/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Diff of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.10 by adcroft, Tue Nov 13 20:13:54 2001 UTC revision 1.27 by cnh, Thu Oct 14 14:24:28 2004 UTC
# Line 18  you are ready to try implementing the co Line 18  you are ready to try implementing the co
18  \section{Where to find information}  \section{Where to find information}
19  \label{sect:whereToFindInfo}  \label{sect:whereToFindInfo}
20    
21  A web site is maintained for release 1 (Sealion) of MITgcm:  A web site is maintained for release 2 (``Pelican'') of MITgcm:
22    \begin{rawhtml} <A href=http://mitgcm.org/pelican/ target="idontexist"> \end{rawhtml}
23  \begin{verbatim}  \begin{verbatim}
24  http://mitgcm.org/sealion  http://mitgcm.org/pelican
25  \end{verbatim}  \end{verbatim}
26    \begin{rawhtml} </A> \end{rawhtml}
27  Here you will find an on-line version of this document, a  Here you will find an on-line version of this document, a
28  ``browsable'' copy of the code and a searchable database of the model  ``browsable'' copy of the code and a searchable database of the model
29  and site, as well as links for downloading the model and  and site, as well as links for downloading the model and
30  documentation, to data-sources and other related sites.  documentation, to data-sources, and other related sites.
31    
32  There is also a support news group for the model that you can email at  There is also a web-archived support mailing list for the model that
33  \texttt{support@mitgcm.org} or browse at:  you can email at \texttt{MITgcm-support@mitgcm.org} or browse at:
34    \begin{rawhtml} <A href=http://mitgcm.org/mailman/listinfo/mitgcm-support/ target="idontexist"> \end{rawhtml}
35  \begin{verbatim}  \begin{verbatim}
36  news://mitgcm.org/mitgcm.support  http://mitgcm.org/mailman/listinfo/mitgcm-support/
37    http://mitgcm.org/pipermail/mitgcm-support/
38  \end{verbatim}  \end{verbatim}
39  A mail to the email list will reach all the developers and be archived  \begin{rawhtml} </A> \end{rawhtml}
40  on the newsgroup. A users email list will be established at some time  Essentially all of the MITgcm web pages can be searched using a
41  in the future.  popular web crawler such as Google or through our own search facility:
42    \begin{rawhtml} <A href=http://mitgcm.org/mailman/htdig/ target="idontexist"> \end{rawhtml}
43    \begin{verbatim}
44    http://mitgcm.org/htdig/
45    \end{verbatim}
46    \begin{rawhtml} </A> \end{rawhtml}
47    %%% http://www.google.com/search?q=hydrostatic+site%3Amitgcm.org
48    
49    
50    
51  \section{Obtaining the code}  \section{Obtaining the code}
52  \label{sect:obtainingCode}  \label{sect:obtainingCode}
53    
54  MITgcm can be downloaded from our system by following  MITgcm can be downloaded from our system by following
55  the instructions below. As a courtesy we ask that you send e-mail to us at  the instructions below. As a courtesy we ask that you send e-mail to us at
56  \begin{rawhtml} <A href=mailto:support@mitgcm.org> \end{rawhtml}  \begin{rawhtml} <A href=mailto:MITgcm-support@mitgcm.org> \end{rawhtml}
57  support@mitgcm.org  MITgcm-support@mitgcm.org
58  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
59  to enable us to keep track of who's using the model and in what application.  to enable us to keep track of who's using the model and in what application.
60  You can download the model two ways:  You can download the model two ways:
# Line 67  provide easy support for maintenance upd Line 79  provide easy support for maintenance upd
79    
80  \end{enumerate}  \end{enumerate}
81    
82    \subsection{Method 1 - Checkout from CVS}
83    \label{sect:cvs_checkout}
84    
85  If CVS is available on your system, we strongly encourage you to use it. CVS  If CVS is available on your system, we strongly encourage you to use it. CVS
86  provides an efficient and elegant way of organizing your code and keeping  provides an efficient and elegant way of organizing your code and keeping
87  track of your changes. If CVS is not available on your machine, you can also  track of your changes. If CVS is not available on your machine, you can also
88  download a tar file.  download a tar file.
89    
90  Before you can use CVS, the following environment variable has to be set in  Before you can use CVS, the following environment variable(s) should
91  your .cshrc or .tcshrc:  be set within your shell.  For a csh or tcsh shell, put the following
92  \begin{verbatim}  \begin{verbatim}
93  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/u0/gcmpack  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack
94  \end{verbatim}  \end{verbatim}
95    in your .cshrc or .tcshrc file.  For bash or sh shells, put:
96    \begin{verbatim}
97    % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
98    \end{verbatim}
99    in your \texttt{.profile} or \texttt{.bashrc} file.
100    
101    
102  To start using CVS, register with the MITgcm CVS server using command:  To get MITgcm through CVS, first register with the MITgcm CVS server
103    using command:
104  \begin{verbatim}  \begin{verbatim}
105  % cvs login ( CVS password: cvsanon )  % cvs login ( CVS password: cvsanon )
106  \end{verbatim}  \end{verbatim}
107  You only need to do ``cvs login'' once.  You only need to do a ``cvs login'' once.
108    
109  To obtain the sources for release1 type:  To obtain the latest sources type:
110    \begin{verbatim}
111    % cvs co MITgcm
112    \end{verbatim}
113    or to get a specific release type:
114  \begin{verbatim}  \begin{verbatim}
115  % cvs co -d directory -P -r release1 MITgcmUV  % cvs co -P -r checkpoint52i_post  MITgcm
116  \end{verbatim}  \end{verbatim}
117    The MITgcm web site contains further directions concerning the source
118    code and CVS.  It also contains a web interface to our CVS archive so
119    that one may easily view the state of files, revisions, and other
120    development milestones:
121    \begin{rawhtml} <A href=''http://mitgcm.org/download'' target="idontexist"> \end{rawhtml}
122    \begin{verbatim}
123    http://mitgcm.org/source_code.html
124    \end{verbatim}
125    \begin{rawhtml} </A> \end{rawhtml}
126    
127  This creates a directory called \textit{directory}. If \textit{directory}  As a convenience, the MITgcm CVS server contains aliases which are
128  exists this command updates your code based on the repository. Each  named subsets of the codebase.  These aliases can be especially
129  directory in the source tree contains a directory \textit{CVS}. This  helpful when used over slow internet connections or on machines with
130  information is required by CVS to keep track of your file versions with  restricted storage space.  Table \ref{tab:cvsModules} contains a list
131  respect to the repository. Don't edit the files in \textit{CVS}!  of CVS aliases
132  You can also use CVS to download code updates.  More extensive  \begin{table}[htb]
133  information on using CVS for maintaining MITgcm code can be found    \centering
134  \begin{rawhtml} <A href=http://mitgcm.org/usingcvstoget.html target="idontexist"> \end{rawhtml}    \begin{tabular}[htb]{|lp{3.25in}|}\hline
135        \textbf{Alias Name}    &  \textbf{Information (directories) Contained}  \\\hline
136        \texttt{MITgcm\_code}  &  Only the source code -- none of the verification examples.  \\
137        \texttt{MITgcm\_verif\_basic}
138        &  Source code plus a small set of the verification examples
139        (\texttt{global\_ocean.90x40x15}, \texttt{aim.5l\_cs}, \texttt{hs94.128x64x5},
140        \texttt{front\_relax}, and \texttt{plume\_on\_slope}).  \\
141        \texttt{MITgcm\_verif\_atmos}  &  Source code plus all of the atmospheric examples.  \\
142        \texttt{MITgcm\_verif\_ocean}  &  Source code plus all of the oceanic examples.  \\
143        \texttt{MITgcm\_verif\_all}    &  Source code plus all of the
144        verification examples. \\\hline
145      \end{tabular}
146      \caption{MITgcm CVS Modules}
147      \label{tab:cvsModules}
148    \end{table}
149    
150    The checkout process creates a directory called \textit{MITgcm}. If
151    the directory \textit{MITgcm} exists this command updates your code
152    based on the repository. Each directory in the source tree contains a
153    directory \textit{CVS}. This information is required by CVS to keep
154    track of your file versions with respect to the repository. Don't edit
155    the files in \textit{CVS}!  You can also use CVS to download code
156    updates.  More extensive information on using CVS for maintaining
157    MITgcm code can be found
158    \begin{rawhtml} <A href=''http://mitgcm.org/usingcvstoget.html'' target="idontexist"> \end{rawhtml}
159  here  here
160  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
161  .  .
162    It is important to note that the CVS aliases in Table
163    \ref{tab:cvsModules} cannot be used in conjunction with the CVS
164    \texttt{-d DIRNAME} option.  However, the \texttt{MITgcm} directories
165    they create can be changed to a different name following the check-out:
166    \begin{verbatim}
167       %  cvs co MITgcm_verif_basic
168       %  mv MITgcm MITgcm_verif_basic
169    \end{verbatim}
170    
171    
172  \paragraph*{Conventional download method}  \subsection{Method 2 - Tar file download}
173  \label{sect:conventionalDownload}  \label{sect:conventionalDownload}
174    
175  If you do not have CVS on your system, you can download the model as a  If you do not have CVS on your system, you can download the model as a
176  tar file from the reference web site at:  tar file from the web site at:
177  \begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml}  \begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml}
178  \begin{verbatim}  \begin{verbatim}
179  http://mitgcm.org/download/  http://mitgcm.org/download/
# Line 114  http://mitgcm.org/download/ Line 181  http://mitgcm.org/download/
181  \begin{rawhtml} </A> \end{rawhtml}  \begin{rawhtml} </A> \end{rawhtml}
182  The tar file still contains CVS information which we urge you not to  The tar file still contains CVS information which we urge you not to
183  delete; even if you do not use CVS yourself the information can help  delete; even if you do not use CVS yourself the information can help
184  us if you should need to send us your copy of the code.  us if you should need to send us your copy of the code.  If a recent
185    tar file does not exist, then please contact the developers through
186    the
187    \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
188    MITgcm-support@mitgcm.org
189    \begin{rawhtml} </A> \end{rawhtml}
190    mailing list.
191    
192    \subsubsection{Upgrading from an earlier version}
193    
194    If you already have an earlier version of the code you can ``upgrade''
195    your copy instead of downloading the entire repository again. First,
196    ``cd'' (change directory) to the top of your working copy:
197    \begin{verbatim}
198    % cd MITgcm
199    \end{verbatim}
200    and then issue the cvs update command such as:
201    \begin{verbatim}
202    % cvs -q update -r checkpoint52i_post -d -P
203    \end{verbatim}
204    This will update the ``tag'' to ``checkpoint52i\_post'', add any new
205    directories (-d) and remove any empty directories (-P). The -q option
206    means be quiet which will reduce the number of messages you'll see in
207    the terminal. If you have modified the code prior to upgrading, CVS
208    will try to merge your changes with the upgrades. If there is a
209    conflict between your modifications and the upgrade, it will report
210    that file with a ``C'' in front, e.g.:
211    \begin{verbatim}
212    C model/src/ini_parms.F
213    \end{verbatim}
214    If the list of conflicts scrolled off the screen, you can re-issue the
215    cvs update command and it will report the conflicts. Conflicts are
216    indicated in the code by the delimites ``$<<<<<<<$'', ``======='' and
217    ``$>>>>>>>$''. For example,
218    {\small
219    \begin{verbatim}
220    <<<<<<< ini_parms.F
221         & bottomDragLinear,myOwnBottomDragCoefficient,
222    =======
223         & bottomDragLinear,bottomDragQuadratic,
224    >>>>>>> 1.18
225    \end{verbatim}
226    }
227    means that you added ``myOwnBottomDragCoefficient'' to a namelist at
228    the same time and place that we added ``bottomDragQuadratic''. You
229    need to resolve this conflict and in this case the line should be
230    changed to:
231    {\small
232    \begin{verbatim}
233         & bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient,
234    \end{verbatim}
235    }
236    and the lines with the delimiters ($<<<<<<$,======,$>>>>>>$) be deleted.
237    Unless you are making modifications which exactly parallel
238    developments we make, these types of conflicts should be rare.
239    
240    \paragraph*{Upgrading to the current pre-release version}
241    
242    We don't make a ``release'' for every little patch and bug fix in
243    order to keep the frequency of upgrades to a minimum. However, if you
244    have run into a problem for which ``we have already fixed in the
245    latest code'' and we haven't made a ``tag'' or ``release'' since that
246    patch then you'll need to get the latest code:
247    \begin{verbatim}
248    % cvs -q update -A -d -P
249    \end{verbatim}
250    Unlike, the ``check-out'' and ``update'' procedures above, there is no
251    ``tag'' or release name. The -A tells CVS to upgrade to the
252    very latest version. As a rule, we don't recommend this since you
253    might upgrade while we are in the processes of checking in the code so
254    that you may only have part of a patch. Using this method of updating
255    also means we can't tell what version of the code you are working
256    with. So please be sure you understand what you're doing.
257    
258  \section{Model and directory structure}  \section{Model and directory structure}
259    
260  The ``numerical'' model is contained within a execution environment support  The ``numerical'' model is contained within a execution environment
261  wrapper. This wrapper is designed to provide a general framework for  support wrapper. This wrapper is designed to provide a general
262  grid-point models. MITgcmUV is a specific numerical model that uses the  framework for grid-point models. MITgcmUV is a specific numerical
263  framework. Under this structure the model is split into execution  model that uses the framework. Under this structure the model is split
264  environment support code and conventional numerical model code. The  into execution environment support code and conventional numerical
265  execution environment support code is held under the \textit{eesupp}  model code. The execution environment support code is held under the
266  directory. The grid point model code is held under the \textit{model}  \textit{eesupp} directory. The grid point model code is held under the
267  directory. Code execution actually starts in the \textit{eesupp} routines  \textit{model} directory. Code execution actually starts in the
268  and not in the \textit{model} routines. For this reason the top-level  \textit{eesupp} routines and not in the \textit{model} routines. For
269  \textit{MAIN.F} is in the \textit{eesupp/src} directory. In general,  this reason the top-level \textit{MAIN.F} is in the
270  end-users should not need to worry about this level. The top-level routine  \textit{eesupp/src} directory. In general, end-users should not need
271  for the numerical part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F%  to worry about this level. The top-level routine for the numerical
272  }. Here is a brief description of the directory structure of the model under  part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F}. Here is
273  the root tree (a detailed description is given in section 3: Code structure).  a brief description of the directory structure of the model under the
274    root tree (a detailed description is given in section 3: Code
275    structure).
276    
277  \begin{itemize}  \begin{itemize}
 \item \textit{bin}: this directory is initially empty. It is the default  
 directory in which to compile the code.  
278    
279    \item \textit{bin}: this directory is initially empty. It is the
280      default directory in which to compile the code.
281      
282  \item \textit{diags}: contains the code relative to time-averaged  \item \textit{diags}: contains the code relative to time-averaged
283  diagnostics. It is subdivided into two subdirectories \textit{inc} and    diagnostics. It is subdivided into two subdirectories \textit{inc}
284  \textit{src} that contain include files (*.\textit{h} files) and Fortran    and \textit{src} that contain include files (*.\textit{h} files) and
285  subroutines (*.\textit{F} files), respectively.    Fortran subroutines (*.\textit{F} files), respectively.
286    
287  \item \textit{doc}: contains brief documentation notes.  \item \textit{doc}: contains brief documentation notes.
288      
289  \item \textit{eesupp}: contains the execution environment source code. Also  \item \textit{eesupp}: contains the execution environment source code.
290  subdivided into two subdirectories \textit{inc} and \textit{src}.    Also subdivided into two subdirectories \textit{inc} and
291      \textit{src}.
292  \item \textit{exe}: this directory is initially empty. It is the default    
293  directory in which to execute the code.  \item \textit{exe}: this directory is initially empty. It is the
294      default directory in which to execute the code.
295  \item \textit{model}: this directory contains the main source code. Also    
296  subdivided into two subdirectories \textit{inc} and \textit{src}.  \item \textit{model}: this directory contains the main source code.
297      Also subdivided into two subdirectories \textit{inc} and
298  \item \textit{pkg}: contains the source code for the packages. Each package    \textit{src}.
299  corresponds to a subdirectory. For example, \textit{gmredi} contains the    
300  code related to the Gent-McWilliams/Redi scheme, \textit{aim} the code  \item \textit{pkg}: contains the source code for the packages. Each
301  relative to the atmospheric intermediate physics. The packages are described    package corresponds to a subdirectory. For example, \textit{gmredi}
302  in detail in section 3.    contains the code related to the Gent-McWilliams/Redi scheme,
303      \textit{aim} the code relative to the atmospheric intermediate
304  \item \textit{tools}: this directory contains various useful tools. For    physics. The packages are described in detail in section 3.
305  example, \textit{genmake} is a script written in csh (C-shell) that should    
306  be used to generate your makefile. The directory \textit{adjoint} contains  \item \textit{tools}: this directory contains various useful tools.
307  the makefile specific to the Tangent linear and Adjoint Compiler (TAMC) that    For example, \textit{genmake2} is a script written in csh (C-shell)
308  generates the adjoint code. The latter is described in details in part V.    that should be used to generate your makefile. The directory
309      \textit{adjoint} contains the makefile specific to the Tangent
310      linear and Adjoint Compiler (TAMC) that generates the adjoint code.
311      The latter is described in details in part V.
312      
313  \item \textit{utils}: this directory contains various utilities. The  \item \textit{utils}: this directory contains various utilities. The
314  subdirectory \textit{knudsen2} contains code and a makefile that    subdirectory \textit{knudsen2} contains code and a makefile that
315  compute coefficients of the polynomial approximation to the knudsen    compute coefficients of the polynomial approximation to the knudsen
316  formula for an ocean nonlinear equation of state. The \textit{matlab}    formula for an ocean nonlinear equation of state. The
317  subdirectory contains matlab scripts for reading model output directly    \textit{matlab} subdirectory contains matlab scripts for reading
318  into matlab. \textit{scripts} contains C-shell post-processing    model output directly into matlab. \textit{scripts} contains C-shell
319  scripts for joining processor-based and tiled-based model output.    post-processing scripts for joining processor-based and tiled-based
320      model output.
321      
322    \item \textit{verification}: this directory contains the model
323      examples. See section \ref{sect:modelExamples}.
324    
 \item \textit{verification}: this directory contains the model examples. See  
 section \ref{sect:modelExamples}.  
325  \end{itemize}  \end{itemize}
326    
327  \section{Example experiments}  \section[MITgcm Example Experiments]{Example experiments}
328  \label{sect:modelExamples}  \label{sect:modelExamples}
329    
330  The MITgcm distribution comes with a set of twenty-four pre-configured  %% a set of twenty-four pre-configured numerical experiments
331  numerical experiments. Some of these examples experiments are tests of  
332  individual parts of the model code, but many are fully fledged numerical  The MITgcm distribution comes with more than a dozen pre-configured
333  simulations. A few of the examples are used for tutorial documentation  numerical experiments. Some of these example experiments are tests of
334  in sections \ref{sect:eg-baro} - \ref{sect:eg-global}. The other examples  individual parts of the model code, but many are fully fledged
335  follow the same general structure as the tutorial examples. However,  numerical simulations. A few of the examples are used for tutorial
336  they only include brief instructions in a text file called {\it README}.  documentation in sections \ref{sect:eg-baro} - \ref{sect:eg-global}.
337  The examples are located in subdirectories under  The other examples follow the same general structure as the tutorial
338  the directory \textit{verification}. Each  examples. However, they only include brief instructions in a text file
339  example is briefly described below.  called {\it README}.  The examples are located in subdirectories under
340    the directory \textit{verification}. Each example is briefly described
341    below.
342    
343  \subsection{Full list of model examples}  \subsection{Full list of model examples}
344    
345  \begin{enumerate}  \begin{enumerate}
346      
347  \item \textit{exp0} - single layer, ocean double gyre (barotropic with  \item \textit{exp0} - single layer, ocean double gyre (barotropic with
348  free-surface). This experiment is described in detail in section    free-surface). This experiment is described in detail in section
349  \ref{sect:eg-baro}.    \ref{sect:eg-baro}.
   
