to be written out as well  containing the D-grid velocity data and that has to be written out as well
914  in order to restart the integration. Rolling checkpoint files are the same  in order to restart the integration. Rolling checkpoint files are the same
915  as the pickup files but are named differently. Their name contain the chain  as the pickup files but are named differently. Their name contain the chain
916  \textit{ckptA} or \textit{ckptB} instead of \textit{00000nIter}. They can be  \texttt{ckptA} or \texttt{ckptB} instead of \texttt{00000nIter}. They can be
917  used to restart the model but are overwritten every other time they are  used to restart the model but are overwritten every other time they are
918  output to save disk space during long integrations.  output to save disk space during long integrations.
919    
920    \subsubsection{MNC output files}
921    
922    Unlike the \texttt{mdsio} output, the \texttt{mnc}--generated output
923    is usually (though not necessarily) placed within a subdirectory with
924    a name such as \texttt{mnc\_test\_\${DATE}\_\${SEQ}}.
925    
926  \subsection{Looking at the output}  \subsection{Looking at the output}
927    
928  All the model data are written according to a ``meta/data'' file format.  The ``traditional'' or mdsio model data are written according to a
929  Each variable is associated with two files with suffix names \textit{.data}  ``meta/data'' file format.  Each variable is associated with two files
930  and \textit{.meta}. The \textit{.data} file contains the data written in  with suffix names \texttt{.data} and \texttt{.meta}. The
931  binary form (big\_endian by default). The \textit{.meta} file is a  \texttt{.data} file contains the data written in binary form
932  ``header'' file that contains information about the size and the structure  (big\_endian by default). The \texttt{.meta} file is a ``header'' file
933  of the \textit{.data} file. This way of organizing the output is  that contains information about the size and the structure of the
934  particularly useful when running multi-processors calculations. The base  \texttt{.data} file. This way of organizing the output is particularly
935  version of the model includes a few matlab utilities to read output files  useful when running multi-processors calculations. The base version of
936  written in this format. The matlab scripts are located in the directory  the model includes a few matlab utilities to read output files written
937  \textit{utils/matlab} under the root tree. The script \textit{rdmds.m} reads  in this format. The matlab scripts are located in the directory
938  the data. Look at the comments inside the script to see how to use it.  \texttt{utils/matlab} under the root tree. The script \texttt{rdmds.m}
939    reads the data. Look at the comments inside the script to see how to
940    use it.
941    
942  Some examples of reading and visualizing some output in {\em Matlab}:  Some examples of reading and visualizing some output in {\em Matlab}:
943  \begin{verbatim}  \begin{verbatim}
# Line 905  Some examples of reading and visualizing Line 954  Some examples of reading and visualizing
954  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end
955  \end{verbatim}  \end{verbatim}
956    
957  \section{Doing it yourself: customizing the code}  Similar scripts for netCDF output (\texttt{rdmnc.m}) are available and
958    they are described in Section \ref{sec:pkg:mnc}.
 When you are ready to run the model in the configuration you want, the  
 easiest thing is to use and adapt the setup of the case studies  
 experiment (described previously) that is the closest to your  
 configuration. Then, the amount of setup will be minimized. In this  
 section, we focus on the setup relative to the ``numerical model''  
 part of the code (the setup relative to the ``execution environment''  
 part is covered in the parallel implementation section) and on the  
 variables and parameters that you are likely to change.  
   
 \subsection{Configuration and setup}  
   
 The CPP keys relative to the ``numerical model'' part of the code are  
 all defined and set in the file \textit{CPP\_OPTIONS.h }in the  
 directory \textit{ model/inc }or in one of the \textit{code  
 }directories of the case study experiments under  
 \textit{verification.} The model parameters are defined and declared  
 in the file \textit{model/inc/PARAMS.h }and their default values are  
 set in the routine \textit{model/src/set\_defaults.F. }The default  
 values can be modified in the namelist file \textit{data }which needs  
 to be located in the directory where you will run the model. The  
 parameters are initialized in the routine  
 \textit{model/src/ini\_parms.F}.  Look at this routine to see in what  
 part of the namelist the parameters are located.  
   
