/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Diff of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.21 by edhill, Thu Mar 11 16:11:56 2004 UTC revision 1.36 by molod, Tue Jun 27 19:08:22 2006 UTC
# Line 17  you are ready to try implementing the co Line 17  you are ready to try implementing the co
17    
18  \section{Where to find information}  \section{Where to find information}
19  \label{sect:whereToFindInfo}  \label{sect:whereToFindInfo}
20    \begin{rawhtml}
21    <!-- CMIREDIR:whereToFindInfo: -->
22    \end{rawhtml}
23    
24  A web site is maintained for release 2 (``Pelican'') of MITgcm:  A web site is maintained for release 2 (``Pelican'') of MITgcm:
25  \begin{rawhtml} <A href=http://mitgcm.org/pelican/ target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href=http://mitgcm.org/pelican/ target="idontexist"> \end{rawhtml}
# Line 50  http://mitgcm.org/htdig/ Line 53  http://mitgcm.org/htdig/
53    
54  \section{Obtaining the code}  \section{Obtaining the code}
55  \label{sect:obtainingCode}  \label{sect:obtainingCode}
56    \begin{rawhtml}
57    <!-- CMIREDIR:obtainingCode: -->
58    \end{rawhtml}
59    
60  MITgcm can be downloaded from our system by following  MITgcm can be downloaded from our system by following
61  the instructions below. As a courtesy we ask that you send e-mail to us at  the instructions below. As a courtesy we ask that you send e-mail to us at
# Line 79  provide easy support for maintenance upd Line 85  provide easy support for maintenance upd
85    
86  \end{enumerate}  \end{enumerate}
87    
88  \subsubsection{Checkout from CVS}  \subsection{Method 1 - Checkout from CVS}
89  \label{sect:cvs_checkout}  \label{sect:cvs_checkout}
90    
91  If CVS is available on your system, we strongly encourage you to use it. CVS  If CVS is available on your system, we strongly encourage you to use it. CVS
# Line 92  be set within your shell.  For a csh or Line 98  be set within your shell.  For a csh or
98  \begin{verbatim}  \begin{verbatim}
99  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack
100  \end{verbatim}  \end{verbatim}
101  in your .cshrc or .tcshrc file.  For bash or sh shells, put:  in your \texttt{.cshrc} or \texttt{.tcshrc} file.  For bash or sh
102    shells, put:
103  \begin{verbatim}  \begin{verbatim}
104  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'  % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
105  \end{verbatim}  \end{verbatim}
# Line 118  The MITgcm web site contains further dir Line 125  The MITgcm web site contains further dir
125  code and CVS.  It also contains a web interface to our CVS archive so  code and CVS.  It also contains a web interface to our CVS archive so
126  that one may easily view the state of files, revisions, and other  that one may easily view the state of files, revisions, and other
127  development milestones:  development milestones:
128  \begin{rawhtml} <A href=''http://mitgcm.org/download'' target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href="http://mitgcm.org/download" target="idontexist"> \end{rawhtml}
129  \begin{verbatim}  \begin{verbatim}
130  http://mitgcm.org/source_code.html  http://mitgcm.org/source_code.html
131  \end{verbatim}  \end{verbatim}
# Line 147  of CVS aliases Line 154  of CVS aliases
154    \label{tab:cvsModules}    \label{tab:cvsModules}
155  \end{table}  \end{table}
156    
157  The checkout process creates a directory called \textit{MITgcm}. If  The checkout process creates a directory called \texttt{MITgcm}. If
158  the directory \textit{MITgcm} exists this command updates your code  the directory \texttt{MITgcm} exists this command updates your code
159  based on the repository. Each directory in the source tree contains a  based on the repository. Each directory in the source tree contains a
160  directory \textit{CVS}. This information is required by CVS to keep  directory \texttt{CVS}. This information is required by CVS to keep
161  track of your file versions with respect to the repository. Don't edit  track of your file versions with respect to the repository. Don't edit
162  the files in \textit{CVS}!  You can also use CVS to download code  the files in \texttt{CVS}!  You can also use CVS to download code
163  updates.  More extensive information on using CVS for maintaining  updates.  More extensive information on using CVS for maintaining
164  MITgcm code can be found  MITgcm code can be found
165  \begin{rawhtml} <A href=''http://mitgcm.org/usingcvstoget.html'' target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href="http://mitgcm.org/usingcvstoget.html" target="idontexist"> \end{rawhtml}
166  here  here
167  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
168  .  .
# Line 169  they create can be changed to a differen Line 176  they create can be changed to a differen
176  \end{verbatim}  \end{verbatim}
177    
178    
179  \subsubsection{Conventional download method}  \subsection{Method 2 - Tar file download}
180  \label{sect:conventionalDownload}  \label{sect:conventionalDownload}
181    
182  If you do not have CVS on your system, you can download the model as a  If you do not have CVS on your system, you can download the model as a
# Line 184  delete; even if you do not use CVS yours Line 191  delete; even if you do not use CVS yours
191  us if you should need to send us your copy of the code.  If a recent  us if you should need to send us your copy of the code.  If a recent
192  tar file does not exist, then please contact the developers through  tar file does not exist, then please contact the developers through
193  the  the
194  \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}  \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
195  MITgcm-support@mitgcm.org  MITgcm-support@mitgcm.org
196  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
197  mailing list.  mailing list.
# Line 256  also means we can't tell what version of Line 263  also means we can't tell what version of
263  with. So please be sure you understand what you're doing.  with. So please be sure you understand what you're doing.
264    
265  \section{Model and directory structure}  \section{Model and directory structure}
266    \begin{rawhtml}
267    <!-- CMIREDIR:directory_structure: -->
268    \end{rawhtml}
269    
270  The ``numerical'' model is contained within a execution environment  The ``numerical'' model is contained within a execution environment
271  support wrapper. This wrapper is designed to provide a general  support wrapper. This wrapper is designed to provide a general
# Line 263  framework for grid-point models. MITgcmU Line 273  framework for grid-point models. MITgcmU
273  model that uses the framework. Under this structure the model is split  model that uses the framework. Under this structure the model is split
274  into execution environment support code and conventional numerical  into execution environment support code and conventional numerical
275  model code. The execution environment support code is held under the  model code. The execution environment support code is held under the
276  \textit{eesupp} directory. The grid point model code is held under the  \texttt{eesupp} directory. The grid point model code is held under the
277  \textit{model} directory. Code execution actually starts in the  \texttt{model} directory. Code execution actually starts in the
278  \textit{eesupp} routines and not in the \textit{model} routines. For  \texttt{eesupp} routines and not in the \texttt{model} routines. For
279  this reason the top-level \textit{MAIN.F} is in the  this reason the top-level \texttt{MAIN.F} is in the
280  \textit{eesupp/src} directory. In general, end-users should not need  \texttt{eesupp/src} directory. In general, end-users should not need
281  to worry about this level. The top-level routine for the numerical  to worry about this level. The top-level routine for the numerical
282  part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F}. Here is  part of the code is in \texttt{model/src/THE\_MODEL\_MAIN.F}. Here is
283  a brief description of the directory structure of the model under the  a brief description of the directory structure of the model under the
284  root tree (a detailed description is given in section 3: Code  root tree (a detailed description is given in section 3: Code
285  structure).  structure).
286    
287  \begin{itemize}  \begin{itemize}
288    
289  \item \textit{bin}: this directory is initially empty. It is the  \item \texttt{bin}: this directory is initially empty. It is the
290    default directory in which to compile the code.    default directory in which to compile the code.
291        
292  \item \textit{diags}: contains the code relative to time-averaged  \item \texttt{diags}: contains the code relative to time-averaged
293    diagnostics. It is subdivided into two subdirectories \textit{inc}    diagnostics. It is subdivided into two subdirectories \texttt{inc}
294    and \textit{src} that contain include files (*.\textit{h} files) and    and \texttt{src} that contain include files (\texttt{*.h} files) and
295    Fortran subroutines (*.\textit{F} files), respectively.    Fortran subroutines (\texttt{*.F} files), respectively.
296    
297  \item \textit{doc}: contains brief documentation notes.  \item \texttt{doc}: contains brief documentation notes.
298        
299  \item \textit{eesupp}: contains the execution environment source code.  \item \texttt{eesupp}: contains the execution environment source code.
300    Also subdivided into two subdirectories \textit{inc} and    Also subdivided into two subdirectories \texttt{inc} and
301    \textit{src}.    \texttt{src}.
302        
303  \item \textit{exe}: this directory is initially empty. It is the  \item \texttt{exe}: this directory is initially empty. It is the
304    default directory in which to execute the code.    default directory in which to execute the code.
305        
306  \item \textit{model}: this directory contains the main source code.  \item \texttt{model}: this directory contains the main source code.
307    Also subdivided into two subdirectories \textit{inc} and    Also subdivided into two subdirectories \texttt{inc} and
308    \textit{src}.    \texttt{src}.
309        
310  \item \textit{pkg}: contains the source code for the packages. Each  \item \texttt{pkg}: contains the source code for the packages. Each
311    package corresponds to a subdirectory. For example, \textit{gmredi}    package corresponds to a subdirectory. For example, \texttt{gmredi}
312    contains the code related to the Gent-McWilliams/Redi scheme,    contains the code related to the Gent-McWilliams/Redi scheme,
313    \textit{aim} the code relative to the atmospheric intermediate    \texttt{aim} the code relative to the atmospheric intermediate
314    physics. The packages are described in detail in section 3.    physics. The packages are described in detail in section 3.
315        
316  \item \textit{tools}: this directory contains various useful tools.  \item \texttt{tools}: this directory contains various useful tools.
317    For example, \textit{genmake2} is a script written in csh (C-shell)    For example, \texttt{genmake2} is a script written in csh (C-shell)
318    that should be used to generate your makefile. The directory    that should be used to generate your makefile. The directory
319    \textit{adjoint} contains the makefile specific to the Tangent    \texttt{adjoint} contains the makefile specific to the Tangent
320    linear and Adjoint Compiler (TAMC) that generates the adjoint code.    linear and Adjoint Compiler (TAMC) that generates the adjoint code.
321    The latter is described in details in part V.    The latter is described in details in part V.
322        
323  \item \textit{utils}: this directory contains various utilities. The  \item \texttt{utils}: this directory contains various utilities. The
324    subdirectory \textit{knudsen2} contains code and a makefile that    subdirectory \texttt{knudsen2} contains code and a makefile that
325    compute coefficients of the polynomial approximation to the knudsen    compute coefficients of the polynomial approximation to the knudsen
326    formula for an ocean nonlinear equation of state. The    formula for an ocean nonlinear equation of state. The
327    \textit{matlab} subdirectory contains matlab scripts for reading    \texttt{matlab} subdirectory contains matlab scripts for reading
328    model output directly into matlab. \textit{scripts} contains C-shell    model output directly into matlab. \texttt{scripts} contains C-shell
329    post-processing scripts for joining processor-based and tiled-based    post-processing scripts for joining processor-based and tiled-based
330    model output.    model output.
331        
332  \item \textit{verification}: this directory contains the model  \item \texttt{verification}: this directory contains the model
333    examples. See section \ref{sect:modelExamples}.    examples. See section \ref{sect:modelExamples}.
334    
335  \end{itemize}  \end{itemize}
336    
337  \section{Example experiments}  \section[Building MITgcm]{Building the code}
 \label{sect:modelExamples}  
   