 \item \textit{exp1} - Four layer, ocean double gyre. This experiment is described in detail in section  
 \ref{sect:eg-baroc}.  
350    
351    \item \textit{exp1} - Four layer, ocean double gyre. This experiment
352      is described in detail in section \ref{sect:eg-baroc}.
353      
354  \item \textit{exp2} - 4x4 degree global ocean simulation with steady  \item \textit{exp2} - 4x4 degree global ocean simulation with steady
355  climatological forcing. This experiment is described in detail in section    climatological forcing. This experiment is described in detail in
356  \ref{sect:eg-global}.    section \ref{sect:eg-global}.
357      
358  \item \textit{exp4} - Flow over a Gaussian bump in open-water or channel  \item \textit{exp4} - Flow over a Gaussian bump in open-water or
359  with open boundaries.    channel with open boundaries.
360      
361  \item \textit{exp5} - Inhomogenously forced ocean convection in a doubly  \item \textit{exp5} - Inhomogenously forced ocean convection in a
362  periodic box.    doubly periodic box.
363    
364  \item \textit{front\_relax} - Relaxation of an ocean thermal front (test for  \item \textit{front\_relax} - Relaxation of an ocean thermal front (test for
365  Gent/McWilliams scheme). 2D (Y-Z).  Gent/McWilliams scheme). 2D (Y-Z).
366    
367  \item \textit{internal wave} - Ocean internal wave forced by open boundary  \item \textit{internal wave} - Ocean internal wave forced by open
368  conditions.    boundary conditions.
369      
370  \item \textit{natl\_box} - Eastern subtropical North Atlantic with KPP  \item \textit{natl\_box} - Eastern subtropical North Atlantic with KPP
371  scheme; 1 month integration    scheme; 1 month integration
372      
373  \item \textit{hs94.1x64x5} - Zonal averaged atmosphere using Held and Suarez  \item \textit{hs94.1x64x5} - Zonal averaged atmosphere using Held and
374  '94 forcing.    Suarez '94 forcing.
375      
376  \item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and Suarez  \item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and
377  '94 forcing.    Suarez '94 forcing.
378      
379  \item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and  \item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and
380  Suarez '94 forcing on the cubed sphere.    Suarez '94 forcing on the cubed sphere.
381      
382  \item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics. Global  \item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics.
383  Zonal Mean configuration, 1x64x5 resolution.    Global Zonal Mean configuration, 1x64x5 resolution.
384      
385  \item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate Atmospheric  \item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate
386  physics, equatorial Slice configuration.    Atmospheric physics, equatorial Slice configuration.  2D (X-Z).
387  2D (X-Z).    
   