 In what follows the parameters are grouped into categories related to  
 the computational domain, the equations solved in the model, and the  
 simulation controls.  
   
 \subsection{Computational domain, geometry and time-discretization}  
   
 \begin{description}  
 \item[dimensions] \  
     
   The number of points in the x, y,\textit{\ }and r\textit{\  
   }directions are represented by the variables \textbf{sNx}\textit{,  
   }\textbf{sNy}\textit{, } and \textbf{Nr}\textit{\ }respectively  
   which are declared and set in the file \textit{model/inc/SIZE.h.  
   }(Again, this assumes a mono-processor calculation. For  
   multiprocessor calculations see section on parallel implementation.)  
   
 \item[grid] \  
     
   Three different grids are available: cartesian, spherical polar, and  
   curvilinear (including the cubed sphere). The grid is set through  
   the logical variables \textbf{usingCartesianGrid}\textit{, }\textbf{  
     usingSphericalPolarGrid}\textit{, }and \textit{\ }\textbf{  
     usingCurvilinearGrid}\textit{. }In the case of spherical and  
   curvilinear grids, the southern boundary is defined through the  
   variable \textbf{phiMin} \textit{\ }which corresponds to the  
   latitude of the southern most cell face (in degrees). The resolution  
   along the x and y directions is controlled by the 1D arrays  
   \textbf{delx}\textit{\ }and \textbf{dely}\textit{\ }(in meters in  
   the case of a cartesian grid, in degrees otherwise). The vertical  
   grid spacing is set through the 1D array \textbf{delz }for the ocean  
   (in meters) or \textbf{delp}\textit{\ }for the atmosphere (in Pa).  
   The variable \textbf{ Ro\_SeaLevel} represents the standard position  
   of Sea-Level in ''R'' coordinate. This is typically set to 0m for  
   the ocean (default value) and 10$ ^{5}$Pa for the atmosphere. For  
   the atmosphere, also set the logical variable \textbf{groundAtK1} to  
   '.\texttt{TRUE}.'. which put the first level (k=1) at the lower  
   boundary (ground).  
     
   For the cartesian grid case, the Coriolis parameter $f$ is set  
   through the variables \textbf{f0}\textit{\ }and  
   \textbf{beta}\textit{\ }which correspond to the reference Coriolis  
   parameter (in s$^{-1}$) and $\frac{\partial f}{ \partial y}$(in  
   m$^{-1}$s$^{-1}$) respectively. If \textbf{beta }\textit{\ } is set  
   to a nonzero value, \textbf{f0}\textit{\ }is the value of $f$ at the  
   southern edge of the domain.  
   
 \item[topography - full and partial cells] \  
     
   The domain bathymetry is read from a file that contains a 2D (x,y)  
   map of depths (in m) for the ocean or pressures (in Pa) for the  
   atmosphere. The file name is represented by the variable  
   \textbf{bathyFile}\textit{. }The file is assumed to contain binary  
   numbers giving the depth (pressure) of the model at each grid cell,  
   ordered with the x coordinate varying fastest. The points are  
   ordered from low coordinate to high coordinate for both axes. The  
   model code applies without modification to enclosed, periodic, and  
   double periodic domains. Periodicity is assumed by default and is  
   suppressed by setting the depths to 0m for the cells at the limits  
   of the computational domain (note: not sure this is the case for the  
   atmosphere). The precision with which to read the binary data is  
   controlled by the integer variable \textbf{readBinaryPrec }which can  
   take the value \texttt{32} (single precision) or \texttt{64} (double  
   precision). See the matlab program \textit{ gendata.m }in the  
   \textit{input }directories under \textit{verification }to see how  
   the bathymetry files are generated for the case study experiments.  
     
