/[MITgcm]/manual/s_getstarted/text/getting_started.tex
ViewVC logotype

Diff of /manual/s_getstarted/text/getting_started.tex

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.5 by adcroft, Mon Oct 15 19:36:09 2001 UTC revision 1.23 by edhill, Thu Apr 8 02:24:23 2004 UTC
# Line 18  you are ready to try implementing the co Line 18  you are ready to try implementing the co
18  \section{Where to find information}  \section{Where to find information}
19  \label{sect:whereToFindInfo}  \label{sect:whereToFindInfo}
20    
21  A web site is maintained for release 1 (Sealion) of MITgcm:  A web site is maintained for release 2 (``Pelican'') of MITgcm:
22    \begin{rawhtml} <A href=http://mitgcm.org/pelican/ target="idontexist"> \end{rawhtml}
23  \begin{verbatim}  \begin{verbatim}
24  http://mitgcm.org/sealion  http://mitgcm.org/pelican
25  \end{verbatim}  \end{verbatim}
26    \begin{rawhtml} </A> \end{rawhtml}
27  Here you will find an on-line version of this document, a  Here you will find an on-line version of this document, a
28  ``browsable'' copy of the code and a searchable database of the model  ``browsable'' copy of the code and a searchable database of the model
29  and site, as well as links for downloading the model and  and site, as well as links for downloading the model and
30  documentation, to data-sources and other related sites.  documentation, to data-sources, and other related sites.
31    
32  There is also a support news group for the model that you can email at  There is also a web-archived support mailing list for the model that
33  \texttt{support@mitgcm.org} or browse at:  you can email at \texttt{MITgcm-support@mitgcm.org} or browse at:
34    \begin{rawhtml} <A href=http://mitgcm.org/mailman/listinfo/mitgcm-support/ target="idontexist"> \end{rawhtml}
35  \begin{verbatim}  \begin{verbatim}
36  news://mitgcm.org/mitgcm.support  http://mitgcm.org/mailman/listinfo/mitgcm-support/
37    http://mitgcm.org/pipermail/mitgcm-support/
38  \end{verbatim}  \end{verbatim}
39  A mail to the email list will reach all the developers and be archived  \begin{rawhtml} </A> \end{rawhtml}
40  on the newsgroup. A users email list will be established at some time  Essentially all of the MITgcm web pages can be searched using a
41  in the future.  popular web crawler such as Google or through our own search facility:
42    \begin{rawhtml} <A href=http://mitgcm.org/mailman/htdig/ target="idontexist"> \end{rawhtml}
43    \begin{verbatim}
44    http://mitgcm.org/htdig/
45    \end{verbatim}
46    \begin{rawhtml} </A> \end{rawhtml}
47    %%% http://www.google.com/search?q=hydrostatic+site%3Amitgcm.org
48    
49    
50    
51  \section{Obtaining the code}  \section{Obtaining the code}
52  \label{sect:obtainingCode}  \label{sect:obtainingCode}
53    
54    MITgcm can be downloaded from our system by following
55    the instructions below. As a courtesy we ask that you send e-mail to us at
56    \begin{rawhtml} <A href=mailto:MITgcm-support@mitgcm.org> \end{rawhtml}
57    MITgcm-support@mitgcm.org
58    \begin{rawhtml} </A> \end{rawhtml}
59    to enable us to keep track of who's using the model and in what application.
60    You can download the model two ways:
61    
62    \begin{enumerate}
63    \item Using CVS software. CVS is a freely available source code management
64    tool. To use CVS you need to have the software installed. Many systems
65    come with CVS pre-installed, otherwise good places to look for
66    the software for a particular platform are
67    \begin{rawhtml} <A href=http://www.cvshome.org/ target="idontexist"> \end{rawhtml}
68    cvshome.org
69    \begin{rawhtml} </A> \end{rawhtml}
70    and
71    \begin{rawhtml} <A href=http://www.wincvs.org/ target="idontexist"> \end{rawhtml}
72    wincvs.org
73    \begin{rawhtml} </A> \end{rawhtml}
74    .
75    
76    \item Using a tar file. This method is simple and does not
77    require any special software. However, this method does not
78    provide easy support for maintenance updates.
79    
80    \end{enumerate}
81    
82    \subsubsection{Checkout from CVS}
83    \label{sect:cvs_checkout}
84    
85  If CVS is available on your system, we strongly encourage you to use it. CVS  If CVS is available on your system, we strongly encourage you to use it. CVS
86  provides an efficient and elegant way of organizing your code and keeping  provides an efficient and elegant way of organizing your code and keeping
87  track of your changes. If CVS is not available on your machine, you can also  track of your changes. If CVS is not available on your machine, you can also
88  download a tar file.  download a tar file.
89    
90  Before you can use CVS, the following environment variable has to be set in  Before you can use CVS, the following environment variable(s) should
91  your .cshrc or .tcshrc:  be set within your shell.  For a csh or tcsh shell, put the following
92  \begin{verbatim}  \begin{verbatim}
93  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/u0/gcmpack  % setenv CVSROOT :pserver:cvsanon@mitgcm.org:/u/gcmpack
 % cvs login ( CVS password: cvsanon )  
94  \end{verbatim}  \end{verbatim}
95    in your .cshrc or .tcshrc file.  For bash or sh shells, put:
96    \begin{verbatim}
97    % export CVSROOT=':pserver:cvsanon@mitgcm.org:/u/gcmpack'
98    \end{verbatim}
99    in your \texttt{.profile} or \texttt{.bashrc} file.