388  \item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric  \item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric
389  physics. 3D Equatorial Channel configuration.    physics. 3D Equatorial Channel configuration.
390      
391  \item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics.  \item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics.
392  Global configuration, on latitude longitude grid with 128x64x5 grid points    Global configuration, on latitude longitude grid with 128x64x5 grid
393  ($2.8^\circ{\rm degree}$ resolution).    points ($2.8^\circ{\rm degree}$ resolution).
394      
395  \item \textit{adjustment.128x64x1} Barotropic adjustment  \item \textit{adjustment.128x64x1} Barotropic adjustment problem on
396  problem on latitude longitude grid with 128x64 grid points ($2.8^\circ{\rm degree}$ resolution).    latitude longitude grid with 128x64 grid points ($2.8^\circ{\rm
397        degree}$ resolution).
398  \item \textit{adjustment.cs-32x32x1}    
399  Barotropic adjustment  \item \textit{adjustment.cs-32x32x1} Barotropic adjustment problem on
400  problem on cube sphere grid with 32x32 points per face ( roughly    cube sphere grid with 32x32 points per face ( roughly $2.8^\circ{\rm
401  $2.8^\circ{\rm degree}$ resolution).      degree}$ resolution).
402      
403  \item \textit{advect\_cs} Two-dimensional passive advection test on  \item \textit{advect\_cs} Two-dimensional passive advection test on
404  cube sphere grid.    cube sphere grid.
405      
406  \item \textit{advect\_xy} Two-dimensional (horizontal plane) passive advection  \item \textit{advect\_xy} Two-dimensional (horizontal plane) passive
407  test on Cartesian grid.    advection test on Cartesian grid.
408      
409  \item \textit{advect\_yz} Two-dimensional (vertical plane) passive advection test on Cartesian grid.  \item \textit{advect\_yz} Two-dimensional (vertical plane) passive
410      advection test on Cartesian grid.
411  \item \textit{carbon} Simple passive tracer experiment. Includes derivative    
412  calculation. Described in detail in section \ref{sect:eg-carbon-ad}.  \item \textit{carbon} Simple passive tracer experiment. Includes
413      derivative calculation. Described in detail in section
414      \ref{sect:eg-carbon-ad}.
415    
416  \item \textit{flt\_example} Example of using float package.  \item \textit{flt\_example} Example of using float package.
417      
418  \item \textit{global\_ocean.90x40x15} Global circulation with  \item \textit{global\_ocean.90x40x15} Global circulation with GM, flux
419  GM, flux boundary conditions and poles.    boundary conditions and poles.
420    
421  \item \textit{solid-body.cs-32x32x1} Solid body rotation test for cube sphere  \item \textit{global\_ocean\_pressure} Global circulation in pressure
422  grid.    coordinate (non-Boussinesq ocean model). Described in detail in
423      section \ref{sect:eg-globalpressure}.
424      
425    \item \textit{solid-body.cs-32x32x1} Solid body rotation test for cube
426      sphere grid.
427    
428  \end{enumerate}  \end{enumerate}
429    
# Line 278  Each example directory has the following Line 433  Each example directory has the following
433    
434  \begin{itemize}  \begin{itemize}
435  \item \textit{code}: contains the code particular to the example. At a  \item \textit{code}: contains the code particular to the example. At a
436  minimum, this directory includes the following files:    minimum, this directory includes the following files:
   
 \begin{itemize}  
 \item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to the  
 ``execution environment'' part of the code. The default version is located  
 in \textit{eesupp/inc}.  
   
 \item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to the  
 ``numerical model'' part of the code. The default version is located in  
 \textit{model/inc}.  
   
 \item \textit{code/SIZE.h}: declares size of underlying computational grid.  
 The default version is located in \textit{model/inc}.  
 \end{itemize}  
   
 In addition, other include files and subroutines might be present in \textit{%  
 code} depending on the particular experiment. See section 2 for more details.  
437    
438  \item \textit{input}: contains the input data files required to run the    \begin{itemize}
439  example. At a minimum, the \textit{input} directory contains the following    \item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to
440  files:      the ``execution environment'' part of the code. The default
441        version is located in \textit{eesupp/inc}.
442  \begin{itemize}    
443  \item \textit{input/data}: this file, written as a namelist, specifies the    \item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to
444  main parameters for the experiment.      the ``numerical model'' part of the code. The default version is
445        located in \textit{model/inc}.
446  \item \textit{input/data.pkg}: contains parameters relative to the packages    
447  used in the experiment.    \item \textit{code/SIZE.h}: declares size of underlying
448        computational grid.  The default version is located in
449  \item \textit{input/eedata}: this file contains ``execution environment''      \textit{model/inc}.
450  data. At present, this consists of a specification of the number of threads    \end{itemize}
451  to use in $X$ and $Y$ under multithreaded execution.    
452      In addition, other include files and subroutines might be present in
453      \textit{code} depending on the particular experiment. See Section 2
454      for more details.
455      
456    \item \textit{input}: contains the input data files required to run
457      the example. At a minimum, the \textit{input} directory contains the
458      following files:
459    
460      \begin{itemize}
461      \item \textit{input/data}: this file, written as a namelist,
462        specifies the main parameters for the experiment.
463      
464      \item \textit{input/data.pkg}: contains parameters relative to the
465        packages used in the experiment.
466      
467      \item \textit{input/eedata}: this file contains ``execution
468        environment'' data. At present, this consists of a specification
469        of the number of threads to use in $X$ and $Y$ under multithreaded
470        execution.
471      \end{itemize}
472      
473      In addition, you will also find in this directory the forcing and
474      topography files as well as the files describing the initial state
475      of the experiment.  This varies from experiment to experiment. See
476      section 2 for more details.
477    
478    \item \textit{results}: this directory contains the output file
479      \textit{output.txt} produced by the simulation example. This file is
480      useful for comparison with your own output when you run the
481      experiment.
482  \end{itemize}  \end{itemize}
483    
484  In addition, you will also find in this directory the forcing and topography  Once you have chosen the example you want to run, you are ready to
485  files as well as the files describing the initial state of the experiment.  compile the code.
 This varies from experiment to experiment. See section 2 for more details.  
   