   To use the partial cell capability, the variable  
   \textbf{hFacMin}\textit{\ } needs to be set to a value between 0 and  
   1 (it is set to 1 by default) corresponding to the minimum  
   fractional size of the cell. For example if the bottom cell is 500m  
   thick and \textbf{hFacMin}\textit{\ }is set to 0.1, the actual  
   thickness of the cell (i.e. used in the code) can cover a range of  
   discrete values 50m apart from 50m to 500m depending on the value of  
   the bottom depth (in \textbf{bathyFile}) at this point.  
     
   Note that the bottom depths (or pressures) need not coincide with  
   the models levels as deduced from \textbf{delz}\textit{\  
   }or\textit{\ }\textbf{delp} \textit{. }The model will interpolate  
   the numbers in \textbf{bathyFile} \textit{\ }so that they match the  
   levels obtained from \textbf{delz}\textit{ \ }or\textit{\  
   }\textbf{delp}\textit{\ }and \textbf{hFacMin}\textit{. }  
     
   (Note: the atmospheric case is a bit more complicated than what is  
   written here I think. To come soon...)  
   
 \item[time-discretization] \  
     
   The time steps are set through the real variables \textbf{deltaTMom}  
   and \textbf{deltaTtracer} (in s) which represent the time step for  
   the momentum and tracer equations, respectively. For synchronous  
   integrations, simply set the two variables to the same value (or you  
   can prescribe one time step only through the variable  
   \textbf{deltaT}). The Adams-Bashforth stabilizing parameter is set  
   through the variable \textbf{abEps} (dimensionless). The stagger  
   baroclinic time stepping can be activated by setting the logical  
   variable \textbf{staggerTimeStep} to '.\texttt{TRUE}.'.  
   
 \end{description}  
   
   
 \subsection{Equation of state}  
   
 First, because the model equations are written in terms of  
 perturbations, a reference thermodynamic state needs to be specified.  
 This is done through the 1D arrays \textbf{tRef} and \textbf{sRef}.  
 \textbf{tRef} specifies the reference potential temperature profile  
 (in $^{o}$C for the ocean and $^{o}$K for the atmosphere) starting  
 from the level k=1. Similarly, \textbf{sRef} specifies the reference  
 salinity profile (in ppt) for the ocean or the reference specific  
 humidity profile (in g/kg) for the atmosphere.  
   
 The form of the equation of state is controlled by the character  
 variables \textbf{buoyancyRelation} and \textbf{eosType}.  
 \textbf{buoyancyRelation} is set to '\texttt{OCEANIC}' by default and  
 needs to be set to '\texttt{ATMOSPHERIC}' for atmosphere simulations.  
 In this case, \textbf{eosType} must be set to '\texttt{IDEALGAS}'.  
 For the ocean, two forms of the equation of state are available:  
 linear (set \textbf{eosType} to '\texttt{LINEAR}') and a polynomial  
 approximation to the full nonlinear equation ( set  
 \textbf{eosType}\textit{\ }to '\texttt{POLYNOMIAL}'). In the linear  
 case, you need to specify the thermal and haline expansion  
 coefficients represented by the variables \textbf{tAlpha}\textit{\  
   }(in K$^{-1}$) and \textbf{sBeta} (in ppt$^{-1}$). For the nonlinear  
 case, you need to generate a file of polynomial coefficients called  
 \textit{POLY3.COEFFS}. To do this, use the program  
 \textit{utils/knudsen2/knudsen2.f} under the model tree (a Makefile is  
 available in the same directory and you will need to edit the number  
 and the values of the vertical levels in \textit{knudsen2.f} so that  
 they match those of your configuration).  
   