 %% a set of twenty-four pre-configured numerical experiments  
   
 The MITgcm distribution comes with more than a dozen pre-configured  
 numerical experiments. Some of these example experiments are tests of  
 individual parts of the model code, but many are fully fledged  
 numerical simulations. A few of the examples are used for tutorial  
 documentation in sections \ref{sect:eg-baro} - \ref{sect:eg-global}.  
 The other examples follow the same general structure as the tutorial  
 examples. However, they only include brief instructions in a text file  
 called {\it README}.  The examples are located in subdirectories under  
 the directory \textit{verification}. Each example is briefly described  
 below.  
   
 \subsection{Full list of model examples}  
   
 \begin{enumerate}  
     
 \item \textit{exp0} - single layer, ocean double gyre (barotropic with  
   free-surface). This experiment is described in detail in section  
   \ref{sect:eg-baro}.  
   
 \item \textit{exp1} - Four layer, ocean double gyre. This experiment  
   is described in detail in section \ref{sect:eg-baroc}.  
     
 \item \textit{exp2} - 4x4 degree global ocean simulation with steady  
   climatological forcing. This experiment is described in detail in  
   section \ref{sect:eg-global}.  
     
 \item \textit{exp4} - Flow over a Gaussian bump in open-water or  
   channel with open boundaries.  
     
 \item \textit{exp5} - Inhomogenously forced ocean convection in a  
   doubly periodic box.  
   
 \item \textit{front\_relax} - Relaxation of an ocean thermal front (test for  
 Gent/McWilliams scheme). 2D (Y-Z).  
   
 \item \textit{internal wave} - Ocean internal wave forced by open  
   boundary conditions.  
     
 \item \textit{natl\_box} - Eastern subtropical North Atlantic with KPP  
   scheme; 1 month integration  
     
 \item \textit{hs94.1x64x5} - Zonal averaged atmosphere using Held and  
   Suarez '94 forcing.  
     
 \item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and  
   Suarez '94 forcing.  
     
 \item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and  
   Suarez '94 forcing on the cubed sphere.  
     
 \item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics.  
   Global Zonal Mean configuration, 1x64x5 resolution.  
     
 \item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate  
   Atmospheric physics, equatorial Slice configuration.  2D (X-Z).  
     
 \item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric  
   physics. 3D Equatorial Channel configuration.  
     
 \item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics.  
   Global configuration, on latitude longitude grid with 128x64x5 grid  
   points ($2.8^\circ{\rm degree}$ resolution).  
     
 \item \textit{adjustment.128x64x1} Barotropic adjustment problem on  
   latitude longitude grid with 128x64 grid points ($2.8^\circ{\rm  
     degree}$ resolution).  
     
 \item \textit{adjustment.cs-32x32x1} Barotropic adjustment problem on  
   cube sphere grid with 32x32 points per face ( roughly $2.8^\circ{\rm  
     degree}$ resolution).  
     
 \item \textit{advect\_cs} Two-dimensional passive advection test on  
   cube sphere grid.  
     
 \item \textit{advect\_xy} Two-dimensional (horizontal plane) passive  
   advection test on Cartesian grid.  
     
 \item \textit{advect\_yz} Two-dimensional (vertical plane) passive  
   advection test on Cartesian grid.  
     
 \item \textit{carbon} Simple passive tracer experiment. Includes  
   derivative calculation. Described in detail in section  
   \ref{sect:eg-carbon-ad}.  
   
 \item \textit{flt\_example} Example of using float package.  
     
 \item \textit{global\_ocean.90x40x15} Global circulation with GM, flux  
   boundary conditions and poles.  
   
 \item \textit{global\_ocean\_pressure} Global circulation in pressure  
   coordinate (non-Boussinesq ocean model). Described in detail in  
   section \ref{sect:eg-globalpressure}.  
     
 \item \textit{solid-body.cs-32x32x1} Solid body rotation test for cube  
   sphere grid.  
   
 \end{enumerate}  
   
 \subsection{Directory structure of model examples}  
   
 Each example directory has the following subdirectories:  
   
 \begin{itemize}  
 \item \textit{code}: contains the code particular to the example. At a  
   minimum, this directory includes the following files:  
   
   \begin{itemize}  
   \item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to  
     the ``execution environment'' part of the code. The default  
     version is located in \textit{eesupp/inc}.  
     
   \item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to  
     the ``numerical model'' part of the code. The default version is  
     located in \textit{model/inc}.  
     
   \item \textit{code/SIZE.h}: declares size of underlying  
     computational grid.  The default version is located in  
     \textit{model/inc}.  
   \end{itemize}  
     
   In addition, other include files and subroutines might be present in  
   \textit{code} depending on the particular experiment. See Section 2  
   for more details.  
     