100    
101    
102  You only need to do ``cvs login'' once. To obtain the source for the release:  To get MITgcm through CVS, first register with the MITgcm CVS server
103    using command:
104  \begin{verbatim}  \begin{verbatim}
105  % cvs co -d directory -P -r release1 MITgcmUV  % cvs login ( CVS password: cvsanon )
106  \end{verbatim}  \end{verbatim}
107    You only need to do a ``cvs login'' once.
108    
109  This creates a directory called \textit{directory}. If \textit{directory}  To obtain the latest sources type:
 exists this command updates your code based on the repository. Each  
 directory in the source tree contains a directory \textit{CVS}. This  
 information is required by CVS to keep track of your file versions with  
 respect to the repository. Don't edit the files in \textit{CVS}! To obtain a  
 different \textit{version} that is not the latest source:  
110  \begin{verbatim}  \begin{verbatim}
111  % cvs co -d directory -P -r version MITgcm  % cvs co MITgcm
112  \end{verbatim}  \end{verbatim}
113  or the latest development version:  or to get a specific release type:
114    \begin{verbatim}
115    % cvs co -P -r checkpoint52i_post  MITgcm
116    \end{verbatim}
117    The MITgcm web site contains further directions concerning the source
118    code and CVS.  It also contains a web interface to our CVS archive so
119    that one may easily view the state of files, revisions, and other
120    development milestones:
121    \begin{rawhtml} <A href=''http://mitgcm.org/download'' target="idontexist"> \end{rawhtml}
122    \begin{verbatim}
123    http://mitgcm.org/source_code.html
124    \end{verbatim}
125    \begin{rawhtml} </A> \end{rawhtml}
126    
127    As a convenience, the MITgcm CVS server contains aliases which are
128    named subsets of the codebase.  These aliases can be especially
129    helpful when used over slow internet connections or on machines with
130    restricted storage space.  Table \ref{tab:cvsModules} contains a list
131    of CVS aliases
132    \begin{table}[htb]
133      \centering
134      \begin{tabular}[htb]{|lp{3.25in}|}\hline
135        \textbf{Alias Name}    &  \textbf{Information (directories) Contained}  \\\hline
136        \texttt{MITgcm\_code}  &  Only the source code -- none of the verification examples.  \\
137        \texttt{MITgcm\_verif\_basic}
138        &  Source code plus a small set of the verification examples
139        (\texttt{global\_ocean.90x40x15}, \texttt{aim.5l\_cs}, \texttt{hs94.128x64x5},
140        \texttt{front\_relax}, and \texttt{plume\_on\_slope}).  \\
141        \texttt{MITgcm\_verif\_atmos}  &  Source code plus all of the atmospheric examples.  \\
142        \texttt{MITgcm\_verif\_ocean}  &  Source code plus all of the oceanic examples.  \\
143        \texttt{MITgcm\_verif\_all}    &  Source code plus all of the
144        verification examples. \\\hline
145      \end{tabular}
146      \caption{MITgcm CVS Modules}
147      \label{tab:cvsModules}
148    \end{table}
149    
150    The checkout process creates a directory called \textit{MITgcm}. If
151    the directory \textit{MITgcm} exists this command updates your code
152    based on the repository. Each directory in the source tree contains a
153    directory \textit{CVS}. This information is required by CVS to keep
154    track of your file versions with respect to the repository. Don't edit
155    the files in \textit{CVS}!  You can also use CVS to download code
156    updates.  More extensive information on using CVS for maintaining
157    MITgcm code can be found
158    \begin{rawhtml} <A href=''http://mitgcm.org/usingcvstoget.html'' target="idontexist"> \end{rawhtml}
159    here
160    \begin{rawhtml} </A> \end{rawhtml}
161    .
162    It is important to note that the CVS aliases in Table
163    \ref{tab:cvsModules} cannot be used in conjunction with the CVS
164    \texttt{-d DIRNAME} option.  However, the \texttt{MITgcm} directories
165    they create can be changed to a different name following the check-out:
166  \begin{verbatim}  \begin{verbatim}
167  % cvs co -d directory -P MITgcm     %  cvs co MITgcm_verif_basic
168       %  mv MITgcm MITgcm_verif_basic
169  \end{verbatim}  \end{verbatim}
170    
171  \paragraph*{Conventional download method}  
172    \subsubsection{Conventional download method}
173  \label{sect:conventionalDownload}  \label{sect:conventionalDownload}
174    
175  If you do not have CVS on your system, you can download the model as a  If you do not have CVS on your system, you can download the model as a
176  tar file from the reference web site at:  tar file from the web site at:
177    \begin{rawhtml} <A href=http://mitgcm.org/download target="idontexist"> \end{rawhtml}
178  \begin{verbatim}  \begin{verbatim}
179  http://mitgcm.org/download/  http://mitgcm.org/download/
180  \end{verbatim}  \end{verbatim}
181    \begin{rawhtml} </A> \end{rawhtml}
182  The tar file still contains CVS information which we urge you not to  The tar file still contains CVS information which we urge you not to
183  delete; even if you do not use CVS yourself the information can help  delete; even if you do not use CVS yourself the information can help
184  us if you should need to send us your copy of the code.  us if you should need to send us your copy of the code.  If a recent
185    tar file does not exist, then please contact the developers through
186    the
187    \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
188    MITgcm-support@mitgcm.org
189    \begin{rawhtml} </A> \end{rawhtml}
190    mailing list.
191    
192    \subsubsection{Upgrading from an earlier version}
193    
194    If you already have an earlier version of the code you can ``upgrade''
195    your copy instead of downloading the entire repository again. First,
196    ``cd'' (change directory) to the top of your working copy:
197    \begin{verbatim}
198    % cd MITgcm
199    \end{verbatim}
200    and then issue the cvs update command such as:
201    \begin{verbatim}
202    % cvs -q update -r checkpoint52i_post -d -P
203    \end{verbatim}
204    This will update the ``tag'' to ``checkpoint52i\_post'', add any new
205    directories (-d) and remove any empty directories (-P). The -q option
206    means be quiet which will reduce the number of messages you'll see in
207    the terminal. If you have modified the code prior to upgrading, CVS
208    will try to merge your changes with the upgrades. If there is a
209    conflict between your modifications and the upgrade, it will report
210    that file with a ``C'' in front, e.g.:
211    \begin{verbatim}
212    C model/src/ini_parms.F
213    \end{verbatim}
214    If the list of conflicts scrolled off the screen, you can re-issue the
215    cvs update command and it will report the conflicts. Conflicts are
216    indicated in the code by the delimites ``$<<<<<<<$'', ``======='' and
217    ``$>>>>>>>$''. For example,
218    {\small
219    \begin{verbatim}
220    <<<<<<< ini_parms.F
221         & bottomDragLinear,myOwnBottomDragCoefficient,
222    =======
223         & bottomDragLinear,bottomDragQuadratic,
224    >>>>>>> 1.18
225    \end{verbatim}
226    }
227    means that you added ``myOwnBottomDragCoefficient'' to a namelist at
228    the same time and place that we added ``bottomDragQuadratic''. You
229    need to resolve this conflict and in this case the line should be
230    changed to:
231    {\small
232    \begin{verbatim}
233         & bottomDragLinear,bottomDragQuadratic,myOwnBottomDragCoefficient,
234    \end{verbatim}
235    }
236    and the lines with the delimiters ($<<<<<<$,======,$>>>>>>$) be deleted.