 There there are also higher polynomials for the equation of state:  
 \begin{description}  
 \item['\texttt{UNESCO}':] The UNESCO equation of state formula of  
   Fofonoff and Millard \cite{fofonoff83}. This equation of state  
   assumes in-situ temperature, which is not a model variable; \emph{its use  
   is therefore discouraged, and it is only listed for completeness}.  
 \item['\texttt{JMD95Z}':] A modified UNESCO formula by Jackett and  
   McDougall \cite{jackett95}, which uses the model variable potential  
   temperature as input. The '\texttt{Z}' indicates that this equation  
   of state uses a horizontally and temporally constant pressure  
   $p_{0}=-g\rho_{0}z$.  
 \item['\texttt{JMD95P}':] A modified UNESCO formula by Jackett and  
   McDougall \cite{jackett95}, which uses the model variable potential  
   temperature as input. The '\texttt{P}' indicates that this equation  
   of state uses the actual hydrostatic pressure of the last time  
   step. Lagging the pressure in this way requires an additional pickup  
   file for restarts.  
 \item['\texttt{MDJWF}':] The new, more accurate and less expensive  
   equation of state by McDougall et~al. \cite{mcdougall03}. It also  
   requires lagging the pressure and therefore an additional pickup  
   file for restarts.  
 \end{description}  
 For none of these options an reference profile of temperature or  
 salinity is required.  
   
 \subsection{Momentum equations}  
   
 In this section, we only focus for now on the parameters that you are likely  
 to change, i.e. the ones relative to forcing and dissipation for example.  
 The details relevant to the vector-invariant form of the equations and the  
 various advection schemes are not covered for the moment. We assume that you  
 use the standard form of the momentum equations (i.e. the flux-form) with  
 the default advection scheme. Also, there are a few logical variables that  
 allow you to turn on/off various terms in the momentum equation. These  
 variables are called \textbf{momViscosity, momAdvection, momForcing,  
 useCoriolis, momPressureForcing, momStepping}\textit{, }and \textit{\ }%  
 \textbf{metricTerms }and are assumed to be set to '.\texttt{TRUE}.' here.  
 Look at the file \textit{model/inc/PARAMS.h }for a precise definition of  
 these variables.  
959    
960  \begin{description}  The MNC output files are all in the ``self-describing'' netCDF
961  \item[initialization] \  format and can thus be browsed and/or plotted using tools such as:
962      \begin{itemize}
963    The velocity components are initialized to 0 unless the simulation  \item \texttt{ncdump} is a utility which is typically included
964    is starting from a pickup file (see section on simulation control    with every netCDF install:
965    parameters).    \begin{rawhtml} <A href="http://www.unidata.ucar.edu/packages/netcdf/"> \end{rawhtml}
966    \begin{verbatim}
967  \item[forcing] \  http://www.unidata.ucar.edu/packages/netcdf/
968      \end{verbatim}
969    This section only applies to the ocean. You need to generate    \begin{rawhtml} </A> \end{rawhtml} and it converts the netCDF
970    wind-stress data into two files \textbf{zonalWindFile}\textit{\ }and    binaries into formatted ASCII text files.
   \textbf{ meridWindFile }corresponding to the zonal and meridional  
   components of the wind stress, respectively (if you want the stress  
   to be along the direction of only one of the model horizontal axes,  
   you only need to generate one file). The format of the files is  
   similar to the bathymetry file. The zonal (meridional) stress data  
   are assumed to be in Pa and located at U-points (V-points). As for  
   the bathymetry, the precision with which to read the binary data is  
   controlled by the variable \textbf{readBinaryPrec}.\textbf{\ } See  
   the matlab program \textit{gendata.m }in the \textit{input  
   }directories under \textit{verification }to see how simple  
   analytical wind forcing data are generated for the case study  
   experiments.  
     
   There is also the possibility of prescribing time-dependent periodic  
   forcing. To do this, concatenate the successive time records into a  
   single file (for each stress component) ordered in a (x, y, t)  
   fashion and set the following variables:  
   \textbf{periodicExternalForcing }to '.\texttt{TRUE}.',  
   \textbf{externForcingPeriod }to the period (in s) of which the  
   forcing varies (typically 1 month), and \textbf{externForcingCycle  
   }to the repeat time (in s) of the forcing (typically 1 year -- note:  
   \textbf{ externForcingCycle }must be a multiple of  
   \textbf{externForcingPeriod}).  With these variables set up, the  
   model will interpolate the forcing linearly at each iteration.  
   