 \item \textit{input}: contains the input data files required to run  
   the example. At a minimum, the \textit{input} directory contains the  
   following files:  
   
   \begin{itemize}  
   \item \textit{input/data}: this file, written as a namelist,  
     specifies the main parameters for the experiment.  
     
   \item \textit{input/data.pkg}: contains parameters relative to the  
     packages used in the experiment.  
     
   \item \textit{input/eedata}: this file contains ``execution  
     environment'' data. At present, this consists of a specification  
     of the number of threads to use in $X$ and $Y$ under multithreaded  
     execution.  
   \end{itemize}  
     
   In addition, you will also find in this directory the forcing and  
   topography files as well as the files describing the initial state  
   of the experiment.  This varies from experiment to experiment. See  
   section 2 for more details.  
   
 \item \textit{results}: this directory contains the output file  
   \textit{output.txt} produced by the simulation example. This file is  
   useful for comparison with your own output when you run the  
   experiment.  
 \end{itemize}  
   
 Once you have chosen the example you want to run, you are ready to  
 compile the code.  
   
 \section{Building the code}  
338  \label{sect:buildingCode}  \label{sect:buildingCode}
339    \begin{rawhtml}
340  To compile the code, we use the {\em make} program. This uses a file  <!-- CMIREDIR:buildingCode: -->
341  ({\em Makefile}) that allows us to pre-process source files, specify  \end{rawhtml}
342  compiler and optimization options and also figures out any file  
343  dependencies. We supply a script ({\em genmake2}), described in  To compile the code, we use the \texttt{make} program. This uses a
344  section \ref{sect:genmake}, that automatically creates the {\em  file (\texttt{Makefile}) that allows us to pre-process source files,
345    Makefile} for you. You then need to build the dependencies and  specify compiler and optimization options and also figures out any
346    file dependencies. We supply a script (\texttt{genmake2}), described
347    in section \ref{sect:genmake}, that automatically creates the
348    \texttt{Makefile} for you. You then need to build the dependencies and
349  compile the code.  compile the code.
350    
351  As an example, let's assume that you want to build and run experiment  As an example, assume that you want to build and run experiment
352  \textit{verification/exp2}. The are multiple ways and places to  \texttt{verification/exp2}. The are multiple ways and places to
353  actually do this but here let's build the code in  actually do this but here let's build the code in
354  \textit{verification/exp2/input}:  \texttt{verification/exp2/build}:
355  \begin{verbatim}  \begin{verbatim}
356  % cd verification/exp2/input  % cd verification/exp2/build
357  \end{verbatim}  \end{verbatim}
358  First, build the {\em Makefile}:  First, build the \texttt{Makefile}:
359  \begin{verbatim}  \begin{verbatim}
360  % ../../../tools/genmake2 -mods=../code  % ../../../tools/genmake2 -mods=../code
361  \end{verbatim}  \end{verbatim}
362  The command line option tells {\em genmake} to override model source  The command line option tells \texttt{genmake} to override model source
363  code with any files in the directory {\em ./code/}.  code with any files in the directory \texttt{../code/}.
364    
365  On many systems, the {\em genmake2} program will be able to  On many systems, the \texttt{genmake2} program will be able to
366  automatically recognize the hardware, find compilers and other tools  automatically recognize the hardware, find compilers and other tools
367  within the user's path (``echo \$PATH''), and then choose an  within the user's path (``\texttt{echo \$PATH}''), and then choose an
368  appropriate set of options from the files contained in the {\em  appropriate set of options from the files (``optfiles'') contained in
369    tools/build\_options} directory.  Under some circumstances, a user  the \texttt{tools/build\_options} directory.  Under some
370  may have to create a new ``optfile'' in order to specify the exact  circumstances, a user may have to create a new ``optfile'' in order to
371  combination of compiler, compiler flags, libraries, and other options  specify the exact combination of compiler, compiler flags, libraries,
372  necessary to build a particular configuration of MITgcm.  In such  and other options necessary to build a particular configuration of
373  cases, it is generally helpful to read the existing ``optfiles'' and  MITgcm.  In such cases, it is generally helpful to read the existing
374  mimic their syntax.  ``optfiles'' and mimic their syntax.
375    
376  Through the MITgcm-support list, the MITgcm developers are willing to  Through the MITgcm-support list, the MITgcm developers are willing to
377  provide help writing or modifing ``optfiles''.  And we encourage users  provide help writing or modifing ``optfiles''.  And we encourage users
378  to post new ``optfiles'' (particularly ones for new machines or  to post new ``optfiles'' (particularly ones for new machines or
379  architectures) to the  architectures) to the
380  \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}  \begin{rawhtml} <A href="mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
381  MITgcm-support@mitgcm.org  MITgcm-support@mitgcm.org
382  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
383  list.  list.
384    
385  To specify an optfile to {\em genmake2}, the syntax is:  To specify an optfile to \texttt{genmake2}, the syntax is:
386  \begin{verbatim}  \begin{verbatim}
387  % ../../../tools/genmake2 -mods=../code -of /path/to/optfile  % ../../../tools/genmake2 -mods=../code -of /path/to/optfile
388  \end{verbatim}  \end{verbatim}
389    
390  Once a {\em Makefile} has been generated, we create the dependencies:  Once a \texttt{Makefile} has been generated, we create the
391    dependencies with the command:
392  \begin{verbatim}  \begin{verbatim}
393  % make depend  % make depend
394  \end{verbatim}  \end{verbatim}
395  This modifies the {\em Makefile} by attaching a [long] list of files  This modifies the \texttt{Makefile} by attaching a (usually, long)
396  upon which other files depend. The purpose of this is to reduce  list of files upon which other files depend. The purpose of this is to
397  re-compilation if and when you start to modify the code. The {\tt make  reduce re-compilation if and when you start to modify the code. The
398    depend} command also creates links from the model source to this  {\tt make depend} command also creates links from the model source to
399  directory.  this directory.  It is important to note that the {\tt make depend}
400    stage will occasionally produce warnings or errors since the
401    dependency parsing tool is unable to find all of the necessary header
402    files (\textit{eg.}  \texttt{netcdf.inc}).  In these circumstances, it
403    is usually OK to ignore the warnings/errors and proceed to the next
404    step.
405    
406  Next compile the code:  Next one can compile the code using:
407  \begin{verbatim}  \begin{verbatim}
408  % make  % make
409  \end{verbatim}  \end{verbatim}
410  The {\tt make} command creates an executable called \textit{mitgcmuv}.  The {\tt make} command creates an executable called \texttt{mitgcmuv}.
411  Additional make ``targets'' are defined within the makefile to aid in  Additional make ``targets'' are defined within the makefile to aid in
412  the production of adjoint and other versions of MITgcm.  the production of adjoint and other versions of MITgcm.  On SMP
413    (shared multi-processor) systems, the build process can often be sped
414    up appreciably using the command:
415    \begin{verbatim}
416    % make -j 2
417    \end{verbatim}
418    where the ``2'' can be replaced with a number that corresponds to the
419    number of CPUs available.
420    
421  Now you are ready to run the model. General instructions for doing so are  Now you are ready to run the model. General instructions for doing so are
422  given in section \ref{sect:runModel}. Here, we can run the model with:  given in section \ref{sect:runModel}. Here, we can run the model by
423    first creating links to all the input files:
424    \begin{verbatim}
425    ln -s ../input/* .
426    \end{verbatim}
427    and then calling the executable with:
428  \begin{verbatim}  \begin{verbatim}
429  ./mitgcmuv > output.txt  ./mitgcmuv > output.txt
430  \end{verbatim}  \end{verbatim}
431  where we are re-directing the stream of text output to the file {\em  where we are re-directing the stream of text output to the file
432  output.txt}.  \texttt{output.txt}.
   