237    Unless you are making modifications which exactly parallel
238    developments we make, these types of conflicts should be rare.
239    
240    \paragraph*{Upgrading to the current pre-release version}
241    
242    We don't make a ``release'' for every little patch and bug fix in
243    order to keep the frequency of upgrades to a minimum. However, if you
244    have run into a problem for which ``we have already fixed in the
245    latest code'' and we haven't made a ``tag'' or ``release'' since that
246    patch then you'll need to get the latest code:
247    \begin{verbatim}
248    % cvs -q update -A -d -P
249    \end{verbatim}
250    Unlike, the ``check-out'' and ``update'' procedures above, there is no
251    ``tag'' or release name. The -A tells CVS to upgrade to the
252    very latest version. As a rule, we don't recommend this since you
253    might upgrade while we are in the processes of checking in the code so
254    that you may only have part of a patch. Using this method of updating
255    also means we can't tell what version of the code you are working
256    with. So please be sure you understand what you're doing.
257    
258  \section{Model and directory structure}  \section{Model and directory structure}
259    
260  The ``numerical'' model is contained within a execution environment support  The ``numerical'' model is contained within a execution environment
261  wrapper. This wrapper is designed to provide a general framework for  support wrapper. This wrapper is designed to provide a general
262  grid-point models. MITgcmUV is a specific numerical model that uses the  framework for grid-point models. MITgcmUV is a specific numerical
263  framework. Under this structure the model is split into execution  model that uses the framework. Under this structure the model is split
264  environment support code and conventional numerical model code. The  into execution environment support code and conventional numerical
265  execution environment support code is held under the \textit{eesupp}  model code. The execution environment support code is held under the
266  directory. The grid point model code is held under the \textit{model}  \textit{eesupp} directory. The grid point model code is held under the
267  directory. Code execution actually starts in the \textit{eesupp} routines  \textit{model} directory. Code execution actually starts in the
268  and not in the \textit{model} routines. For this reason the top-level  \textit{eesupp} routines and not in the \textit{model} routines. For
269  \textit{MAIN.F} is in the \textit{eesupp/src} directory. In general,  this reason the top-level \textit{MAIN.F} is in the
270  end-users should not need to worry about this level. The top-level routine  \textit{eesupp/src} directory. In general, end-users should not need
271  for the numerical part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F%  to worry about this level. The top-level routine for the numerical
272  }. Here is a brief description of the directory structure of the model under  part of the code is in \textit{model/src/THE\_MODEL\_MAIN.F}. Here is
273  the root tree (a detailed description is given in section 3: Code structure).  a brief description of the directory structure of the model under the
274    root tree (a detailed description is given in section 3: Code
275    structure).
276    
277  \begin{itemize}  \begin{itemize}
 \item \textit{bin}: this directory is initially empty. It is the default  
 directory in which to compile the code.  
278    
279    \item \textit{bin}: this directory is initially empty. It is the
280      default directory in which to compile the code.
281      
282  \item \textit{diags}: contains the code relative to time-averaged  \item \textit{diags}: contains the code relative to time-averaged
283  diagnostics. It is subdivided into two subdirectories \textit{inc} and    diagnostics. It is subdivided into two subdirectories \textit{inc}
284  \textit{src} that contain include files (*.\textit{h} files) and fortran    and \textit{src} that contain include files (*.\textit{h} files) and
285  subroutines (*.\textit{F} files), respectively.    Fortran subroutines (*.\textit{F} files), respectively.
286    
287  \item \textit{doc}: contains brief documentation notes.  \item \textit{doc}: contains brief documentation notes.
288      
289  \item \textit{eesupp}: contains the execution environment source code. Also  \item \textit{eesupp}: contains the execution environment source code.
290  subdivided into two subdirectories \textit{inc} and \textit{src}.    Also subdivided into two subdirectories \textit{inc} and
291      \textit{src}.
292  \item \textit{exe}: this directory is initially empty. It is the default    
293  directory in which to execute the code.  \item \textit{exe}: this directory is initially empty. It is the
294      default directory in which to execute the code.
295  \item \textit{model}: this directory contains the main source code. Also    
296  subdivided into two subdirectories \textit{inc} and \textit{src}.  \item \textit{model}: this directory contains the main source code.
297      Also subdivided into two subdirectories \textit{inc} and
298  \item \textit{pkg}: contains the source code for the packages. Each package    \textit{src}.
299  corresponds to a subdirectory. For example, \textit{gmredi} contains the    
300  code related to the Gent-McWilliams/Redi scheme, \textit{aim} the code  \item \textit{pkg}: contains the source code for the packages. Each
301  relative to the atmospheric intermediate physics. The packages are described    package corresponds to a subdirectory. For example, \textit{gmredi}
302  in detail in section 3.    contains the code related to the Gent-McWilliams/Redi scheme,
303      \textit{aim} the code relative to the atmospheric intermediate
304  \item \textit{tools}: this directory contains various useful tools. For    physics. The packages are described in detail in section 3.
305  example, \textit{genmake} is a script written in csh (C-shell) that should    
306  be used to generate your makefile. The directory \textit{adjoint} contains  \item \textit{tools}: this directory contains various useful tools.
307  the makefile specific to the Tangent linear and Adjoint Compiler (TAMC) that    For example, \textit{genmake2} is a script written in csh (C-shell)
308  generates the adjoint code. The latter is described in details in part V.    that should be used to generate your makefile. The directory
309      \textit{adjoint} contains the makefile specific to the Tangent
310      linear and Adjoint Compiler (TAMC) that generates the adjoint code.
311      The latter is described in details in part V.
312      
313  \item \textit{utils}: this directory contains various utilities. The  \item \textit{utils}: this directory contains various utilities. The
314  subdirectory \textit{knudsen2} contains code and a makefile that    subdirectory \textit{knudsen2} contains code and a makefile that
315  compute coefficients of the polynomial approximation to the knudsen    compute coefficients of the polynomial approximation to the knudsen
316  formula for an ocean nonlinear equation of state. The \textit{matlab}    formula for an ocean nonlinear equation of state. The
317  subdirectory contains matlab scripts for reading model output directly    \textit{matlab} subdirectory contains matlab scripts for reading
318  into matlab. \textit{scripts} contains C-shell post-processing    model output directly into matlab. \textit{scripts} contains C-shell
319  scripts for joining processor-based and tiled-based model output.    post-processing scripts for joining processor-based and tiled-based
320      model output.