 \item[dissipation] \  
     
   The lateral eddy viscosity coefficient is specified through the  
   variable \textbf{viscAh}\textit{\ }(in m$^{2}$s$^{-1}$). The  
   vertical eddy viscosity coefficient is specified through the  
   variable \textbf{viscAz }(in m$^{2}$s$ ^{-1}$) for the ocean and  
   \textbf{viscAp}\textit{\ }(in Pa$^{2}$s$^{-1}$) for the atmosphere.  
   The vertical diffusive fluxes can be computed implicitly by setting  
   the logical variable \textbf{implicitViscosity }to '.\texttt{TRUE}  
   .'. In addition, biharmonic mixing can be added as well through the  
   variable \textbf{viscA4}\textit{\ }(in m$^{4}$s$^{-1}$). On a  
   spherical polar grid, you might also need to set the variable  
   \textbf{cosPower} which is set to 0 by default and which represents  
   the power of cosine of latitude to multiply viscosity. Slip or  
   no-slip conditions at lateral and bottom boundaries are specified  
   through the logical variables \textbf{no\_slip\_sides}\textit{\ }  
   and \textbf{no\_slip\_bottom}. If set to '\texttt{.FALSE.}',  
   free-slip boundary conditions are applied. If no-slip boundary  
   conditions are applied at the bottom, a bottom drag can be applied  
   as well. Two forms are available: linear (set the variable  
   \textbf{bottomDragLinear}\textit{\ }in s$ ^{-1}$) and quadratic (set  
   the variable \textbf{bottomDragQuadratic}\textit{ \ }in m$^{-1}$).  
   
   The Fourier and Shapiro filters are described elsewhere.  
   
 \item[C-D scheme] \  
     
   If you run at a sufficiently coarse resolution, you will need the  
   C-D scheme for the computation of the Coriolis terms. The  
   variable\textbf{\ tauCD}, which represents the C-D scheme coupling  
   timescale (in s) needs to be set.  
     
 \item[calculation of pressure/geopotential] \  
     
   First, to run a non-hydrostatic ocean simulation, set the logical  
   variable \textbf{nonHydrostatic} to '.\texttt{TRUE}.'. The pressure  
   field is then inverted through a 3D elliptic equation. (Note: this  
   capability is not available for the atmosphere yet.) By default, a  
   hydrostatic simulation is assumed and a 2D elliptic equation is used  
   to invert the pressure field. The parameters controlling the  
   behaviour of the elliptic solvers are the variables  
   \textbf{cg2dMaxIters}\textit{\ }and \textbf{cg2dTargetResidual } for  
   the 2D case and \textbf{cg3dMaxIters}\textit{\ }and \textbf{  
     cg3dTargetResidual }for the 3D case. You probably won't need to  
   alter the default values (are we sure of this?).  
     
   For the calculation of the surface pressure (for the ocean) or  
   surface geopotential (for the atmosphere) you need to set the  
   logical variables \textbf{rigidLid} and  
   \textbf{implicitFreeSurface}\textit{\ }(set one to '.  
   \texttt{TRUE}.' and the other to '.\texttt{FALSE}.' depending on how  
   you want to deal with the ocean upper or atmosphere lower boundary).  
   