 \item \textit{results}: this directory contains the output file \textit{%  
 output.txt} produced by the simulation example. This file is useful for  
 comparison with your own output when you run the experiment.  
 \end{itemize}  
486    
487  Once you have chosen the example you want to run, you are ready to compile  \section[Building MITgcm]{Building the code}
 the code.  
   
 \section{Building the code}  
488  \label{sect:buildingCode}  \label{sect:buildingCode}
489    
490  To compile the code, we use the {\em make} program. This uses a file  To compile the code, we use the {\em make} program. This uses a file
491  ({\em Makefile}) that allows us to pre-process source files, specify  ({\em Makefile}) that allows us to pre-process source files, specify
492  compiler and optimization options and also figures out any file  compiler and optimization options and also figures out any file
493  dependencies. We supply a script ({\em genmake}), described in section  dependencies. We supply a script ({\em genmake2}), described in
494  \ref{sect:genmake}, that automatically creates the {\em Makefile} for  section \ref{sect:genmake}, that automatically creates the {\em
495  you. You then need to build the dependencies and compile the code.    Makefile} for you. You then need to build the dependencies and
496    compile the code.
497    
498  As an example, let's assume that you want to build and run experiment  As an example, let's assume that you want to build and run experiment
499  \textit{verification/exp2}. The are multiple ways and places to actually  \textit{verification/exp2}. The are multiple ways and places to
500  do this but here let's build the code in  actually do this but here let's build the code in
501  \textit{verification/exp2/input}:  \textit{verification/exp2/input}:
502  \begin{verbatim}  \begin{verbatim}
503  % cd verification/exp2/input  % cd verification/exp2/input
504  \end{verbatim}  \end{verbatim}
505  First, build the {\em Makefile}:  First, build the {\em Makefile}:
506  \begin{verbatim}  \begin{verbatim}
507  % ../../../tools/genmake -mods=../code  % ../../../tools/genmake2 -mods=../code
508  \end{verbatim}  \end{verbatim}
509  The command line option tells {\em genmake} to override model source  The command line option tells {\em genmake} to override model source
510  code with any files in the directory {\em ./code/}.  code with any files in the directory {\em ./code/}.
511    
512  If there is no \textit{.genmakerc} in the \textit{input} directory, you have  On many systems, the {\em genmake2} program will be able to
513  to use the following options when invoking \textit{genmake}:  automatically recognize the hardware, find compilers and other tools
514    within the user's path (``echo \$PATH''), and then choose an
515    appropriate set of options from the files contained in the {\em
516      tools/build\_options} directory.  Under some circumstances, a user
517    may have to create a new ``optfile'' in order to specify the exact
518    combination of compiler, compiler flags, libraries, and other options
519    necessary to build a particular configuration of MITgcm.  In such
520    cases, it is generally helpful to read the existing ``optfiles'' and
521    mimic their syntax.
522    
523    Through the MITgcm-support list, the MITgcm developers are willing to
524    provide help writing or modifing ``optfiles''.  And we encourage users
525    to post new ``optfiles'' (particularly ones for new machines or
526    architectures) to the
527    \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
528    MITgcm-support@mitgcm.org
529    \begin{rawhtml} </A> \end{rawhtml}
530    list.
531    
532    To specify an optfile to {\em genmake2}, the syntax is:
533  \begin{verbatim}  \begin{verbatim}
534  % ../../../tools/genmake  -mods=../code  % ../../../tools/genmake2 -mods=../code -of /path/to/optfile
535  \end{verbatim}  \end{verbatim}
536    
537  Next, create the dependencies:  Once a {\em Makefile} has been generated, we create the dependencies:
538  \begin{verbatim}  \begin{verbatim}
539  % make depend  % make depend
540  \end{verbatim}  \end{verbatim}
541  This modifies {\em Makefile} by attaching a [long] list of files on  This modifies the {\em Makefile} by attaching a [long] list of files
542  which other files depend. The purpose of this is to reduce  upon which other files depend. The purpose of this is to reduce
543  re-compilation if and when you start to modify the code. {\tt make  re-compilation if and when you start to modify the code. The {\tt make
544  depend} also created links from the model source to this directory.    depend} command also creates links from the model source to this
545    directory.
546    
547  Now compile the code:  Next compile the code:
548  \begin{verbatim}  \begin{verbatim}
549  % make  % make
550  \end{verbatim}  \end{verbatim}
551  The {\tt make} command creates an executable called \textit{mitgcmuv}.  The {\tt make} command creates an executable called \textit{mitgcmuv}.
552    Additional make ``targets'' are defined within the makefile to aid in
553    the production of adjoint and other versions of MITgcm.
554    
555  Now you are ready to run the model. General instructions for doing so are  Now you are ready to run the model. General instructions for doing so are
556  given in section \ref{sect:runModel}. Here, we can run the model with:  given in section \ref{sect:runModel}. Here, we can run the model with:
# Line 385  executable in the {\em input} directory Line 568  executable in the {\em input} directory
568  convenience. You can also configure and compile the code in other  convenience. You can also configure and compile the code in other
569  locations, for example on a scratch disk with out having to copy the  locations, for example on a scratch disk with out having to copy the
570  entire source tree. The only requirement to do so is you have {\tt  entire source tree. The only requirement to do so is you have {\tt
571  genmake} in your path or you know the absolute path to {\tt genmake}.    genmake2} in your path or you know the absolute path to {\tt
572      genmake2}.
573    
574  The following sections outline some possible methods of organizing you  The following sections outline some possible methods of organizing
575  source and data.  your source and data.
576    
577  \subsubsection{Building from the {\em ../code directory}}  \subsubsection{Building from the {\em ../code directory}}
578    
579  This is just as simple as building in the {\em input/} directory:  This is just as simple as building in the {\em input/} directory:
580  \begin{verbatim}  \begin{verbatim}
581  % cd verification/exp2/code  % cd verification/exp2/code
582  % ../../../tools/genmake  % ../../../tools/genmake2
583  % make depend  % make depend
584  % make  % make
585  \end{verbatim}  \end{verbatim}
# Line 424  within {\em verification/exp2/}: Line 608  within {\em verification/exp2/}:
608  % cd verification/exp2  % cd verification/exp2
609  % mkdir build  % mkdir build
610  % cd build  % cd build
611  % ../../../tools/genmake -mods=../code  % ../../../tools/genmake2 -mods=../code
612  % make depend  % make depend
613  % make  % make
614  \end{verbatim}  \end{verbatim}
# Line 446  running in a new directory each time mig Line 630  running in a new directory each time mig
630  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
631  \end{verbatim}  \end{verbatim}
632    
633  \subsubsection{Building from on a scratch disk}  \subsubsection{Building on a scratch disk}
634    
635  Model object files and output data can use up large amounts of disk  Model object files and output data can use up large amounts of disk
636  space so it is often the case that you will be operating on a large  space so it is often the case that you will be operating on a large
# Line 454  scratch disk. Assuming the model source Line 638  scratch disk. Assuming the model source
638  following commands will build the model in {\em /scratch/exp2-run1}:  following commands will build the model in {\em /scratch/exp2-run1}:
639  \begin{verbatim}  \begin{verbatim}
640  % cd /scratch/exp2-run1  % cd /scratch/exp2-run1
641  % ~/MITgcm/tools/genmake -rootdir=~/MITgcm -mods=~/MITgcm/verification/exp2/code  % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \
642      -mods=~/MITgcm/verification/exp2/code
643  % make depend  % make depend
644  % make  % make
645  \end{verbatim}  \end{verbatim}
# Line 470  the one experiment: Line 655  the one experiment:
655  % cd /scratch/exp2  % cd /scratch/exp2
656  % mkdir build  % mkdir build
657  % cd build  % cd build
658  % ~/MITgcm/tools/genmake -rootdir=~/MITgcm -mods=~/MITgcm/verification/exp2/code  % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \
659      -mods=~/MITgcm/verification/exp2/code
660  % make depend  % make depend
661  % make  % make
662  % cd ../  % cd ../
# Line 480  the one experiment: Line 666  the one experiment:
666  \end{verbatim}  \end{verbatim}
667    
668    
669    \subsection{Using \texttt{genmake2}}
 \subsection{\textit{genmake}}  
670  \label{sect:genmake}  \label{sect:genmake}
671    
672  To compile the code, use the script \textit{genmake} located in the \textit{%  To compile the code, first use the program \texttt{genmake2} (located
673  tools} directory. \textit{genmake} is a script that generates the makefile.  in the \texttt{tools} directory) to generate a Makefile.
674  It has been written so that the code can be compiled on a wide diversity of  \texttt{genmake2} is a shell script written to work with all
675  machines and systems. However, if it doesn't work the first time on your  ``sh''--compatible shells including bash v1, bash v2, and Bourne.
676  platform, you might need to edit certain lines of \textit{genmake} in the  Internally, \texttt{genmake2} determines the locations of needed
677  section containing the setups for the different machines. The file is  files, the compiler, compiler options, libraries, and Unix tools.  It
678  structured like this:  relies upon a number of ``optfiles'' located in the
679  \begin{verbatim}  \texttt{tools/build\_options} directory.
680          .  
681          .  The purpose of the optfiles is to provide all the compilation options
682          .  for particular ``platforms'' (where ``platform'' roughly means the
683  general instructions (machine independent)  combination of the hardware and the compiler) and code configurations.
684          .  Given the combinations of possible compilers and library dependencies
685          .  ({\it eg.}  MPI and NetCDF) there may be numerous optfiles available
686          .  for a single machine.  The naming scheme for the majority of the
687      - setup machine 1  optfiles shipped with the code is
688      - setup machine 2  \begin{center}
689      - setup machine 3    {\bf OS\_HARDWARE\_COMPILER }
690      - setup machine 4  \end{center}
691         etc  where
692          .  \begin{description}
693          .  \item[OS] is the name of the operating system (generally the
694          .    lower-case output of the {\tt 'uname'} command)
695  \end{verbatim}  \item[HARDWARE] is a string that describes the CPU type and
696      corresponds to output from the  {\tt 'uname -m'} command:
697  For example, the setup corresponding to a DEC alpha machine is reproduced    \begin{description}
698  here:    \item[ia32] is for ``x86'' machines such as i386, i486, i586, i686,
699  \begin{verbatim}      and athlon
700    case OSF1+mpi:    \item[ia64] is for Intel IA64 systems (eg. Itanium, Itanium2)
701      echo "Configuring for DEC Alpha"    \item[amd64] is AMD x86\_64 systems
702      set CPP        = ( '/usr/bin/cpp -P' )    \item[ppc] is for Mac PowerPC systems
703      set DEFINES    = ( ${DEFINES}  '-DTARGET_DEC -DWORDLENGTH=1' )    \end{description}
704      set KPP        = ( 'kapf' )  \item[COMPILER] is the compiler name (generally, the name of the
705      set KPPFILES   = ( 'main.F' )    FORTRAN executable)
706      set KFLAGS1    = ( '-scan=132 -noconc -cmp=' )  \end{description}
707      set FC         = ( 'f77' )  
708      set FFLAGS     = ( '-convert big_endian -r8 -extend_source -automatic -call_shared -notransform_loops -align dcommons' )  In many cases, the default optfiles are sufficient and will result in
709      set FOPTIM     = ( '-O5 -fast -tune host -inline all' )  usable Makefiles.  However, for some machines or code configurations,
710      set NOOPTFLAGS = ( '-O0' )  new ``optfiles'' must be written. To create a new optfile, it is
711      set LIBS       = ( '-lfmpi -lmpi -lkmp_osfp10 -pthread' )  generally best to start with one of the defaults and modify it to suit
712      set NOOPTFILES = ( 'barrier.F different_multiple.F external_fields_load.F')  your needs.  Like \texttt{genmake2}, the optfiles are all written
713      set RMFILES    = ( '*.p.out' )  using a simple ``sh''--compatible syntax.  While nearly all variables
714      breaksw  used within \texttt{genmake2} may be specified in the optfiles, the
715  \end{verbatim}  critical ones that should be defined are:
716    
717  Typically, these are the lines that you might need to edit to make \textit{%  \begin{description}
718  genmake} work on your platform if it doesn't work the first time. \textit{%  \item[FC] the FORTRAN compiler (executable) to use
719  genmake} understands several options that are described here:  \item[DEFINES] the command-line DEFINE options passed to the compiler
720    \item[CPP] the C pre-processor to use
721  \begin{itemize}  \item[NOOPTFLAGS] options flags for special files that should not be
722  \item -rootdir=dir    optimized
723    \end{description}
724  indicates where the model root directory is relative to the directory where  