321      
322    \item \textit{verification}: this directory contains the model
323      examples. See section \ref{sect:modelExamples}.
324    
 \item \textit{verification}: this directory contains the model examples. See  
 section \ref{sect:modelExamples}.  
325  \end{itemize}  \end{itemize}
326    
327  \section{Example experiments}  \section{Example experiments}
328  \label{sect:modelExamples}  \label{sect:modelExamples}
329    
330  Now that you have successfully downloaded the model code we recommend that  %% a set of twenty-four pre-configured numerical experiments
 you first try to run the examples provided with the base version. You will  
 probably want to run the example that is the closest to the configuration  
 you will use eventually. The examples are located in subdirectories under  
 the directory \textit{verification} and are briefly described below (a full  
 description is given in section 2):  
331    
332  \subsection{List of model examples}  The MITgcm distribution comes with more than a dozen pre-configured
333    numerical experiments. Some of these example experiments are tests of
334    individual parts of the model code, but many are fully fledged
335    numerical simulations. A few of the examples are used for tutorial
336    documentation in sections \ref{sect:eg-baro} - \ref{sect:eg-global}.
337    The other examples follow the same general structure as the tutorial
338    examples. However, they only include brief instructions in a text file
339    called {\it README}.  The examples are located in subdirectories under
340    the directory \textit{verification}. Each example is briefly described
341    below.
342    
343  \begin{itemize}  \subsection{Full list of model examples}
 \item \textit{exp0} - single layer, ocean double gyre (barotropic with  
 free-surface).  
344    
345  \item \textit{exp1} - 4 layers, ocean double gyre.  \begin{enumerate}
346      
347    \item \textit{exp0} - single layer, ocean double gyre (barotropic with
348      free-surface). This experiment is described in detail in section
349      \ref{sect:eg-baro}.
350    
351    \item \textit{exp1} - Four layer, ocean double gyre. This experiment
352      is described in detail in section \ref{sect:eg-baroc}.
353      
354  \item \textit{exp2} - 4x4 degree global ocean simulation with steady  \item \textit{exp2} - 4x4 degree global ocean simulation with steady
355  climatological forcing.    climatological forcing. This experiment is described in detail in
356      section \ref{sect:eg-global}.
357  \item \textit{exp4} - flow over a Gaussian bump in open-water or channel    
358  with open boundaries.  \item \textit{exp4} - Flow over a Gaussian bump in open-water or
359      channel with open boundaries.
360      
361    \item \textit{exp5} - Inhomogenously forced ocean convection in a
362      doubly periodic box.
363    
364  \item \textit{exp5} - inhomogenously forced ocean convection in a doubly  \item \textit{front\_relax} - Relaxation of an ocean thermal front (test for
 periodic box.  
   
 \item \textit{front\_relax} - relaxation of an ocean thermal front (test for  
365  Gent/McWilliams scheme). 2D (Y-Z).  Gent/McWilliams scheme). 2D (Y-Z).
366    
367  \item \textit{internal wave} - ocean internal wave forced by open boundary  \item \textit{internal wave} - Ocean internal wave forced by open
368  conditions.    boundary conditions.
369      
370  \item \textit{natl\_box} - eastern subtropical North Atlantic with KPP  \item \textit{natl\_box} - Eastern subtropical North Atlantic with KPP
371  scheme; 1 month integration    scheme; 1 month integration
372      
373  \item \textit{hs94.1x64x5} - zonal averaged atmosphere using Held and Suarez  \item \textit{hs94.1x64x5} - Zonal averaged atmosphere using Held and
374  '94 forcing.    Suarez '94 forcing.
375      
376  \item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and Suarez  \item \textit{hs94.128x64x5} - 3D atmosphere dynamics using Held and
377  '94 forcing.    Suarez '94 forcing.
378      
379  \item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and  \item \textit{hs94.cs-32x32x5} - 3D atmosphere dynamics using Held and
380  Suarez '94 forcing on the cubed sphere.    Suarez '94 forcing on the cubed sphere.
381      
382  \item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics, 5 layers  \item \textit{aim.5l\_zon-ave} - Intermediate Atmospheric physics.
383  Molteni physics package. Global Zonal Mean configuration, 1x64x5 resolution.    Global Zonal Mean configuration, 1x64x5 resolution.
384      
385  \item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate Atmospheric  \item \textit{aim.5l\_XZ\_Equatorial\_Slice} - Intermediate
386  physics, 5 layers Molteni physics package. Equatorial Slice configuration.    Atmospheric physics, equatorial Slice configuration.  2D (X-Z).
387  2D (X-Z).    
   
388  \item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric  \item \textit{aim.5l\_Equatorial\_Channel} - Intermediate Atmospheric
389  physics, 5 layers Molteni physics package. 3D Equatorial Channel    physics. 3D Equatorial Channel configuration.
390  configuration (not completely tested).    
391    \item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics.
392  \item \textit{aim.5l\_LatLon} - Intermediate Atmospheric physics, 5 layers    Global configuration, on latitude longitude grid with 128x64x5 grid
393  Molteni physics package. Global configuration, 128x64x5 resolution.    points ($2.8^\circ{\rm degree}$ resolution).
394      
395    \item \textit{adjustment.128x64x1} Barotropic adjustment problem on
396      latitude longitude grid with 128x64 grid points ($2.8^\circ{\rm
397        degree}$ resolution).
398      
399    \item \textit{adjustment.cs-32x32x1} Barotropic adjustment problem on
400      cube sphere grid with 32x32 points per face ( roughly $2.8^\circ{\rm
401        degree}$ resolution).
402      
403    \item \textit{advect\_cs} Two-dimensional passive advection test on
404      cube sphere grid.
405      
406    \item \textit{advect\_xy} Two-dimensional (horizontal plane) passive
407      advection test on Cartesian grid.
408      
409    \item \textit{advect\_yz} Two-dimensional (vertical plane) passive
410      advection test on Cartesian grid.
411      
412    \item \textit{carbon} Simple passive tracer experiment. Includes
413      derivative calculation. Described in detail in section
414      \ref{sect:eg-carbon-ad}.
415    
416    \item \textit{flt\_example} Example of using float package.
417      
418    \item \textit{global\_ocean.90x40x15} Global circulation with GM, flux
419      boundary conditions and poles.