433    
434  \subsection{Building/compiling the code elsewhere}  \subsection{Building/compiling the code elsewhere}
435    
# Line 666  the one experiment: Line 536  the one experiment:
536  \end{verbatim}  \end{verbatim}
537    
538    
539    \subsection{Using \texttt{genmake2}}
 \subsection{Using \textit{genmake2}}  
540  \label{sect:genmake}  \label{sect:genmake}
541    
542  To compile the code, first use the program \texttt{genmake2} (located  To compile the code, first use the program \texttt{genmake2} (located
543  in the \textit{tools} directory) to generate a Makefile.  in the \texttt{tools} directory) to generate a Makefile.
544  \texttt{genmake2} is a shell script written to work with all  \texttt{genmake2} is a shell script written to work with all
545  ``sh''--compatible shells including bash v1, bash v2, and Bourne.  ``sh''--compatible shells including bash v1, bash v2, and Bourne.
546  Internally, \texttt{genmake2} determines the locations of needed  Internally, \texttt{genmake2} determines the locations of needed
547  files, the compiler, compiler options, libraries, and Unix tools.  It  files, the compiler, compiler options, libraries, and Unix tools.  It
548  relies upon a number of ``optfiles'' located in the {\em  relies upon a number of ``optfiles'' located in the
549    tools/build\_options} directory.  \texttt{tools/build\_options} directory.
550    
551  The purpose of the optfiles is to provide all the compilation options  The purpose of the optfiles is to provide all the compilation options
552  for particular ``platforms'' (where ``platform'' roughly means the  for particular ``platforms'' (where ``platform'' roughly means the
# Line 772  The most important command-line options Line 641  The most important command-line options
641    the user's path.  When these three items have been identified,    the user's path.  When these three items have been identified,
642    genmake2 will try to find an optfile that has a matching name.    genmake2 will try to find an optfile that has a matching name.
643        
644    \item[\texttt{--pdefault='PKG1 PKG2 PKG3 ...'}] specifies the default
645      set of packages to be used.  The normal order of precedence for
646      packages is as follows:
647      \begin{enumerate}
648      \item If available, the command line (\texttt{--pdefault}) settings
649        over-rule any others.
650    
651      \item Next, \texttt{genmake2} will look for a file named
652        ``\texttt{packages.conf}'' in the local directory or in any of the
653        directories specified with the \texttt{--mods} option.
654        
655      \item Finally, if neither of the above are available,
656        \texttt{genmake2} will use the \texttt{/pkg/pkg\_default} file.
657      \end{enumerate}
658      
659  \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file  \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file
660    used for packages.    used for packages.
661        
# Line 784  The most important command-line options Line 668  The most important command-line options
668    assumed that the two packages are compatible and will function    assumed that the two packages are compatible and will function
669    either with or without each other.    either with or without each other.
670        
 \item[\texttt{--pdefault='PKG1 PKG2 PKG3 ...'}] specifies the default  
   set of packages to be used.  
     
   If not set, the default package list will be read from {\em  
     pkg/pkg\_default}  
     