 \end{description}  
   
 \subsection{Tracer equations}  
   
 This section covers the tracer equations i.e. the potential temperature  
 equation and the salinity (for the ocean) or specific humidity (for the  
 atmosphere) equation. As for the momentum equations, we only describe for  
 now the parameters that you are likely to change. The logical variables  
 \textbf{tempDiffusion}\textit{, }\textbf{tempAdvection}\textit{, }\textbf{  
 tempForcing}\textit{,} and \textbf{tempStepping} allow you to turn on/off  
 terms in the temperature equation (same thing for salinity or specific  
 humidity with variables \textbf{saltDiffusion}\textit{, }\textbf{  
 saltAdvection}\textit{\ }etc). These variables are all assumed here to be  
 set to '.\texttt{TRUE}.'. Look at file \textit{model/inc/PARAMS.h }for a  
 precise definition.  
   
 \begin{description}  
 \item[initialization] \  
     
   The initial tracer data can be contained in the binary files  
   \textbf{ hydrogThetaFile }and \textbf{hydrogSaltFile}. These files  
   should contain 3D data ordered in an (x, y, r) fashion with k=1 as  
   the first vertical level.  If no file names are provided, the  
   tracers are then initialized with the values of \textbf{tRef }and  
   \textbf{sRef }mentioned above (in the equation of state section). In  
   this case, the initial tracer data are uniform in x and y for each  
   depth level.  
   
 \item[forcing] \  
     
   This part is more relevant for the ocean, the procedure for the  
   atmosphere not being completely stabilized at the moment.  
     
   A combination of fluxes data and relaxation terms can be used for  
   driving the tracer equations. \ For potential temperature, heat flux  
   data (in W/m$ ^{2}$) can be stored in the 2D binary file  
   \textbf{surfQfile}\textit{. }  Alternatively or in addition, the  
   forcing can be specified through a relaxation term. The SST data to  
   which the model surface temperatures are restored to are supposed to  
   be stored in the 2D binary file \textbf{ thetaClimFile}\textit{.  
   }The corresponding relaxation time scale coefficient is set through  
   the variable \textbf{tauThetaClimRelax}\textit{\ }(in s). The same  
   procedure applies for salinity with the variable names  
   \textbf{EmPmRfile }\textit{, }\textbf{saltClimFile}\textit{, }and  
   \textbf{tauSaltClimRelax} \textit{\ }for freshwater flux (in m/s)  
   and surface salinity (in ppt) data files and relaxation time scale  
   coefficient (in s), respectively. Also for salinity, if the CPP key  
   \textbf{USE\_NATURAL\_BCS} is turned on, natural boundary conditions  
   are applied i.e. when computing the surface salinity tendency, the  
   freshwater flux is multiplied by the model surface salinity instead  
   of a constant salinity value.  
     
   As for the other input files, the precision with which to read the  
   data is controlled by the variable \textbf{readBinaryPrec}.  
   Time-dependent, periodic forcing can be applied as well following  
   the same procedure used for the wind forcing data (see above).  
   
 \item[dissipation] \  
     
   Lateral eddy diffusivities for temperature and salinity/specific  
   humidity are specified through the variables \textbf{diffKhT }and  
   \textbf{diffKhS } (in m$^{2}$/s). Vertical eddy diffusivities are  
   specified through the variables \textbf{diffKzT }and \textbf{diffKzS  
   }(in m$^{2}$/s) for the ocean and \textbf{diffKpT }and  
   \textbf{diffKpS }(in Pa$^{2}$/s) for the atmosphere. The vertical  
   diffusive fluxes can be computed implicitly by setting the logical  
   variable \textbf{implicitDiffusion }to '.\texttt{TRUE} .'. In  
   addition, biharmonic diffusivities can be specified as well through  
   the coefficients \textbf{diffK4T }and \textbf{diffK4S }(in  
   m$^{4}$/s). Note that the cosine power scaling (specified through  
   \textbf{cosPower }- see the momentum equations section) is applied  
   to the tracer diffusivities (Laplacian and biharmonic) as well. The  
   Gent and McWilliams parameterization for oceanic tracers is  
   described in the package section. Finally, note that tracers can be  
   also subject to Fourier and Shapiro filtering (see the corresponding  
   section on these filters).  
   