420    
421    \item \textit{global\_ocean\_pressure} Global circulation in pressure
422      coordinate (non-Boussinesq ocean model). Described in detail in
423      section \ref{sect:eg-globalpressure}.
424      
425    \item \textit{solid-body.cs-32x32x1} Solid body rotation test for cube
426      sphere grid.
427    
428  \item \textit{adjustment.128x64x1}  \end{enumerate}
   
 \item \textit{adjustment.cs-32x32x1}  
 \end{itemize}  
429    
430  \subsection{Directory structure of model examples}  \subsection{Directory structure of model examples}
431    
# Line 214  Each example directory has the following Line 433  Each example directory has the following
433    
434  \begin{itemize}  \begin{itemize}
435  \item \textit{code}: contains the code particular to the example. At a  \item \textit{code}: contains the code particular to the example. At a
436  minimum, this directory includes the following files:    minimum, this directory includes the following files:
   
 \begin{itemize}  
 \item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to the  
 ``execution environment'' part of the code. The default version is located  
 in \textit{eesupp/inc}.  
   
 \item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to the  
 ``numerical model'' part of the code. The default version is located in  
 \textit{model/inc}.  
   
 \item \textit{code/SIZE.h}: declares size of underlying computational grid.  
 The default version is located in \textit{model/inc}.  
 \end{itemize}  
   
 In addition, other include files and subroutines might be present in \textit{%  
 code} depending on the particular experiment. See section 2 for more details.  
   
 \item \textit{input}: contains the input data files required to run the  
 example. At a mimimum, the \textit{input} directory contains the following  
 files:  
   
 \begin{itemize}  
 \item \textit{input/data}: this file, written as a namelist, specifies the  
 main parameters for the experiment.  
   
 \item \textit{input/data.pkg}: contains parameters relative to the packages  
 used in the experiment.  
   
 \item \textit{input/eedata}: this file contains ``execution environment''  
 data. At present, this consists of a specification of the number of threads  
 to use in $X$ and $Y$ under multithreaded execution.  
 \end{itemize}  
437    
438  In addition, you will also find in this directory the forcing and topography    \begin{itemize}
439  files as well as the files describing the initial state of the experiment.    \item \textit{code/CPP\_EEOPTIONS.h}: declares CPP keys relative to
440  This varies from experiment to experiment. See section 2 for more details.      the ``execution environment'' part of the code. The default
441        version is located in \textit{eesupp/inc}.
442  \item \textit{results}: this directory contains the output file \textit{%    
443  output.txt} produced by the simulation example. This file is useful for    \item \textit{code/CPP\_OPTIONS.h}: declares CPP keys relative to
444  comparison with your own output when you run the experiment.      the ``numerical model'' part of the code. The default version is
445        located in \textit{model/inc}.
446      
447      \item \textit{code/SIZE.h}: declares size of underlying
448        computational grid.  The default version is located in
449        \textit{model/inc}.
450      \end{itemize}
451      
452      In addition, other include files and subroutines might be present in
453      \textit{code} depending on the particular experiment. See Section 2
454      for more details.
455      
456    \item \textit{input}: contains the input data files required to run
457      the example. At a minimum, the \textit{input} directory contains the
458      following files:
459    
460      \begin{itemize}
461      \item \textit{input/data}: this file, written as a namelist,
462        specifies the main parameters for the experiment.
463      
464      \item \textit{input/data.pkg}: contains parameters relative to the
465        packages used in the experiment.
466      
467      \item \textit{input/eedata}: this file contains ``execution
468        environment'' data. At present, this consists of a specification
469        of the number of threads to use in $X$ and $Y$ under multithreaded
470        execution.
471      \end{itemize}
472      
473      In addition, you will also find in this directory the forcing and
474      topography files as well as the files describing the initial state
475      of the experiment.  This varies from experiment to experiment. See
476      section 2 for more details.
477    
478    \item \textit{results}: this directory contains the output file
479      \textit{output.txt} produced by the simulation example. This file is
480      useful for comparison with your own output when you run the
481      experiment.
482  \end{itemize}  \end{itemize}
483    
484  Once you have chosen the example you want to run, you are ready to compile  Once you have chosen the example you want to run, you are ready to
485  the code.  compile the code.
486    
487  \section{Building the code}  \section{Building the code}
488  \label{sect:buildingCode}  \label{sect:buildingCode}
# Line 266  the code. Line 490  the code.
490  To compile the code, we use the {\em make} program. This uses a file  To compile the code, we use the {\em make} program. This uses a file
491  ({\em Makefile}) that allows us to pre-process source files, specify  ({\em Makefile}) that allows us to pre-process source files, specify
492  compiler and optimization options and also figures out any file  compiler and optimization options and also figures out any file
493  dependancies. We supply a script ({\em genmake}), described in section  dependencies. We supply a script ({\em genmake2}), described in
494  \ref{sect:genmake}, that automatically creates the {\em Makefile} for  section \ref{sect:genmake}, that automatically creates the {\em
495  you. You then need to build the dependancies and compile the code.    Makefile} for you. You then need to build the dependencies and
496    compile the code.
497    
498  As an example, let's assume that you want to build and run experiment  As an example, let's assume that you want to build and run experiment
499  \textit{verification/exp2}. The are multiple ways and places to actually  \textit{verification/exp2}. The are multiple ways and places to
500  do this but here let's build the code in  actually do this but here let's build the code in
501  \textit{verification/exp2/input}:  \textit{verification/exp2/input}:
502  \begin{verbatim}  \begin{verbatim}
503  % cd verification/exp2/input  % cd verification/exp2/input
504  \end{verbatim}  \end{verbatim}
505  First, build the {\em Makefile}:  First, build the {\em Makefile}:
506  \begin{verbatim}  \begin{verbatim}
507  % ../../../tools/genmake -mods=../code  % ../../../tools/genmake2 -mods=../code
508  \end{verbatim}  \end{verbatim}
509  The command line option tells {\em genmake} to override model source  The command line option tells {\em genmake} to override model source
510  code with any files in the directory {\em ./code/}.  code with any files in the directory {\em ./code/}.