671  \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or  \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or
672    automatic differentiation options file to be used.  The file is    automatic differentiation options file to be used.  The file is
673    analogous to the ``optfile'' defined above but it specifies    analogous to the ``optfile'' defined above but it specifies
# Line 819  The most important command-line options Line 697  The most important command-line options
697      ``-standarddirs'' option)      ``-standarddirs'' option)
698    \end{itemize}    \end{itemize}
699        
700    \item[\texttt{--mpi}] This option enables certain MPI features (using
701      CPP \texttt{\#define}s) within the code and is necessary for MPI
702      builds (see Section \ref{sect:mpi-build}).
703      
704  \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of  \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of
705    soft-links and other bugs common with the \texttt{make} versions    soft-links and other bugs common with the \texttt{make} versions
706    provided by commercial Unix vendors, GNU \texttt{make} (sometimes    provided by commercial Unix vendors, GNU \texttt{make} (sometimes
# Line 831  The most important command-line options Line 713  The most important command-line options
713    a Bourne, POSIX, or compatible) shell.  The syntax in these    a Bourne, POSIX, or compatible) shell.  The syntax in these
714    circumstances is:    circumstances is:
715    \begin{center}    \begin{center}
716      \texttt{/bin/sh genmake2 -bash=/bin/sh [...options...]}      \texttt{\%  /bin/sh genmake2 -bash=/bin/sh [...options...]}
717    \end{center}    \end{center}
718    where \texttt{/bin/sh} can be replaced with the full path and name    where \texttt{/bin/sh} can be replaced with the full path and name
719    of the desired shell.    of the desired shell.
# Line 839  The most important command-line options Line 721  The most important command-line options
721  \end{description}  \end{description}
722    
723    
724    \subsection{Building with MPI}
725    \label{sect:mpi-build}
726    
727  \section{Running the model}  Building MITgcm to use MPI libraries can be complicated due to the
728  \label{sect:runModel}  variety of different MPI implementations available, their dependencies
729    or interactions with different compilers, and their often ad-hoc
730    locations within file systems.  For these reasons, its generally a
731    good idea to start by finding and reading the documentation for your
732    machine(s) and, if necessary, seeking help from your local systems
733    administrator.
734    
735  If compilation finished succesfuully (section \ref{sect:buildModel})  The steps for building MITgcm with MPI support are:
736  then an executable called {\em mitgcmuv} will now exist in the local  \begin{enumerate}
737  directory.    
738    \item Determine the locations of your MPI-enabled compiler and/or MPI
739      libraries and put them into an options file as described in Section
740      \ref{sect:genmake}.  One can start with one of the examples in:
741      \begin{rawhtml} <A
742        href="http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm/tools/build_options/">
743      \end{rawhtml}
744      \begin{center}
745        \texttt{MITgcm/tools/build\_options/}
746      \end{center}
747      \begin{rawhtml} </A> \end{rawhtml}
748      such as \texttt{linux\_ia32\_g77+mpi\_cg01} or
749      \texttt{linux\_ia64\_efc+mpi} and then edit it to suit the machine at
750      hand.  You may need help from your user guide or local systems
751      administrator to determine the exact location of the MPI libraries.
752      If libraries are not installed, MPI implementations and related
753      tools are available including:
754      \begin{itemize}
755      \item \begin{rawhtml} <A
756          href="http://www-unix.mcs.anl.gov/mpi/mpich/">
757        \end{rawhtml}
758        MPICH
759        \begin{rawhtml} </A> \end{rawhtml}
760    
761      \item \begin{rawhtml} <A
762          href="http://www.lam-mpi.org/">
763        \end{rawhtml}
764        LAM/MPI
765        \begin{rawhtml} </A> \end{rawhtml}
766    
767      \item \begin{rawhtml} <A
768          href="http://www.osc.edu/~pw/mpiexec/">
769        \end{rawhtml}
770        MPIexec
771        \begin{rawhtml} </A> \end{rawhtml}
772      \end{itemize}
773      
774    \item Build the code with the \texttt{genmake2} \texttt{-mpi} option
775      (see Section \ref{sect:genmake}) using commands such as:
776    {\footnotesize \begin{verbatim}
777      %  ../../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE
778      %  make depend
779      %  make
780    \end{verbatim} }
781      
782    \item Run the code with the appropriate MPI ``run'' or ``exec''
783      program provided with your particular implementation of MPI.
784      Typical MPI packages such as MPICH will use something like:
785    \begin{verbatim}
786      %  mpirun -np 4 -machinefile mf ./mitgcmuv
787    \end{verbatim}
788      Sightly more complicated scripts may be needed for many machines
789      since execution of the code may be controlled by both the MPI
790      library and a job scheduling and queueing system such as PBS,
791      LoadLeveller, Condor, or any of a number of similar tools.  A few
792      example scripts (those used for our \begin{rawhtml} <A
793        href="http://mitgcm.org/testing.html"> \end{rawhtml}regular
794      verification runs\begin{rawhtml} </A> \end{rawhtml}) are available
795      at:
796      \begin{rawhtml} <A
797        href="http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm_contrib/test_scripts/">
798      \end{rawhtml}
799      {\footnotesize \tt
800        http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm\_contrib/test\_scripts/ }
801      \begin{rawhtml} </A> \end{rawhtml}
802    
803    \end{enumerate}
804    
805    An example of the above process on the MITgcm cluster (``cg01'') using
806    the GNU g77 compiler and the mpich MPI library is:
807    
808    {\footnotesize \begin{verbatim}
809      %  cd MITgcm/verification/exp5
810      %  mkdir build
811      %  cd build
812      %  ../../../tools/genmake2 -mpi -mods=../code \
813           -of=../../../tools/build_options/linux_ia32_g77+mpi_cg01
814      %  make depend
815      %  make
816      %  cd ../input
817      %  /usr/local/pkg/mpi/mpi-1.2.4..8a-gm-1.5/g77/bin/mpirun.ch_gm \
818           -machinefile mf --gm-kill 5 -v -np 2  ../build/mitgcmuv
819    \end{verbatim} }
820    
821    \section[Running MITgcm]{Running the model in prognostic mode}
822    \label{sect:runModel}
823    \begin{rawhtml}
824    <!-- CMIREDIR:runModel: -->
825    \end{rawhtml}
826    
827    If compilation finished succesfully (section \ref{sect:buildingCode})
828    then an executable called \texttt{mitgcmuv} will now exist in the
829    local directory.
830    
831  To run the model as a single process (ie. not in parallel) simply  To run the model as a single process (\textit{ie.} not in parallel)
832  type:  simply type:
833  \begin{verbatim}  \begin{verbatim}
834  % ./mitgcmuv  % ./mitgcmuv
835  \end{verbatim}  \end{verbatim}
# Line 858  do!). The above command will spew out ma Line 839  do!). The above command will spew out ma
839  your screen.  This output contains details such as parameter values as  your screen.  This output contains details such as parameter values as
840  well as diagnostics such as mean Kinetic energy, largest CFL number,  well as diagnostics such as mean Kinetic energy, largest CFL number,
841  etc. It is worth keeping this text output with the binary output so we  etc. It is worth keeping this text output with the binary output so we
842  normally re-direct the {\em stdout} stream as follows:  normally re-direct the \texttt{stdout} stream as follows:
843  \begin{verbatim}  \begin{verbatim}
844  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
845  \end{verbatim}  \end{verbatim}
846    In the event that the model encounters an error and stops, it is very
847  For the example experiments in {\em verification}, an example of the  helpful to include the last few line of this \texttt{output.txt} file
848  output is kept in {\em results/output.txt} for comparison. You can compare  along with the (\texttt{stderr}) error message within any bug reports.
849  your {\em output.txt} with this one to check that the set-up works.  
850    For the example experiments in \texttt{verification}, an example of the
851    output is kept in \texttt{results/output.txt} for comparison. You can
852    compare your \texttt{output.txt} with the corresponding one for that
853    experiment to check that the set-up works.
854    
855    
856    
857  \subsection{Output files}  \subsection{Output files}
858    
859  The model produces various output files. At a minimum, the instantaneous  The model produces various output files and, when using \texttt{mnc},
860  ``state'' of the model is written out, which is made of the following files:  sometimes even directories.  Depending upon the I/O package(s)
861    selected at compile time (either \texttt{mdsio} or \texttt{mnc} or
862    both as determined by \texttt{code/packages.conf}) and the run-time
863    flags set (in \texttt{input/data.pkg}), the following output may
864    appear.
865    
866    
867    \subsubsection{MDSIO output files}
868    
869    The ``traditional'' output files are generated by the \texttt{mdsio}
870    package.  At a minimum, the instantaneous ``state'' of the model is
871    written out, which is made of the following files:
872    
873  \begin{itemize}  \begin{itemize}
874  \item \textit{U.00000nIter} - zonal component of velocity field (m/s and $>  \item \texttt{U.00000nIter} - zonal component of velocity field (m/s
875  0 $ eastward).    and positive eastward).
876    
877  \item \textit{V.00000nIter} - meridional component of velocity field (m/s  \item \texttt{V.00000nIter} - meridional component of velocity field
878  and $> 0$ northward).    (m/s and positive northward).
879    
880  \item \textit{W.00000nIter} - vertical component of velocity field (ocean:  \item \texttt{W.00000nIter} - vertical component of velocity field
881  m/s and $> 0$ upward, atmosphere: Pa/s and $> 0$ towards increasing pressure    (ocean: m/s and positive upward, atmosphere: Pa/s and positive
882  i.e. downward).    towards increasing pressure i.e. downward).
883    
884  \item \textit{T.00000nIter} - potential temperature (ocean: $^{0}$C,  \item \texttt{T.00000nIter} - potential temperature (ocean:
885  atmosphere: $^{0}$K).    $^{\circ}\mathrm{C}$, atmosphere: $^{\circ}\mathrm{K}$).
886    
887  \item \textit{S.00000nIter} - ocean: salinity (psu), atmosphere: water vapor  \item \texttt{S.00000nIter} - ocean: salinity (psu), atmosphere: water
888  (g/kg).    vapor (g/kg).
889    
890  \item \textit{Eta.00000nIter} - ocean: surface elevation (m), atmosphere:  \item \texttt{Eta.00000nIter} - ocean: surface elevation (m),
891  surface pressure anomaly (Pa).    atmosphere: surface pressure anomaly (Pa).
892  \end{itemize}  \end{itemize}
893    
894  The chain \textit{00000nIter} consists of ten figures that specify the  The chain \texttt{00000nIter} consists of ten figures that specify the
895  iteration number at which the output is written out. For example, \textit{%  iteration number at which the output is written out. For example,
896  U.0000000300} is the zonal velocity at iteration 300.  \texttt{U.0000000300} is the zonal velocity at iteration 300.
897    
898  In addition, a ``pickup'' or ``checkpoint'' file called:  In addition, a ``pickup'' or ``checkpoint'' file called:
899    
900  \begin{itemize}  \begin{itemize}
901  \item \textit{pickup.00000nIter}  \item \texttt{pickup.00000nIter}
902  \end{itemize}  \end{itemize}
903    
904  is written out. This file represents the state of the model in a condensed  is written out. This file represents the state of the model in a condensed
# Line 910  form and is used for restarting the inte Line 906  form and is used for restarting the inte
906  there is an additional ``pickup'' file:  there is an additional ``pickup'' file:
907    
908  \begin{itemize}  \begin{itemize}
909  \item \textit{pickup\_cd.00000nIter}  \item \texttt{pickup\_cd.00000nIter}
910  \end{itemize}  \end{itemize}
911    
912  containing the D-grid velocity data and that has to be written out as well  containing the D-grid velocity data and that has to be written out as well
913  in order to restart the integration. Rolling checkpoint files are the same  in order to restart the integration. Rolling checkpoint files are the same
914  as the pickup files but are named differently. Their name contain the chain  as the pickup files but are named differently. Their name contain the chain
915  \textit{ckptA} or \textit{ckptB} instead of \textit{00000nIter}. They can be  \texttt{ckptA} or \texttt{ckptB} instead of \texttt{00000nIter}. They can be
916  used to restart the model but are overwritten every other time they are  used to restart the model but are overwritten every other time they are
917  output to save disk space during long integrations.  output to save disk space during long integrations.
918    
919    
920    
921    \subsubsection{MNC output files}
922    
923    Unlike the \texttt{mdsio} output, the \texttt{mnc}--generated output
924    is usually (though not necessarily) placed within a subdirectory with
925    a name such as \texttt{mnc\_test\_\${DATE}\_\${SEQ}}.  The files
926    within this subdirectory are all in the ``self-describing'' netCDF
927    format and can thus be browsed and/or plotted using tools such as:
928    \begin{itemize}
929    \item \texttt{ncdump} is a utility which is typically included
930      with every netCDF install:
931      \begin{rawhtml} <A href="http://www.unidata.ucar.edu/packages/netcdf/"> \end{rawhtml}
932    \begin{verbatim}
933    http://www.unidata.ucar.edu/packages/netcdf/
934    \end{verbatim}
935      \begin{rawhtml} </A> \end{rawhtml} and it converts the netCDF
936      binaries into formatted ASCII text files.
937    
938    \item \texttt{ncview} utility is a very convenient and quick way
939      to plot netCDF data and it runs on most OSes:
940      \begin{rawhtml} <A href="http://meteora.ucsd.edu/~pierce/ncview_home_page.html"> \end{rawhtml}
941    \begin{verbatim}
942    http://meteora.ucsd.edu/~pierce/ncview_home_page.html
943    \end{verbatim}
944      \begin{rawhtml} </A> \end{rawhtml}
945      
946    \item MatLAB(c) and other common post-processing environments provide
947      various netCDF interfaces including:
948      \begin{rawhtml} <A href="http://mexcdf.sourceforge.net/"> \end{rawhtml}
949    \begin{verbatim}
950    http://mexcdf.sourceforge.net/
951    \end{verbatim}
952      \begin{rawhtml} </A> \end{rawhtml}
953      \begin{rawhtml} <A href="http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html"> \end{rawhtml}
954    \begin{verbatim}
955    http://woodshole.er.usgs.gov/staffpages/cdenham/public_html/MexCDF/nc4ml5.html
956    \end{verbatim}
957      \begin{rawhtml} </A> \end{rawhtml}
958    \end{itemize}
959    
960    
961  \subsection{Looking at the output}  \subsection{Looking at the output}
962    
963  All the model data are written according to a ``meta/data'' file format.  The ``traditional'' or mdsio model data are written according to a
964  Each variable is associated with two files with suffix names \textit{.data}  ``meta/data'' file format.  Each variable is associated with two files
965  and \textit{.meta}. The \textit{.data} file contains the data written in  with suffix names \texttt{.data} and \texttt{.meta}. The
966  binary form (big\_endian by default). The \textit{.meta} file is a  \texttt{.data} file contains the data written in binary form
967  ``header'' file that contains information about the size and the structure  (big\_endian by default). The \texttt{.meta} file is a ``header'' file
968  of the \textit{.data} file. This way of organizing the output is  that contains information about the size and the structure of the
969  particularly useful when running multi-processors calculations. The base  \texttt{.data} file. This way of organizing the output is particularly
970  version of the model includes a few matlab utilities to read output files  useful when running multi-processors calculations. The base version of
971  written in this format. The matlab scripts are located in the directory  the model includes a few matlab utilities to read output files written
972  \textit{utils/matlab} under the root tree. The script \textit{rdmds.m} reads  in this format. The matlab scripts are located in the directory
973  the data. Look at the comments inside the script to see how to use it.  \texttt{utils/matlab} under the root tree. The script \texttt{rdmds.m}
974    reads the data. Look at the comments inside the script to see how to
975    use it.
976    
977  Some examples of reading and visualizing some output in {\em Matlab}:  Some examples of reading and visualizing some output in {\em Matlab}:
978  \begin{verbatim}  \begin{verbatim}
# Line 949  Some examples of reading and visualizing Line 989  Some examples of reading and visualizing
989  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end
990  \end{verbatim}  \end{verbatim}
991    
992  \section{Doing it yourself: customizing the code}  Similar scripts for netCDF output (\texttt{rdmnc.m}) are available and
993    they are described in Section \ref{sec:pkg:mnc}.
 When you are ready to run the model in the configuration you want, the  
 easiest thing is to use and adapt the setup of the case studies  
 experiment (described previously) that is the closest to your  
 configuration. Then, the amount of setup will be minimized. In this  
 section, we focus on the setup relative to the ``numerical model''  
 part of the code (the setup relative to the ``execution environment''  
 part is covered in the parallel implementation section) and on the  
 variables and parameters that you are likely to change.  
   