725  you are compiling. This option is not needed if you compile in the \textit{%  For example, the optfile for a typical Red Hat Linux machine (``ia32''
726  bin} directory (which is the default compilation directory) or within the  architecture) using the GCC (g77) compiler is
727  \textit{verification} tree.  \begin{verbatim}
728    FC=g77
729  \item -mods=dir1,dir2,...  DEFINES='-D_BYTESWAPIO -DWORDLENGTH=4'
730    CPP='cpp  -traditional -P'
731  indicates the relative or absolute paths directories where the sources  NOOPTFLAGS='-O0'
732  should take precedence over the default versions (located in \textit{model},  #  For IEEE, use the "-ffloat-store" option
733  \textit{eesupp},...). Typically, this option is used when running the  if test "x$IEEE" = x ; then
734  examples, see below.      FFLAGS='-Wimplicit -Wunused -Wuninitialized'
735        FOPTIM='-O3 -malign-double -funroll-loops'
736  \item -enable=pkg1,pkg2,...  else
737        FFLAGS='-Wimplicit -Wunused -ffloat-store'
738  enables packages source code \textit{pkg1}, \textit{pkg2},... when creating      FOPTIM='-O0 -malign-double'
739  the makefile.  fi
740    \end{verbatim}
741  \item -disable=pkg1,pkg2,...  
742    If you write an optfile for an unrepresented machine or compiler, you
743  disables packages source code \textit{pkg1}, \textit{pkg2},... when creating  are strongly encouraged to submit the optfile to the MITgcm project
744  the makefile.  for inclusion.  Please send the file to the
745    \begin{rawhtml} <A href="mail-to:MITgcm-support@mitgcm.org"> \end{rawhtml}
746  \item -platform=machine  \begin{center}
747      MITgcm-support@mitgcm.org
748    \end{center}
749    \begin{rawhtml} </A> \end{rawhtml}
750    mailing list.
751    
752  specifies the platform for which you want the makefile. In general, you  In addition to the optfiles, \texttt{genmake2} supports a number of
753  won't need this option. \textit{genmake} will select the right machine for  helpful command-line options.  A complete list of these options can be
754  you (the one you're working on!). However, this option is useful if you have  obtained from:
755  a choice of several compilers on one machine and you want to use the one  \begin{verbatim}
756  that is not the default (ex: \texttt{pgf77} instead of \texttt{f77} under  % genmake2 -h
757  Linux).  \end{verbatim}
758    
759    The most important command-line options are:
760    \begin{description}
761      
762    \item[\texttt{--optfile=/PATH/FILENAME}] specifies the optfile that
763      should be used for a particular build.
764      
765      If no "optfile" is specified (either through the command line or the
766      MITGCM\_OPTFILE environment variable), genmake2 will try to make a
767      reasonable guess from the list provided in {\em
768        tools/build\_options}.  The method used for making this guess is
769      to first determine the combination of operating system and hardware
770      (eg. "linux\_ia32") and then find a working FORTRAN compiler within
771      the user's path.  When these three items have been identified,
772      genmake2 will try to find an optfile that has a matching name.
773      
774    \item[\texttt{--pdefault='PKG1 PKG2 PKG3 ...'}] specifies the default
775      set of packages to be used.  The normal order of precedence for
776      packages is as follows:
777      \begin{enumerate}
778      \item If available, the command line (\texttt{--pdefault}) settings
779        over-rule any others.
780    
781      \item Next, \texttt{genmake2} will look for a file named
782        ``\texttt{packages.conf}'' in the local directory or in any of the
783        directories specified with the \texttt{--mods} option.
784        
785      \item Finally, if neither of the above are available,
786        \texttt{genmake2} will use the \texttt{/pkg/pkg\_default} file.
787      \end{enumerate}
788      
789    \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file
790      used for packages.
791      
792      If not specified, the default dependency file {\em pkg/pkg\_depend}
793      is used.  The syntax for this file is parsed on a line-by-line basis
794      where each line containes either a comment ("\#") or a simple
795      "PKGNAME1 (+|-)PKGNAME2" pairwise rule where the "+" or "-" symbol
796      specifies a "must be used with" or a "must not be used with"
797      relationship, respectively.  If no rule is specified, then it is
798      assumed that the two packages are compatible and will function
799      either with or without each other.
800      
801    \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or
802      automatic differentiation options file to be used.  The file is
803      analogous to the ``optfile'' defined above but it specifies
804      information for the AD build process.
805      
806      The default file is located in {\em
807        tools/adjoint\_options/adjoint\_default} and it defines the "TAF"
808      and "TAMC" compilers.  An alternate version is also available at
809      {\em tools/adjoint\_options/adjoint\_staf} that selects the newer
810      "STAF" compiler.  As with any compilers, it is helpful to have their
811      directories listed in your {\tt \$PATH} environment variable.
812      
813    \item[\texttt{--mods='DIR1 DIR2 DIR3 ...'}] specifies a list of
814      directories containing ``modifications''.  These directories contain
815      files with names that may (or may not) exist in the main MITgcm
816      source tree but will be overridden by any identically-named sources
817      within the ``MODS'' directories.
818      
819      The order of precedence for this "name-hiding" is as follows:
820      \begin{itemize}
821      \item ``MODS'' directories (in the order given)
822      \item Packages either explicitly specified or provided by default
823        (in the order given)
824      \item Packages included due to package dependencies (in the order
825        that that package dependencies are parsed)
826      \item The "standard dirs" (which may have been specified by the
827        ``-standarddirs'' option)
828      \end{itemize}
829      
830    \item[\texttt{--mpi}] This option enables certain MPI features (using
831      CPP \texttt{\#define}s) within the code and is necessary for MPI
832      builds (see Section \ref{sect:mpi-build}).
833      
834    \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of
835      soft-links and other bugs common with the \texttt{make} versions
836      provided by commercial Unix vendors, GNU \texttt{make} (sometimes
837      called \texttt{gmake}) should be preferred.  This option provides a
838      means for specifying the make executable to be used.
839      
840    \item[\texttt{--bash=/path/to/sh}] On some (usually older UNIX)
841      machines, the ``bash'' shell is unavailable.  To run on these
842      systems, \texttt{genmake2} can be invoked using an ``sh'' (that is,
843      a Bourne, POSIX, or compatible) shell.  The syntax in these
844      circumstances is:
845      \begin{center}
846        \texttt{\%  /bin/sh genmake2 -bash=/bin/sh [...options...]}
847      \end{center}
848      where \texttt{/bin/sh} can be replaced with the full path and name
849      of the desired shell.
850    
851    \end{description}
852    
853    
854    \subsection{Building with MPI}
855    \label{sect:mpi-build}
856    
857    Building MITgcm to use MPI libraries can be complicated due to the
858    variety of different MPI implementations available, their dependencies
859    or interactions with different compilers, and their often ad-hoc
860    locations within file systems.  For these reasons, its generally a
861    good idea to start by finding and reading the documentation for your
862    machine(s) and, if necessary, seeking help from your local systems
863    administrator.
864    
865  \item -mpi  The steps for building MITgcm with MPI support are:
866    \begin{enumerate}
867      
868    \item Determine the locations of your MPI-enabled compiler and/or MPI
869      libraries and put them into an options file as described in Section
870      \ref{sect:genmake}.  One can start with one of the examples in:
871      \begin{rawhtml} <A
872        href="http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm/tools/build_options/">
873      \end{rawhtml}
874      \begin{center}
875        \texttt{MITgcm/tools/build\_options/}
876      \end{center}
877      \begin{rawhtml} </A> \end{rawhtml}
878      such as \texttt{linux\_ia32\_g77+mpi\_cg01} or
879      \texttt{linux\_ia64\_efc+mpi} and then edit it to suit the machine at
880      hand.  You may need help from your user guide or local systems
881      administrator to determine the exact location of the MPI libraries.
882      If libraries are not installed, MPI implementations and related
883      tools are available including:
884      \begin{itemize}
885      \item \begin{rawhtml} <A
886          href="http://www-unix.mcs.anl.gov/mpi/mpich/">
887        \end{rawhtml}
888        MPICH
889        \begin{rawhtml} </A> \end{rawhtml}
890    
891      \item \begin{rawhtml} <A
892          href="http://www.lam-mpi.org/">
893        \end{rawhtml}
894        LAM/MPI
895        \begin{rawhtml} </A> \end{rawhtml}
896    
897      \item \begin{rawhtml} <A
898          href="http://www.osc.edu/~pw/mpiexec/">
899        \end{rawhtml}
900        MPIexec
901        \begin{rawhtml} </A> \end{rawhtml}
902      \end{itemize}
903      
904    \item Build the code with the \texttt{genmake2} \texttt{-mpi} option
905      (see Section \ref{sect:genmake}) using commands such as:
906    {\footnotesize \begin{verbatim}
907      %  ../../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE
908      %  make depend
909      %  make
910    \end{verbatim} }
911      
912    \item Run the code with the appropriate MPI ``run'' or ``exec''
913      program provided with your particular implementation of MPI.
914      Typical MPI packages such as MPICH will use something like:
915    \begin{verbatim}
916      %  mpirun -np 4 -machinefile mf ./mitgcmuv
917    \end{verbatim}
918      Sightly more complicated scripts may be needed for many machines
919      since execution of the code may be controlled by both the MPI
920      library and a job scheduling and queueing system such as PBS,
921      LoadLeveller, Condor, or any of a number of similar tools.  A few
922      example scripts (those used for our \begin{rawhtml} <A
923        href="http://mitgcm.org/testing.html"> \end{rawhtml}regular
924      verification runs\begin{rawhtml} </A> \end{rawhtml}) are available
925      at:
926      \begin{rawhtml} <A
927        href="http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm_contrib/test_scripts/">
928      \end{rawhtml}
929      {\footnotesize \tt
930        http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm\_contrib/test\_scripts/ }
931      \begin{rawhtml} </A> \end{rawhtml}
932    
933  this is used when you want to run the model in parallel processing mode  \end{enumerate}
 under mpi (see section on parallel computation for more details).  
934    
935  \item -jam  An example of the above process on the MITgcm cluster (``cg01'') using
936    the GNU g77 compiler and the mpich MPI library is:
937    
938  this is used when you want to run the model in parallel processing mode  {\footnotesize \begin{verbatim}
939  under jam (see section on parallel computation for more details).    %  cd MITgcm/verification/exp5
940  \end{itemize}    %  mkdir build
941      %  cd build
942      %  ../../../tools/genmake2 -mpi -mods=../code \
943           -of=../../../tools/build_options/linux_ia32_g77+mpi_cg01
944      %  make depend
945      %  make
946      %  cd ../input
947      %  /usr/local/pkg/mpi/mpi-1.2.4..8a-gm-1.5/g77/bin/mpirun.ch_gm \
948           -machinefile mf --gm-kill 5 -v -np 2  ../build/mitgcmuv
949    \end{verbatim} }
950    
 For some of the examples, there is a file called \textit{.genmakerc} in the  
 \textit{input} directory that has the relevant \textit{genmake} options for  
 that particular example. In this way you don't need to type the options when  
 invoking \textit{genmake}.  
951    
952    
953  \section{Running the model}  \section[Running MITgcm]{Running the model in prognostic mode}
954  \label{sect:runModel}  \label{sect:runModel}
955    
956  If compilation finished succesfuully (section \ref{sect:buildModel})  If compilation finished succesfuully (section \ref{sect:buildingCode})
957  then an executable called {\em mitgcmuv} will now exist in the local  then an executable called \texttt{mitgcmuv} will now exist in the
958  directory.  local directory.
959    
960  To run the model as a single process (ie. not in parallel) simply  To run the model as a single process (ie. not in parallel) simply
961  type:  type:
# Line 607  normally re-direct the {\em stdout} stre Line 973  normally re-direct the {\em stdout} stre
973  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
974  \end{verbatim}  \end{verbatim}
975    
976  For the example experiments in {\em vericication}, an example of the  For the example experiments in {\em verification}, an example of the
977  output is kept in {\em results/output.txt} for comparison. You can compare  output is kept in {\em results/output.txt} for comparison. You can compare
978  your {\em output.txt} with this one to check that the set-up works.  your {\em output.txt} with this one to check that the set-up works.
979    
# Line 693  Some examples of reading and visualizing Line 1059  Some examples of reading and visualizing
1059  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end  >> for n=1:11; imagesc(eta(:,:,n)');axis ij;colorbar;pause(.5);end
1060  \end{verbatim}  \end{verbatim}
1061    
 \section{Doing it yourself: customizing the code}  
   