511    
512  If there is no \textit{.genmakerc} in the \textit{input} directory, you have  On many systems, the {\em genmake2} program will be able to
513  to use the following options when invoking \textit{genmake}:  automatically recognize the hardware, find compilers and other tools
514    within the user's path (``echo \$PATH''), and then choose an
515    appropriate set of options from the files contained in the {\em
516      tools/build\_options} directory.  Under some circumstances, a user
517    may have to create a new ``optfile'' in order to specify the exact
518    combination of compiler, compiler flags, libraries, and other options
519    necessary to build a particular configuration of MITgcm.  In such
520    cases, it is generally helpful to read the existing ``optfiles'' and
521    mimic their syntax.
522    
523    Through the MITgcm-support list, the MITgcm developers are willing to
524    provide help writing or modifing ``optfiles''.  And we encourage users
525    to post new ``optfiles'' (particularly ones for new machines or
526    architectures) to the
527    \begin{rawhtml} <A href=''mailto:MITgcm-support@mitgcm.org"> \end{rawhtml}
528    MITgcm-support@mitgcm.org
529    \begin{rawhtml} </A> \end{rawhtml}
530    list.
531    
532    To specify an optfile to {\em genmake2}, the syntax is:
533  \begin{verbatim}  \begin{verbatim}
534  % ../../../tools/genmake  -mods=../code  % ../../../tools/genmake2 -mods=../code -of /path/to/optfile
535  \end{verbatim}  \end{verbatim}
536    
537  Next, create the dependancies:  Once a {\em Makefile} has been generated, we create the dependencies:
538  \begin{verbatim}  \begin{verbatim}
539  % make depend  % make depend
540  \end{verbatim}  \end{verbatim}
541  This modifies {\em Makefile} by attaching a [long] list of files on  This modifies the {\em Makefile} by attaching a [long] list of files
542  which other files depend. The purpose of this is to reduce  upon which other files depend. The purpose of this is to reduce
543  re-compilation if and when you start to modify the code. {\tt make  re-compilation if and when you start to modify the code. The {\tt make
544  depend} also created links from the model source to this directory.    depend} command also creates links from the model source to this
545    directory.
546    
547  Now compile the code:  Next compile the code:
548  \begin{verbatim}  \begin{verbatim}
549  % make  % make
550  \end{verbatim}  \end{verbatim}
551  The {\tt make} command creates an executable called \textit{mitgcmuv}.  The {\tt make} command creates an executable called \textit{mitgcmuv}.
552    Additional make ``targets'' are defined within the makefile to aid in
553    the production of adjoint and other versions of MITgcm.
554    
555  Now you are ready to run the model. General instructions for doing so are  Now you are ready to run the model. General instructions for doing so are
556  given in section \ref{sect:runModel}. Here, we can run the model with:  given in section \ref{sect:runModel}. Here, we can run the model with:
# Line 321  executable in the {\em input} directory Line 568  executable in the {\em input} directory
568  convenience. You can also configure and compile the code in other  convenience. You can also configure and compile the code in other
569  locations, for example on a scratch disk with out having to copy the  locations, for example on a scratch disk with out having to copy the
570  entire source tree. The only requirement to do so is you have {\tt  entire source tree. The only requirement to do so is you have {\tt
571  genmake} in your path or you know the absolute path to {\tt genmake}.    genmake2} in your path or you know the absolute path to {\tt
572      genmake2}.
573    
574  The following sections outline some possible methods of organizing you  The following sections outline some possible methods of organizing
575  source and data.  your source and data.
576    
577  \subsubsection{Building from the {\em ../code directory}}  \subsubsection{Building from the {\em ../code directory}}
578    
579  This is just as simple as building in the {\em input/} directory:  This is just as simple as building in the {\em input/} directory:
580  \begin{verbatim}  \begin{verbatim}
581  % cd verification/exp2/code  % cd verification/exp2/code
582  % ../../../tools/genmake  % ../../../tools/genmake2
583  % make depend  % make depend
584  % make  % make
585  \end{verbatim}  \end{verbatim}
# Line 342  files must be in the same place. If you Line 590  files must be in the same place. If you
590  % cp ../code/mitgcmuv ./  % cp ../code/mitgcmuv ./
591  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
592  \end{verbatim}  \end{verbatim}
593  or if you will be making muliple runs with the same executable:  or if you will be making multiple runs with the same executable:
594  \begin{verbatim}  \begin{verbatim}
595  % cd ../  % cd ../
596  % cp -r input run1  % cp -r input run1
# Line 354  or if you will be making muliple runs wi Line 602  or if you will be making muliple runs wi
602  \subsubsection{Building from a new directory}  \subsubsection{Building from a new directory}
603    
604  Since the {\em input} directory contains input files it is often more  Since the {\em input} directory contains input files it is often more
605  useful to keep {\em input} prestine and build in a new directory  useful to keep {\em input} pristine and build in a new directory
606  within {\em verification/exp2/}:  within {\em verification/exp2/}:
607  \begin{verbatim}  \begin{verbatim}
608  % cd verification/exp2  % cd verification/exp2
609  % mkdir build  % mkdir build
610  % cd build  % cd build
611  % ../../../tools/genmake -mods=../code  % ../../../tools/genmake2 -mods=../code
612  % make depend  % make depend
613  % make  % make
614  \end{verbatim}  \end{verbatim}
# Line 382  running in a new directory each time mig Line 630  running in a new directory each time mig
630  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
631  \end{verbatim}  \end{verbatim}
632    
633  \subsubsection{Building from on a scratch disk}  \subsubsection{Building on a scratch disk}
634    
635  Model object files and output data can use up large amounts of disk  Model object files and output data can use up large amounts of disk
636  space so it is often the case that you will be operating on a large  space so it is often the case that you will be operating on a large
# Line 390  scratch disk. Assuming the model source Line 638  scratch disk. Assuming the model source
638  following commands will build the model in {\em /scratch/exp2-run1}:  following commands will build the model in {\em /scratch/exp2-run1}:
639  \begin{verbatim}  \begin{verbatim}
640  % cd /scratch/exp2-run1  % cd /scratch/exp2-run1
641  % ~/MITgcm/tools/genmake -rootdir=~/MITgcm -mods=~/MITgcm/verification/exp2/code  % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \
642      -mods=~/MITgcm/verification/exp2/code
643  % make depend  % make depend
644  % make  % make
645  \end{verbatim}  \end{verbatim}
# Line 406  the one experiment: Line 655  the one experiment:
655  % cd /scratch/exp2  % cd /scratch/exp2
656  % mkdir build  % mkdir build
657  % cd build  % cd build
658  % ~/MITgcm/tools/genmake -rootdir=~/MITgcm -mods=~/MITgcm/verification/exp2/code  % ~/MITgcm/tools/genmake2 -rootdir=~/MITgcm \
659      -mods=~/MITgcm/verification/exp2/code
660  % make depend  % make depend
661  % make  % make
662  % cd ../  % cd ../
# Line 416  the one experiment: Line 666  the one experiment:
666  \end{verbatim}  \end{verbatim}
667    
668    
669    \subsection{Using \textit{genmake2}}
 \subsection{\textit{genmake}}  
670  \label{sect:genmake}  \label{sect:genmake}
671    
672  To compile the code, use the script \textit{genmake} located in the \textit{%  To compile the code, first use the program \texttt{genmake2} (located
673  tools} directory. \textit{genmake} is a script that generates the makefile.  in the \textit{tools} directory) to generate a Makefile.