 \subsection{Configuration and setup}  
   
 The CPP keys relative to the ``numerical model'' part of the code are  
 all defined and set in the file \textit{CPP\_OPTIONS.h }in the  
 directory \textit{ model/inc }or in one of the \textit{code  
 }directories of the case study experiments under  
 \textit{verification.} The model parameters are defined and declared  
 in the file \textit{model/inc/PARAMS.h }and their default values are  
 set in the routine \textit{model/src/set\_defaults.F. }The default  
 values can be modified in the namelist file \textit{data }which needs  
 to be located in the directory where you will run the model. The  
 parameters are initialized in the routine  
 \textit{model/src/ini\_parms.F}.  Look at this routine to see in what  
 part of the namelist the parameters are located.  
   
 In what follows the parameters are grouped into categories related to  
 the computational domain, the equations solved in the model, and the  
 simulation controls.  
   
 \subsection{Computational domain, geometry and time-discretization}  
   
 \begin{description}  
 \item[dimensions] \  
     
   The number of points in the x, y, and r directions are represented  
   by the variables \textbf{sNx}, \textbf{sNy} and \textbf{Nr}  
   respectively which are declared and set in the file  
   \textit{model/inc/SIZE.h}.  (Again, this assumes a mono-processor  
   calculation. For multiprocessor calculations see the section on  
   parallel implementation.)  
   
 \item[grid] \  
     
   Three different grids are available: cartesian, spherical polar, and  
   curvilinear (which includes the cubed sphere). The grid is set  
   through the logical variables \textbf{usingCartesianGrid},  
   \textbf{usingSphericalPolarGrid}, and \textbf{usingCurvilinearGrid}.  
   In the case of spherical and curvilinear grids, the southern  
   boundary is defined through the variable \textbf{phiMin} which  
   corresponds to the latitude of the southern most cell face (in  
   degrees). The resolution along the x and y directions is controlled  
   by the 1D arrays \textbf{delx} and \textbf{dely} (in meters in the  
   case of a cartesian grid, in degrees otherwise).  The vertical grid  
   spacing is set through the 1D array \textbf{delz} for the ocean (in  
   meters) or \textbf{delp} for the atmosphere (in Pa).  The variable  
   \textbf{Ro\_SeaLevel} represents the standard position of Sea-Level  
   in ``R'' coordinate. This is typically set to 0m for the ocean  
   (default value) and 10$^{5}$Pa for the atmosphere. For the  
   atmosphere, also set the logical variable \textbf{groundAtK1} to  
   \texttt{'.TRUE.'} which puts the first level (k=1) at the lower  
   boundary (ground).  
     
   For the cartesian grid case, the Coriolis parameter $f$ is set  
   through the variables \textbf{f0} and \textbf{beta} which correspond  
   to the reference Coriolis parameter (in s$^{-1}$) and  
   $\frac{\partial f}{ \partial y}$(in m$^{-1}$s$^{-1}$) respectively.  
   If \textbf{beta } is set to a nonzero value, \textbf{f0} is the  
   value of $f$ at the southern edge of the domain.  
   
 \item[topography - full and partial cells] \  
     
   The domain bathymetry is read from a file that contains a 2D (x,y)  
   map of depths (in m) for the ocean or pressures (in Pa) for the  
   atmosphere. The file name is represented by the variable  
   \textbf{bathyFile}. The file is assumed to contain binary numbers  
   giving the depth (pressure) of the model at each grid cell, ordered  
   with the x coordinate varying fastest. The points are ordered from  
   low coordinate to high coordinate for both axes. The model code  
   applies without modification to enclosed, periodic, and double  
   periodic domains. Periodicity is assumed by default and is  
   suppressed by setting the depths to 0m for the cells at the limits  
   of the computational domain (note: not sure this is the case for the  
   atmosphere). The precision with which to read the binary data is  
   controlled by the integer variable \textbf{readBinaryPrec} which can  
   take the value \texttt{32} (single precision) or \texttt{64} (double  
   precision). See the matlab program \textit{gendata.m} in the  
   \textit{input} directories under \textit{verification} to see how  
   the bathymetry files are generated for the case study experiments.  
     
   To use the partial cell capability, the variable \textbf{hFacMin}  
   needs to be set to a value between 0 and 1 (it is set to 1 by  
   default) corresponding to the minimum fractional size of the cell.  
   For example if the bottom cell is 500m thick and \textbf{hFacMin} is  
   set to 0.1, the actual thickness of the cell (i.e. used in the code)  
   can cover a range of discrete values 50m apart from 50m to 500m  
   depending on the value of the bottom depth (in \textbf{bathyFile})  
   at this point.  
     
   Note that the bottom depths (or pressures) need not coincide with  
   the models levels as deduced from \textbf{delz} or \textbf{delp}.  
   The model will interpolate the numbers in \textbf{bathyFile} so that  
   they match the levels obtained from \textbf{delz} or \textbf{delp}  
   and \textbf{hFacMin}.  
     