 When you are ready to run the model in the configuration you want, the  
 easiest thing is to use and adapt the setup of the case studies experiment  
 (described previously) that is the closest to your configuration. Then, the  
 amount of setup will be minimized. In this section, we focus on the setup  
 relative to the ''numerical model'' part of the code (the setup relative to  
 the ''execution environment'' part is covered in the parallel implementation  
 section) and on the variables and parameters that you are likely to change.  
   
 \subsection{Configuration and setup}  
   
 The CPP keys relative to the ''numerical model'' part of the code are all  
 defined and set in the file \textit{CPP\_OPTIONS.h }in the directory \textit{%  
 model/inc }or in one of the \textit{code }directories of the case study  
 experiments under \textit{verification.} The model parameters are defined  
 and declared in the file \textit{model/inc/PARAMS.h }and their default  
 values are set in the routine \textit{model/src/set\_defaults.F. }The  
 default values can be modified in the namelist file \textit{data }which  
 needs to be located in the directory where you will run the model. The  
 parameters are initialized in the routine \textit{model/src/ini\_parms.F}.  
 Look at this routine to see in what part of the namelist the parameters are  
 located.  
   
 In what follows the parameters are grouped into categories related to the  
 computational domain, the equations solved in the model, and the simulation  
 controls.  
   