674  It has been written so that the code can be compiled on a wide diversity of  \texttt{genmake2} is a shell script written to work with all
675  machines and systems. However, if it doesn't work the first time on your  ``sh''--compatible shells including bash v1, bash v2, and Bourne.
676  platform, you might need to edit certain lines of \textit{genmake} in the  Internally, \texttt{genmake2} determines the locations of needed
677  section containing the setups for the different machines. The file is  files, the compiler, compiler options, libraries, and Unix tools.  It
678  structured like this:  relies upon a number of ``optfiles'' located in the {\em
679  \begin{verbatim}    tools/build\_options} directory.
680          .  
681          .  The purpose of the optfiles is to provide all the compilation options
682          .  for particular ``platforms'' (where ``platform'' roughly means the
683  general instructions (machine independent)  combination of the hardware and the compiler) and code configurations.
684          .  Given the combinations of possible compilers and library dependencies
685          .  ({\it eg.}  MPI and NetCDF) there may be numerous optfiles available
686          .  for a single machine.  The naming scheme for the majority of the
687      - setup machine 1  optfiles shipped with the code is
688      - setup machine 2  \begin{center}
689      - setup machine 3    {\bf OS\_HARDWARE\_COMPILER }
690      - setup machine 4  \end{center}
691         etc  where
692          .  \begin{description}
693          .  \item[OS] is the name of the operating system (generally the
694          .    lower-case output of the {\tt 'uname'} command)
695  \end{verbatim}  \item[HARDWARE] is a string that describes the CPU type and
696      corresponds to output from the  {\tt 'uname -m'} command:
697  For example, the setup corresponding to a DEC alpha machine is reproduced    \begin{description}
698  here:    \item[ia32] is for ``x86'' machines such as i386, i486, i586, i686,
699  \begin{verbatim}      and athlon
700    case OSF1+mpi:    \item[ia64] is for Intel IA64 systems (eg. Itanium, Itanium2)
701      echo "Configuring for DEC Alpha"    \item[amd64] is AMD x86\_64 systems
702      set CPP        = ( '/usr/bin/cpp -P' )    \item[ppc] is for Mac PowerPC systems
703      set DEFINES    = ( ${DEFINES}  '-DTARGET_DEC -DWORDLENGTH=1' )    \end{description}
704      set KPP        = ( 'kapf' )  \item[COMPILER] is the compiler name (generally, the name of the
705      set KPPFILES   = ( 'main.F' )    FORTRAN executable)
706      set KFLAGS1    = ( '-scan=132 -noconc -cmp=' )  \end{description}
707      set FC         = ( 'f77' )  
708      set FFLAGS     = ( '-convert big_endian -r8 -extend_source -automatic -call_shared -notransform_loops -align dcommons' )  In many cases, the default optfiles are sufficient and will result in
709      set FOPTIM     = ( '-O5 -fast -tune host -inline all' )  usable Makefiles.  However, for some machines or code configurations,
710      set NOOPTFLAGS = ( '-O0' )  new ``optfiles'' must be written. To create a new optfile, it is
711      set LIBS       = ( '-lfmpi -lmpi -lkmp_osfp10 -pthread' )  generally best to start with one of the defaults and modify it to suit
712      set NOOPTFILES = ( 'barrier.F different_multiple.F external_fields_load.F')  your needs.  Like \texttt{genmake2}, the optfiles are all written
713      set RMFILES    = ( '*.p.out' )  using a simple ``sh''--compatible syntax.  While nearly all variables
714      breaksw  used within \texttt{genmake2} may be specified in the optfiles, the
715  \end{verbatim}  critical ones that should be defined are:
716    
717  Typically, these are the lines that you might need to edit to make \textit{%  \begin{description}
718  genmake} work on your platform if it doesn't work the first time. \textit{%  \item[FC] the FORTRAN compiler (executable) to use
719  genmake} understands several options that are described here:  \item[DEFINES] the command-line DEFINE options passed to the compiler
720    \item[CPP] the C pre-processor to use
721  \begin{itemize}  \item[NOOPTFLAGS] options flags for special files that should not be
722  \item -rootdir=dir    optimized
723    \end{description}
724  indicates where the model root directory is relative to the directory where  
725  you are compiling. This option is not needed if you compile in the \textit{%  For example, the optfile for a typical Red Hat Linux machine (``ia32''
726  bin} directory (which is the default compilation directory) or within the  architecture) using the GCC (g77) compiler is
727  \textit{verification} tree.  \begin{verbatim}
728    FC=g77
729  \item -mods=dir1,dir2,...  DEFINES='-D_BYTESWAPIO -DWORDLENGTH=4'
730    CPP='cpp  -traditional -P'
731  indicates the relative or absolute paths directories where the sources  NOOPTFLAGS='-O0'
732  should take precedence over the default versions (located in \textit{model},  #  For IEEE, use the "-ffloat-store" option
733  \textit{eesupp},...). Typically, this option is used when running the  if test "x$IEEE" = x ; then
734  examples, see below.      FFLAGS='-Wimplicit -Wunused -Wuninitialized'
735        FOPTIM='-O3 -malign-double -funroll-loops'
736  \item -enable=pkg1,pkg2,...  else
737        FFLAGS='-Wimplicit -Wunused -ffloat-store'
738  enables packages source code \textit{pkg1}, \textit{pkg2},... when creating      FOPTIM='-O0 -malign-double'
739  the makefile.  fi
740    \end{verbatim}
741  \item -disable=pkg1,pkg2,...  