 \item[ocean convection] \  
     
   Two options are available to parameterize ocean convection: one is  
   to use the convective adjustment scheme. In this case, you need to  
   set the variable \textbf{cadjFreq}, which represents the frequency  
   (in s) with which the adjustment algorithm is called, to a non-zero  
   value (if set to a negative value by the user, the model will set it  
   to the tracer time step). The other option is to parameterize  
   convection with implicit vertical diffusion. To do this, set the  
   logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE} .'  
   and the real variable \textbf{ivdc\_kappa }to a value (in m$^{2}$/s)  
   you wish the tracer vertical diffusivities to have when mixing  
   tracers vertically due to static instabilities. Note that  
   \textbf{cadjFreq }and \textbf{ivdc\_kappa }can not both have  
   non-zero value.  
   
 \end{description}  
   
 \subsection{Simulation controls}  
   
 The model ''clock'' is defined by the variable \textbf{deltaTClock }(in s)  
 which determines the IO frequencies and is used in tagging output.  
 Typically, you will set it to the tracer time step for accelerated runs  
 (otherwise it is simply set to the default time step \textbf{deltaT}).  
 Frequency of checkpointing and dumping of the model state are referenced to  
 this clock (see below).  
   
 \begin{description}  
 \item[run duration] \  
     
   The beginning of a simulation is set by specifying a start time (in  
   s) through the real variable \textbf{startTime }or by specifying an  
   initial iteration number through the integer variable  
   \textbf{nIter0}. If these variables are set to nonzero values, the  
   model will look for a ''pickup'' file \textit{pickup.0000nIter0 }to  
   restart the integration\textit{. }The end of a simulation is set  
   through the real variable \textbf{endTime }(in s).  Alternatively,  
   you can specify instead the number of time steps to execute through  
   the integer variable \textbf{nTimeSteps}.  
   
 \item[frequency of output] \  
     
   Real variables defining frequencies (in s) with which output files  
   are written on disk need to be set up. \textbf{dumpFreq }controls  
   the frequency with which the instantaneous state of the model is  
   saved. \textbf{chkPtFreq } and \textbf{pchkPtFreq }control the  
   output frequency of rolling and permanent checkpoint files,  
   respectively. See section 1.5.1 Output files for the definition of  
   model state and checkpoint files. In addition, time-averaged fields  
   can be written out by setting the variable \textbf{taveFreq} (in s).  
   The precision with which to write the binary data is controlled by  
   the integer variable w\textbf{riteBinaryPrec }(set it to \texttt{32}  
   or \texttt{ 64}).  
971    
972  \end{description}  \item \texttt{ncview} utility is a very convenient and quick way
973      to plot netCDF data and it runs on most OSes:
974      \begin{rawhtml} <A href="http://meteora.ucsd.edu/~pierce/ncview_home_page.html"> \end{rawhtml}
975    \begin{verbatim}
976    http://meteora.ucsd.edu/~pierce/ncview_home_page.html
977    \end{verbatim}
978      \begin{rawhtml} </A> \end{rawhtml}
979    
980    \item MatLAB(c) and other common post-processing environments provide
981      various netCDF interfaces including:
982      \begin{rawhtml} <A href="http://mexcdf.sourceforge.net/"> \end{rawhtml}
983    \begin{verbatim}
984    http://mexcdf.sourceforge.net/
985    \end{verbatim}
986      \begin{rawhtml} </A> \end{rawhtml}
987      \begin{rawhtml} <A href="http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html"> \end{rawhtml}
988    \begin{verbatim}
989    http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html
990    \end{verbatim}
991      \begin{rawhtml} </A> \end{rawhtml}
992    \end{itemize}
993    
 %%% Local Variables:  
 %%% mode: latex  
 %%% TeX-master: t  
 %%% End:  

Legend:
Removed from v.1.17  
changed lines
  Added in v.1.47

  ViewVC Help
Powered by ViewVC 1.1.22