 \subsection{Computational domain, geometry and time-discretization}  
   
 \begin{itemize}  
 \item dimensions  
 \end{itemize}  
   
 The number of points in the x, y,\textit{\ }and r\textit{\ }directions are  
 represented by the variables \textbf{sNx}\textit{, }\textbf{sNy}\textit{, }%  
 and \textbf{Nr}\textit{\ }respectively which are declared and set in the  
 file \textit{model/inc/SIZE.h. }(Again, this assumes a mono-processor  
 calculation. For multiprocessor calculations see section on parallel  
 implementation.)  
   
 \begin{itemize}  
 \item grid  
 \end{itemize}  
   
 Three different grids are available: cartesian, spherical polar, and  
 curvilinear (including the cubed sphere). The grid is set through the  
 logical variables \textbf{usingCartesianGrid}\textit{, }\textbf{%  
 usingSphericalPolarGrid}\textit{, }and \textit{\ }\textbf{%  
 usingCurvilinearGrid}\textit{. }In the case of spherical and curvilinear  
 grids, the southern boundary is defined through the variable \textbf{phiMin}%  
 \textit{\ }which corresponds to the latitude of the southern most cell face  
 (in degrees). The resolution along the x and y directions is controlled by  
 the 1D arrays \textbf{delx}\textit{\ }and \textbf{dely}\textit{\ }(in meters  
 in the case of a cartesian grid, in degrees otherwise). The vertical grid  
 spacing is set through the 1D array \textbf{delz }for the ocean (in meters)  
 or \textbf{delp}\textit{\ }for the atmosphere (in Pa). The variable \textbf{%  
 Ro\_SeaLevel} represents the standard position of Sea-Level in ''R''  
 coordinate. This is typically set to 0m for the ocean (default value) and 10$%  
 ^{5}$Pa for the atmosphere. For the atmosphere, also set the logical  
 variable \textbf{groundAtK1} to '.\texttt{TRUE}.'. which put the first level  
 (k=1) at the lower boundary (ground).  
   
 For the cartesian grid case, the Coriolis parameter $f$ is set through the  
 variables \textbf{f0}\textit{\ }and \textbf{beta}\textit{\ }which correspond  
 to the reference Coriolis parameter (in s$^{-1}$) and $\frac{\partial f}{%  
 \partial y}$(in m$^{-1}$s$^{-1}$) respectively. If \textbf{beta }\textit{\ }%  
 is set to a nonzero value, \textbf{f0}\textit{\ }is the value of $f$ at the  
 southern edge of the domain.  
   
 \begin{itemize}  
 \item topography - full and partial cells  
 \end{itemize}  
   
 The domain bathymetry is read from a file that contains a 2D (x,y) map of  
 depths (in m) for the ocean or pressures (in Pa) for the atmosphere. The  
 file name is represented by the variable \textbf{bathyFile}\textit{. }The  
 file is assumed to contain binary numbers giving the depth (pressure) of the  
 model at each grid cell, ordered with the x coordinate varying fastest. The  
 points are ordered from low coordinate to high coordinate for both axes. The  
 model code applies without modification to enclosed, periodic, and double  
 periodic domains. Periodicity is assumed by default and is suppressed by  
 setting the depths to 0m for the cells at the limits of the computational  
 domain (note: not sure this is the case for the atmosphere). The precision  
 with which to read the binary data is controlled by the integer variable  
 \textbf{readBinaryPrec }which can take the value \texttt{32} (single  
 precision) or \texttt{64} (double precision). See the matlab program \textit{%  
 gendata.m }in the \textit{input }directories under \textit{verification }to  
 see how the bathymetry files are generated for the case study experiments.  
   
 To use the partial cell capability, the variable \textbf{hFacMin}\textit{\ }%  
 needs to be set to a value between 0 and 1 (it is set to 1 by default)  
 corresponding to the minimum fractional size of the cell. For example if the  
 bottom cell is 500m thick and \textbf{hFacMin}\textit{\ }is set to 0.1, the  
 actual thickness of the cell (i.e. used in the code) can cover a range of  
 discrete values 50m apart from 50m to 500m depending on the value of the  
 bottom depth (in \textbf{bathyFile}) at this point.  
   
 Note that the bottom depths (or pressures) need not coincide with the models  
 levels as deduced from \textbf{delz}\textit{\ }or\textit{\ }\textbf{delp}%  
 \textit{. }The model will interpolate the numbers in \textbf{bathyFile}%  
 \textit{\ }so that they match the levels obtained from \textbf{delz}\textit{%  
 \ }or\textit{\ }\textbf{delp}\textit{\ }and \textbf{hFacMin}\textit{. }  
   
 (Note: the atmospheric case is a bit more complicated than what is written  
 here I think. To come soon...)  
   
 \begin{itemize}  
 \item time-discretization  
 \end{itemize}  
   
 The time steps are set through the real variables \textbf{deltaTMom }and  
 \textbf{deltaTtracer }(in s) which represent the time step for the momentum  
 and tracer equations, respectively. For synchronous integrations, simply set  
 the two variables to the same value (or you can prescribe one time step only  
 through the variable \textbf{deltaT}). The Adams-Bashforth stabilizing  
 parameter is set through the variable \textbf{abEps }(dimensionless). The  
 stagger baroclinic time stepping can be activated by setting the logical  
 variable \textbf{staggerTimeStep }to '.\texttt{TRUE}.'.  
   
 \subsection{Equation of state}  
   
 First, because the model equations are written in terms of perturbations, a  
 reference thermodynamic state needs to be specified. This is done through  
 the 1D arrays \textbf{tRef}\textit{\ }and \textbf{sRef}. \textbf{tRef }%  
 specifies the reference potential temperature profile (in $^{o}$C for  
 the ocean and $^{o}$K for the atmosphere) starting from the level  
 k=1. Similarly, \textbf{sRef}\textit{\ }specifies the reference salinity  
 profile (in ppt) for the ocean or the reference specific humidity profile  
 (in g/kg) for the atmosphere.  
   
 The form of the equation of state is controlled by the character variables  
 \textbf{buoyancyRelation}\textit{\ }and \textbf{eosType}\textit{. }\textbf{%  
 buoyancyRelation}\textit{\ }is set to '\texttt{OCEANIC}' by default and  
 needs to be set to '\texttt{ATMOSPHERIC}' for atmosphere simulations. In  
 this case, \textbf{eosType}\textit{\ }must be set to '\texttt{IDEALGAS}'.  
 For the ocean, two forms of the equation of state are available: linear (set  
 \textbf{eosType}\textit{\ }to '\texttt{LINEAR}') and a polynomial  
 approximation to the full nonlinear equation ( set \textbf{eosType}\textit{\  
 }to '\texttt{POLYNOMIAL}'). In the linear case, you need to specify the  
 thermal and haline expansion coefficients represented by the variables  
 \textbf{tAlpha}\textit{\ }(in K$^{-1}$) and \textbf{sBeta}\textit{\ }(in ppt$%  
 ^{-1}$). For the nonlinear case, you need to generate a file of polynomial  
 coefficients called \textit{POLY3.COEFFS. }To do this, use the program  
 \textit{utils/knudsen2/knudsen2.f }under the model tree (a Makefile is  
 available in the same directory and you will need to edit the number and the  
 values of the vertical levels in \textit{knudsen2.f }so that they match  
 those of your configuration). \textit{\ }  
   
 \subsection{Momentum equations}  
   
 In this section, we only focus for now on the parameters that you are likely  
 to change, i.e. the ones relative to forcing and dissipation for example.  
 The details relevant to the vector-invariant form of the equations and the  
 various advection schemes are not covered for the moment. We assume that you  
 use the standard form of the momentum equations (i.e. the flux-form) with  
 the default advection scheme. Also, there are a few logical variables that  
 allow you to turn on/off various terms in the momentum equation. These  
 variables are called \textbf{momViscosity, momAdvection, momForcing,  
 useCoriolis, momPressureForcing, momStepping}\textit{, }and \textit{\ }%  
 \textbf{metricTerms }and are assumed to be set to '.\texttt{TRUE}.' here.  
 Look at the file \textit{model/inc/PARAMS.h }for a precise definition of  
 these variables.  
   
 \begin{itemize}  
 \item initialization  
 \end{itemize}  
   
 The velocity components are initialized to 0 unless the simulation is  
 starting from a pickup file (see section on simulation control parameters).  
   
 \begin{itemize}  
 \item forcing  
 \end{itemize}  
   
 This section only applies to the ocean. You need to generate wind-stress  
 data into two files \textbf{zonalWindFile}\textit{\ }and \textbf{%  
 meridWindFile }corresponding to the zonal and meridional components of the  
 wind stress, respectively (if you want the stress to be along the direction  
 of only one of the model horizontal axes, you only need to generate one  
 file). The format of the files is similar to the bathymetry file. The zonal  
 (meridional) stress data are assumed to be in Pa and located at U-points  
 (V-points). As for the bathymetry, the precision with which to read the  
 binary data is controlled by the variable \textbf{readBinaryPrec}.\textbf{\ }  
 See the matlab program \textit{gendata.m }in the \textit{input }directories  
 under \textit{verification }to see how simple analytical wind forcing data  
 are generated for the case study experiments.  
   
 There is also the possibility of prescribing time-dependent periodic  
 forcing. To do this, concatenate the successive time records into a single  
 file (for each stress component) ordered in a (x, y, t) fashion and set the  
 following variables: \textbf{periodicExternalForcing }to '.\texttt{TRUE}.',  
 \textbf{externForcingPeriod }to the period (in s) of which the forcing  
 varies (typically 1 month), and \textbf{externForcingCycle }to the repeat  
 time (in s) of the forcing (typically 1 year -- note: \textbf{%  
 externForcingCycle }must be a multiple of \textbf{externForcingPeriod}).  
 With these variables set up, the model will interpolate the forcing linearly  
 at each iteration.  
   