   (Note: the atmospheric case is a bit more complicated than what is  
   written here I think. To come soon...)  
   
 \item[time-discretization] \  
     
   The time steps are set through the real variables \textbf{deltaTMom}  
   and \textbf{deltaTtracer} (in s) which represent the time step for  
   the momentum and tracer equations, respectively. For synchronous  
   integrations, simply set the two variables to the same value (or you  
   can prescribe one time step only through the variable  
   \textbf{deltaT}). The Adams-Bashforth stabilizing parameter is set  
   through the variable \textbf{abEps} (dimensionless). The stagger  
   baroclinic time stepping can be activated by setting the logical  
   variable \textbf{staggerTimeStep} to \texttt{'.TRUE.'}.  
   
 \end{description}  
   
   
 \subsection{Equation of state}  
   
 First, because the model equations are written in terms of  
 perturbations, a reference thermodynamic state needs to be specified.  
 This is done through the 1D arrays \textbf{tRef} and \textbf{sRef}.  
 \textbf{tRef} specifies the reference potential temperature profile  
 (in $^{o}$C for the ocean and $^{o}$K for the atmosphere) starting  
 from the level k=1. Similarly, \textbf{sRef} specifies the reference  
 salinity profile (in ppt) for the ocean or the reference specific  
 humidity profile (in g/kg) for the atmosphere.  
   
 The form of the equation of state is controlled by the character  
 variables \textbf{buoyancyRelation} and \textbf{eosType}.  
 \textbf{buoyancyRelation} is set to \texttt{'OCEANIC'} by default and  
 needs to be set to \texttt{'ATMOSPHERIC'} for atmosphere simulations.  
 In this case, \textbf{eosType} must be set to \texttt{'IDEALGAS'}.  
 For the ocean, two forms of the equation of state are available:  
 linear (set \textbf{eosType} to \texttt{'LINEAR'}) and a polynomial  
 approximation to the full nonlinear equation ( set \textbf{eosType} to  
 \texttt{'POLYNOMIAL'}). In the linear case, you need to specify the  
 thermal and haline expansion coefficients represented by the variables  
 \textbf{tAlpha} (in K$^{-1}$) and \textbf{sBeta} (in ppt$^{-1}$). For  
 the nonlinear case, you need to generate a file of polynomial  
 coefficients called \textit{POLY3.COEFFS}. To do this, use the program  
 \textit{utils/knudsen2/knudsen2.f} under the model tree (a Makefile is  
 available in the same directory and you will need to edit the number  
 and the values of the vertical levels in \textit{knudsen2.f} so that  
 they match those of your configuration).  
   
 There there are also higher polynomials for the equation of state:  
 \begin{description}  
 \item[\texttt{'UNESCO'}:] The UNESCO equation of state formula of  
   Fofonoff and Millard \cite{fofonoff83}. This equation of state  
   assumes in-situ temperature, which is not a model variable; {\em its  
     use is therefore discouraged, and it is only listed for  
     completeness}.  
 \item[\texttt{'JMD95Z'}:] A modified UNESCO formula by Jackett and  
   McDougall \cite{jackett95}, which uses the model variable potential  
   temperature as input. The \texttt{'Z'} indicates that this equation  
   of state uses a horizontally and temporally constant pressure  
   $p_{0}=-g\rho_{0}z$.  
 \item[\texttt{'JMD95P'}:] A modified UNESCO formula by Jackett and  
   McDougall \cite{jackett95}, which uses the model variable potential  
   temperature as input. The \texttt{'P'} indicates that this equation  
   of state uses the actual hydrostatic pressure of the last time  
   step. Lagging the pressure in this way requires an additional pickup  
   file for restarts.  
 \item[\texttt{'MDJWF'}:] The new, more accurate and less expensive  
   equation of state by McDougall et~al. \cite{mcdougall03}. It also  
   requires lagging the pressure and therefore an additional pickup  
   file for restarts.  
 \end{description}  
 For none of these options an reference profile of temperature or  
 salinity is required.  
   
 \subsection{Momentum equations}  
   
 In this section, we only focus for now on the parameters that you are  
 likely to change, i.e. the ones relative to forcing and dissipation  
 for example.  The details relevant to the vector-invariant form of the  
 equations and the various advection schemes are not covered for the  
 moment. We assume that you use the standard form of the momentum  
 equations (i.e. the flux-form) with the default advection scheme.  
 Also, there are a few logical variables that allow you to turn on/off  
 various terms in the momentum equation. These variables are called  
 \textbf{momViscosity, momAdvection, momForcing, useCoriolis,  
   momPressureForcing, momStepping} and \textbf{metricTerms }and are  
 assumed to be set to \texttt{'.TRUE.'} here.  Look at the file  
 \textit{model/inc/PARAMS.h }for a precise definition of these  
 variables.  
   
 \begin{description}  
 \item[initialization] \  
     
   The velocity components are initialized to 0 unless the simulation  
   is starting from a pickup file (see section on simulation control  
   parameters).  
   
 \item[forcing] \  
     
   This section only applies to the ocean. You need to generate  
   wind-stress data into two files \textbf{zonalWindFile} and  
   \textbf{meridWindFile} corresponding to the zonal and meridional  
   components of the wind stress, respectively (if you want the stress  
   to be along the direction of only one of the model horizontal axes,  
   you only need to generate one file). The format of the files is  
   similar to the bathymetry file. The zonal (meridional) stress data  
   are assumed to be in Pa and located at U-points (V-points). As for  
   the bathymetry, the precision with which to read the binary data is  
   controlled by the variable \textbf{readBinaryPrec}.  See the matlab  
   program \textit{gendata.m} in the \textit{input} directories under  
   \textit{verification} to see how simple analytical wind forcing data  
   are generated for the case study experiments.  
     
   There is also the possibility of prescribing time-dependent periodic  
   forcing. To do this, concatenate the successive time records into a  
   single file (for each stress component) ordered in a (x,y,t) fashion  
   and set the following variables: \textbf{periodicExternalForcing }to  
   \texttt{'.TRUE.'}, \textbf{externForcingPeriod }to the period (in s)  
   of which the forcing varies (typically 1 month), and  
   \textbf{externForcingCycle} to the repeat time (in s) of the forcing  
   (typically 1 year -- note: \textbf{ externForcingCycle} must be a  
   multiple of \textbf{externForcingPeriod}).  With these variables set  
   up, the model will interpolate the forcing linearly at each  
   iteration.  
   
 \item[dissipation] \  
     
   The lateral eddy viscosity coefficient is specified through the  
   variable \textbf{viscAh} (in m$^{2}$s$^{-1}$). The vertical eddy  
   viscosity coefficient is specified through the variable  
   \textbf{viscAz} (in m$^{2}$s$^{-1}$) for the ocean and  
   \textbf{viscAp} (in Pa$^{2}$s$^{-1}$) for the atmosphere.  The  
   vertical diffusive fluxes can be computed implicitly by setting the  
   logical variable \textbf{implicitViscosity }to \texttt{'.TRUE.'}.  
   In addition, biharmonic mixing can be added as well through the  
   variable \textbf{viscA4} (in m$^{4}$s$^{-1}$). On a spherical polar  
   grid, you might also need to set the variable \textbf{cosPower}  
   which is set to 0 by default and which represents the power of  
   cosine of latitude to multiply viscosity. Slip or no-slip conditions  
   at lateral and bottom boundaries are specified through the logical  
   variables \textbf{no\_slip\_sides} and \textbf{no\_slip\_bottom}. If  
   set to \texttt{'.FALSE.'}, free-slip boundary conditions are  
   applied. If no-slip boundary conditions are applied at the bottom, a  
   bottom drag can be applied as well. Two forms are available: linear  
   (set the variable \textbf{bottomDragLinear} in s$ ^{-1}$) and  
   quadratic (set the variable \textbf{bottomDragQuadratic} in  
   m$^{-1}$).  
   
   The Fourier and Shapiro filters are described elsewhere.  
   
 \item[C-D scheme] \  
     
   If you run at a sufficiently coarse resolution, you will need the  
   C-D scheme for the computation of the Coriolis terms. The  
   variable\textbf{\ tauCD}, which represents the C-D scheme coupling  
   timescale (in s) needs to be set.  
     