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
   
 The lateral eddy viscosity coefficient is specified through the variable  
 \textbf{viscAh}\textit{\ }(in m$^{2}$s$^{-1}$). The vertical eddy viscosity  
 coefficient is specified through the variable \textbf{viscAz }(in m$^{2}$s$%  
 ^{-1}$) for the ocean and \textbf{viscAp}\textit{\ }(in Pa$^{2}$s$^{-1}$)  
 for the atmosphere. The vertical diffusive fluxes can be computed implicitly  
 by setting the logical variable \textbf{implicitViscosity }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic mixing can be added as well through the variable  
 \textbf{viscA4}\textit{\ }(in m$^{4}$s$^{-1}$). On a spherical polar grid,  
 you might also need to set the variable \textbf{cosPower} which is set to 0  
 by default and which represents the power of cosine of latitude to multiply  
 viscosity. Slip or no-slip conditions at lateral and bottom boundaries are  
 specified through the logical variables \textbf{no\_slip\_sides}\textit{\ }%  
 and \textbf{no\_slip\_bottom}. If set to '\texttt{.FALSE.}', free-slip  
 boundary conditions are applied. If no-slip boundary conditions are applied  
 at the bottom, a bottom drag can be applied as well. Two forms are  
 available: linear (set the variable \textbf{bottomDragLinear}\textit{\ }in s$%  
 ^{-1}$) and quadratic (set the variable \textbf{bottomDragQuadratic}\textit{%  
 \ }in m$^{-1}$).  
   
 The Fourier and Shapiro filters are described elsewhere.  
   
 \begin{itemize}  
 \item C-D scheme  
 \end{itemize}  
   
 If you run at a sufficiently coarse resolution, you will need the C-D scheme  
 for the computation of the Coriolis terms. The variable\textbf{\ tauCD},  
 which represents the C-D scheme coupling timescale (in s) needs to be set.  
   
 \begin{itemize}  
 \item calculation of pressure/geopotential  
 \end{itemize}  
   
 First, to run a non-hydrostatic ocean simulation, set the logical variable  
 \textbf{nonHydrostatic} to '.\texttt{TRUE}.'. The pressure field is then  
 inverted through a 3D elliptic equation. (Note: this capability is not  
 available for the atmosphere yet.) By default, a hydrostatic simulation is  
 assumed and a 2D elliptic equation is used to invert the pressure field. The  
 parameters controlling the behaviour of the elliptic solvers are the  
 variables \textbf{cg2dMaxIters}\textit{\ }and \textbf{cg2dTargetResidual }%  
 for the 2D case and \textbf{cg3dMaxIters}\textit{\ }and \textbf{%  
 cg3dTargetResidual }for the 3D case. You probably won't need to alter the  
 default values (are we sure of this?).  
   
 For the calculation of the surface pressure (for the ocean) or surface  
 geopotential (for the atmosphere) you need to set the logical variables  
 \textbf{rigidLid} and \textbf{implicitFreeSurface}\textit{\ }(set one to '.%  
 \texttt{TRUE}.' and the other to '.\texttt{FALSE}.' depending on how you  
 want to deal with the ocean upper or atmosphere lower boundary).  
   
 \subsection{Tracer equations}  
   
 This section covers the tracer equations i.e. the potential temperature  
 equation and the salinity (for the ocean) or specific humidity (for the  
 atmosphere) equation. As for the momentum equations, we only describe for  
 now the parameters that you are likely to change. The logical variables  
 \textbf{tempDiffusion}\textit{, }\textbf{tempAdvection}\textit{, }\textbf{%  
 tempForcing}\textit{,} and \textbf{tempStepping} allow you to turn on/off  
 terms in the temperature equation (same thing for salinity or specific  
 humidity with variables \textbf{saltDiffusion}\textit{, }\textbf{%  
 saltAdvection}\textit{\ }etc). These variables are all assumed here to be  
 set to '.\texttt{TRUE}.'. Look at file \textit{model/inc/PARAMS.h }for a  
 precise definition.  
   
 \begin{itemize}  
 \item initialization  
 \end{itemize}  
   
 The initial tracer data can be contained in the binary files \textbf{%  
 hydrogThetaFile }and \textbf{hydrogSaltFile}. These files should contain 3D  
 data ordered in an (x, y, r) fashion with k=1 as the first vertical level.  
 If no file names are provided, the tracers are then initialized with the  
 values of \textbf{tRef }and \textbf{sRef }mentioned above (in the equation  
 of state section). In this case, the initial tracer data are uniform in x  
 and y for each depth level.  
   
 \begin{itemize}  
 \item forcing  
 \end{itemize}  
   
 This part is more relevant for the ocean, the procedure for the atmosphere  
 not being completely stabilized at the moment.  
   
 A combination of fluxes data and relaxation terms can be used for driving  
 the tracer equations. \ For potential temperature, heat flux data (in W/m$%  
 ^{2}$) can be stored in the 2D binary file \textbf{surfQfile}\textit{. }%  
 Alternatively or in addition, the forcing can be specified through a  
 relaxation term. The SST data to which the model surface temperatures are  
 restored to are supposed to be stored in the 2D binary file \textbf{%  
 thetaClimFile}\textit{. }The corresponding relaxation time scale coefficient  
 is set through the variable \textbf{tauThetaClimRelax}\textit{\ }(in s). The  
 same procedure applies for salinity with the variable names \textbf{EmPmRfile%  
 }\textit{, }\textbf{saltClimFile}\textit{, }and \textbf{tauSaltClimRelax}%  
 \textit{\ }for freshwater flux (in m/s) and surface salinity (in ppt) data  
 files and relaxation time scale coefficient (in s), respectively. Also for  
 salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on, natural  
 boundary conditions are applied i.e. when computing the surface salinity  
 tendency, the freshwater flux is multiplied by the model surface salinity  
 instead of a constant salinity value.  
   
 As for the other input files, the precision with which to read the data is  
 controlled by the variable \textbf{readBinaryPrec}. Time-dependent, periodic  
 forcing can be applied as well following the same procedure used for the  
 wind forcing data (see above).  
   
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
   
 Lateral eddy diffusivities for temperature and salinity/specific humidity  
 are specified through the variables \textbf{diffKhT }and \textbf{diffKhS }%  
 (in m$^{2}$/s). Vertical eddy diffusivities are specified through the  
 variables \textbf{diffKzT }and \textbf{diffKzS }(in m$^{2}$/s) for the ocean  
 and \textbf{diffKpT }and \textbf{diffKpS }(in Pa$^{2}$/s) for the  
 atmosphere. The vertical diffusive fluxes can be computed implicitly by  
 setting the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic diffusivities can be specified as well through  
 the coefficients \textbf{diffK4T }and \textbf{diffK4S }(in m$^{4}$/s). Note  
 that the cosine power scaling (specified through \textbf{cosPower }- see the  
 momentum equations section) is applied to the tracer diffusivities  
 (Laplacian and biharmonic) as well. The Gent and McWilliams parameterization  
 for oceanic tracers is described in the package section. Finally, note that  
 tracers can be also subject to Fourier and Shapiro filtering (see the  
 corresponding section on these filters).  
   
 \begin{itemize}  
 \item ocean convection  
 \end{itemize}  
   
 Two options are available to parameterize ocean convection: one is to use  
 the convective adjustment scheme. In this case, you need to set the variable  
 \textbf{cadjFreq}, which represents the frequency (in s) with which the  
 adjustment algorithm is called, to a non-zero value (if set to a negative  
 value by the user, the model will set it to the tracer time step). The other  
 option is to parameterize convection with implicit vertical diffusion. To do  
 this, set the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .' and the real variable \textbf{ivdc\_kappa }to a value (in m$^{2}$/s) you  
 wish the tracer vertical diffusivities to have when mixing tracers  
 vertically due to static instabilities. Note that \textbf{cadjFreq }and  
 \textbf{ivdc\_kappa }can not both have non-zero value.  
   
 \subsection{Simulation controls}  
   
 The model ''clock'' is defined by the variable \textbf{deltaTClock }(in s)  
 which determines the IO frequencies and is used in tagging output.  
 Typically, you will set it to the tracer time step for accelerated runs  
 (otherwise it is simply set to the default time step \textbf{deltaT}).  
 Frequency of checkpointing and dumping of the model state are referenced to  
 this clock (see below).  
   
 \begin{itemize}  
 \item run duration  
 \end{itemize}  
   
 The beginning of a simulation is set by specifying a start time (in s)  
 through the real variable \textbf{startTime }or by specifying an initial  
 iteration number through the integer variable \textbf{nIter0}. If these  
 variables are set to nonzero values, the model will look for a ''pickup''  
 file \textit{pickup.0000nIter0 }to restart the integration\textit{. }The end  
 of a simulation is set through the real variable \textbf{endTime }(in s).  
 Alternatively, you can specify instead the number of time steps to execute  
 through the integer variable \textbf{nTimeSteps}.  
   
 \begin{itemize}  
 \item frequency of output  
 \end{itemize}  
   
 Real variables defining frequencies (in s) with which output files are  
 written on disk need to be set up. \textbf{dumpFreq }controls the frequency  
 with which the instantaneous state of the model is saved. \textbf{chkPtFreq }%  
 and \textbf{pchkPtFreq }control the output frequency of rolling and  
 permanent checkpoint files, respectively. See section 1.5.1 Output files for the  
 definition of model state and checkpoint files. In addition, time-averaged  
 fields can be written out by setting the variable \textbf{taveFreq} (in s).  
 The precision with which to write the binary data is controlled by the  
 integer variable w\textbf{riteBinaryPrec }(set it to \texttt{32} or \texttt{%  
 64}).  

Legend:
Removed from v.1.10  
changed lines
  Added in v.1.27

  ViewVC Help
Powered by ViewVC 1.1.22