 \item[calculation of pressure/geopotential] \  
     
   First, to run a non-hydrostatic ocean simulation, set the logical  
   variable \textbf{nonHydrostatic} to \texttt{'.TRUE.'}. The pressure  
   field is then inverted through a 3D elliptic equation. (Note: this  
   capability is not available for the atmosphere yet.) By default, a  
   hydrostatic simulation is assumed and a 2D elliptic equation is used  
   to invert the pressure field. The parameters controlling the  
   behaviour of the elliptic solvers are the variables  
   \textbf{cg2dMaxIters} and \textbf{cg2dTargetResidual } for  
   the 2D case and \textbf{cg3dMaxIters} and  
   \textbf{cg3dTargetResidual} for the 3D case. You probably won't need to  
   alter the default values (are we sure of this?).  
     
   For the calculation of the surface pressure (for the ocean) or  
   surface geopotential (for the atmosphere) you need to set the  
   logical variables \textbf{rigidLid} and \textbf{implicitFreeSurface}  
   (set one to \texttt{'.TRUE.'} and the other to \texttt{'.FALSE.'}  
   depending on how you want to deal with the ocean upper or atmosphere  
   lower boundary).  
   
 \end{description}  
   
 \subsection{Tracer equations}  
   
 This section covers the tracer equations i.e. the potential  
 temperature equation and the salinity (for the ocean) or specific  
 humidity (for the atmosphere) equation. As for the momentum equations,  
 we only describe for now the parameters that you are likely to change.  
 The logical variables \textbf{tempDiffusion} \textbf{tempAdvection}  
 \textbf{tempForcing}, and \textbf{tempStepping} allow you to turn  
 on/off terms in the temperature equation (same thing for salinity or  
 specific humidity with variables \textbf{saltDiffusion},  
 \textbf{saltAdvection} etc.). These variables are all assumed here to  
 be set to \texttt{'.TRUE.'}. Look at file \textit{model/inc/PARAMS.h}  
 for a precise definition.  
   
 \begin{description}  
 \item[initialization] \  
     
   The initial tracer data can be contained in the binary files  
   \textbf{hydrogThetaFile} and \textbf{hydrogSaltFile}. These files  
   should contain 3D data ordered in an (x,y,r) fashion with k=1 as the  
   first vertical level.  If no file names are provided, the tracers  
   are then initialized with the values of \textbf{tRef} and  
   \textbf{sRef} mentioned above (in the equation of state section). In  
   this case, the initial tracer data are uniform in x and y for each  
   depth level.  
   
 \item[forcing] \  
     
   This part is more relevant for the ocean, the procedure for the  
   atmosphere not being completely stabilized at the moment.  
     
   A combination of fluxes data and relaxation terms can be used for  
   driving the tracer equations.  For potential temperature, heat flux  
   data (in W/m$ ^{2}$) can be stored in the 2D binary file  
   \textbf{surfQfile}.  Alternatively or in addition, the forcing can  
   be specified through a relaxation term. The SST data to which the  
   model surface temperatures are restored to are supposed to be stored  
   in the 2D binary file \textbf{thetaClimFile}. The corresponding  
   relaxation time scale coefficient is set through the variable  
   \textbf{tauThetaClimRelax} (in s). The same procedure applies for  
   salinity with the variable names \textbf{EmPmRfile},  
   \textbf{saltClimFile}, and \textbf{tauSaltClimRelax} for freshwater  
   flux (in m/s) and surface salinity (in ppt) data files and  
   relaxation time scale coefficient (in s), respectively. Also for  
   salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on,  
   natural boundary conditions are applied i.e. when computing the  
   surface salinity tendency, the freshwater flux is multiplied by the  
   model surface salinity instead of a constant salinity value.  
     
   As for the other input files, the precision with which to read the  
   data is controlled by the variable \textbf{readBinaryPrec}.  
   Time-dependent, periodic forcing can be applied as well following  
   the same procedure used for the wind forcing data (see above).  
   
 \item[dissipation] \  
     
   Lateral eddy diffusivities for temperature and salinity/specific  
   humidity are specified through the variables \textbf{diffKhT} and  
   \textbf{diffKhS} (in m$^{2}$/s). Vertical eddy diffusivities are  
   specified through the variables \textbf{diffKzT} and  
   \textbf{diffKzS} (in m$^{2}$/s) for the ocean and \textbf{diffKpT  
   }and \textbf{diffKpS} (in Pa$^{2}$/s) for the atmosphere. The  
   vertical diffusive fluxes can be computed implicitly by setting the  
   logical variable \textbf{implicitDiffusion} to \texttt{'.TRUE.'}.  
   In addition, biharmonic diffusivities can be specified as well  
   through the coefficients \textbf{diffK4T} and \textbf{diffK4S} (in  
   m$^{4}$/s). Note that the cosine power scaling (specified through  
   \textbf{cosPower}---see the momentum equations section) is applied to  
   the tracer diffusivities (Laplacian and biharmonic) as well. The  
   Gent and McWilliams parameterization for oceanic tracers is  
   described in the package section. Finally, note that tracers can be  
   also subject to Fourier and Shapiro filtering (see the corresponding  
   section on these filters).  
   
 \item[ocean convection] \  
     
   Two options are available to parameterize ocean convection: one is  
   to use the convective adjustment scheme. In this case, you need to  
   set the variable \textbf{cadjFreq}, which represents the frequency  
   (in s) with which the adjustment algorithm is called, to a non-zero  
   value (if set to a negative value by the user, the model will set it  
   to the tracer time step). The other option is to parameterize  
   convection with implicit vertical diffusion. To do this, set the  
   logical variable \textbf{implicitDiffusion} to \texttt{'.TRUE.'}  
   and the real variable \textbf{ivdc\_kappa} to a value (in m$^{2}$/s)  
   you wish the tracer vertical diffusivities to have when mixing  
   tracers vertically due to static instabilities. Note that  
   \textbf{cadjFreq} and \textbf{ivdc\_kappa}can not both have non-zero  
   value.  
   
 \end{description}  
   
 \subsection{Simulation controls}  
   
 The model ''clock'' is defined by the variable \textbf{deltaTClock}  
 (in s) which determines the IO frequencies and is used in tagging  
 output.  Typically, you will set it to the tracer time step for  
 accelerated runs (otherwise it is simply set to the default time step  
 \textbf{deltaT}).  Frequency of checkpointing and dumping of the model  
 state are referenced to this clock (see below).  
   
 \begin{description}  
 \item[run duration] \  
     
   The beginning of a simulation is set by specifying a start time (in  
   s) through the real variable \textbf{startTime} or by specifying an  
   initial iteration number through the integer variable  
   \textbf{nIter0}. If these variables are set to nonzero values, the  
   model will look for a ''pickup'' file \textit{pickup.0000nIter0} to  
   restart the integration. The end of a simulation is set through the  
   real variable \textbf{endTime} (in s).  Alternatively, you can  
   specify instead the number of time steps to execute through the  
   integer variable \textbf{nTimeSteps}.  
   
 \item[frequency of output] \  
     
   Real variables defining frequencies (in s) with which output files  
   are written on disk need to be set up. \textbf{dumpFreq} controls  
   the frequency with which the instantaneous state of the model is  
   saved. \textbf{chkPtFreq} and \textbf{pchkPtFreq} control the output  
   frequency of rolling and permanent checkpoint files, respectively.  
   See section 1.5.1 Output files for the definition of model state and  
   checkpoint files. In addition, time-averaged fields can be written  
   out by setting the variable \textbf{taveFreq} (in s).  The precision  
   with which to write the binary data is controlled by the integer  
   variable w\textbf{riteBinaryPrec} (set it to \texttt{32} or  
   \texttt{64}).  
   
 \end{description}  
   
994    
 %%% Local Variables:  
 %%% mode: latex  
 %%% TeX-master: t  
 %%% End:  

Legend:
Removed from v.1.21  
changed lines
  Added in v.1.36

  ViewVC Help
Powered by ViewVC 1.1.22