742    If you write an optfile for an unrepresented machine or compiler, you
743  disables packages source code \textit{pkg1}, \textit{pkg2},... when creating  are strongly encouraged to submit the optfile to the MITgcm project
744  the makefile.  for inclusion.  Please send the file to the
745    \begin{rawhtml} <A href="mail-to:MITgcm-support@mitgcm.org"> \end{rawhtml}
746  \item -platform=machine  \begin{center}
747      MITgcm-support@mitgcm.org
748  specifies the platform for which you want the makefile. In general, you  \end{center}
749  won't need this option. \textit{genmake} will select the right machine for  \begin{rawhtml} </A> \end{rawhtml}
750  you (the one you're working on!). However, this option is useful if you have  mailing list.
751  a choice of several compilers on one machine and you want to use the one  
752  that is not the default (ex: \texttt{pgf77} instead of \texttt{f77} under  In addition to the optfiles, \texttt{genmake2} supports a number of
753  Linux).  helpful command-line options.  A complete list of these options can be
754    obtained from:
755    \begin{verbatim}
756    % genmake2 -h
757    \end{verbatim}
758    
759    The most important command-line options are:
760    \begin{description}
761      
762    \item[\texttt{--optfile=/PATH/FILENAME}] specifies the optfile that
763      should be used for a particular build.
764      
765      If no "optfile" is specified (either through the command line or the
766      MITGCM\_OPTFILE environment variable), genmake2 will try to make a
767      reasonable guess from the list provided in {\em
768        tools/build\_options}.  The method used for making this guess is
769      to first determine the combination of operating system and hardware
770      (eg. "linux\_ia32") and then find a working FORTRAN compiler within
771      the user's path.  When these three items have been identified,
772      genmake2 will try to find an optfile that has a matching name.
773      
774    \item[\texttt{--pdefault='PKG1 PKG2 PKG3 ...'}] specifies the default
775      set of packages to be used.  The normal order of precedence for
776      packages is as follows:
777      \begin{enumerate}
778      \item If available, the command line (\texttt{--pdefault}) settings
779        over-rule any others.
780    
781      \item Next, \texttt{genmake2} will look for a file named
782        ``\texttt{packages.conf}'' in the local directory or in any of the
783        directories specified with the \texttt{--mods} option.
784        
785      \item Finally, if neither of the above are available,
786        \texttt{genmake2} will use the \texttt{/pkg/pkg\_default} file.
787      \end{enumerate}
788      
789    \item[\texttt{--pdepend=/PATH/FILENAME}] specifies the dependency file
790      used for packages.
791      
792      If not specified, the default dependency file {\em pkg/pkg\_depend}
793      is used.  The syntax for this file is parsed on a line-by-line basis
794      where each line containes either a comment ("\#") or a simple
795      "PKGNAME1 (+|-)PKGNAME2" pairwise rule where the "+" or "-" symbol
796      specifies a "must be used with" or a "must not be used with"
797      relationship, respectively.  If no rule is specified, then it is
798      assumed that the two packages are compatible and will function
799      either with or without each other.
800      
801    \item[\texttt{--adof=/path/to/file}] specifies the "adjoint" or
802      automatic differentiation options file to be used.  The file is
803      analogous to the ``optfile'' defined above but it specifies
804      information for the AD build process.
805      
806      The default file is located in {\em
807        tools/adjoint\_options/adjoint\_default} and it defines the "TAF"
808      and "TAMC" compilers.  An alternate version is also available at
809      {\em tools/adjoint\_options/adjoint\_staf} that selects the newer
810      "STAF" compiler.  As with any compilers, it is helpful to have their
811      directories listed in your {\tt \$PATH} environment variable.
812      
813    \item[\texttt{--mods='DIR1 DIR2 DIR3 ...'}] specifies a list of
814      directories containing ``modifications''.  These directories contain
815      files with names that may (or may not) exist in the main MITgcm
816      source tree but will be overridden by any identically-named sources
817      within the ``MODS'' directories.
818      
819      The order of precedence for this "name-hiding" is as follows:
820      \begin{itemize}
821      \item ``MODS'' directories (in the order given)
822      \item Packages either explicitly specified or provided by default
823        (in the order given)
824      \item Packages included due to package dependencies (in the order
825        that that package dependencies are parsed)
826      \item The "standard dirs" (which may have been specified by the
827        ``-standarddirs'' option)
828      \end{itemize}
829      
830    \item[\texttt{--mpi}] This option enables certain MPI features (using
831      CPP \texttt{\#define}s) within the code and is necessary for MPI
832      builds (see Section \ref{sect:mpi-build}).
833      
834    \item[\texttt{--make=/path/to/gmake}] Due to the poor handling of
835      soft-links and other bugs common with the \texttt{make} versions
836      provided by commercial Unix vendors, GNU \texttt{make} (sometimes
837      called \texttt{gmake}) should be preferred.  This option provides a
838      means for specifying the make executable to be used.
839      
840    \item[\texttt{--bash=/path/to/sh}] On some (usually older UNIX)
841      machines, the ``bash'' shell is unavailable.  To run on these
842      systems, \texttt{genmake2} can be invoked using an ``sh'' (that is,
843      a Bourne, POSIX, or compatible) shell.  The syntax in these
844      circumstances is:
845      \begin{center}
846        \texttt{\%  /bin/sh genmake2 -bash=/bin/sh [...options...]}
847      \end{center}
848      where \texttt{/bin/sh} can be replaced with the full path and name
849      of the desired shell.
850    
851    \end{description}
852    
853    
854    \subsection{Building with MPI}
855    \label{sect:mpi-build}
856    
857    Building MITgcm to use MPI libraries can be complicated due to the
858    variety of different MPI implementations available, their dependencies
859    or interactions with different compilers, and their often ad-hoc
860    locations within file systems.  For these reasons, its generally a
861    good idea to start by finding and reading the documentation for your
862    machine(s) and, if necessary, seeking help from your local systems
863    administrator.
864    
865    The steps for building MITgcm with MPI support are:
866    \begin{enumerate}
867      
868    \item Determine the locations of your MPI-enabled compiler and/or MPI
869      libraries and put them into an options file as described in Section
870      \ref{sect:genmake}.  One can start with one of the examples in:
871      \begin{rawhtml} <A
872        href="http://mitgcm.org/cgi-bin/viewcvs.cgi/MITgcm/tools/build_options/">
873      \end{rawhtml}
874      \begin{center}
875        \texttt{MITgcm/tools/build\_options/}
876      \end{center}
877      \begin{rawhtml} </A> \end{rawhtml}
878      such as \texttt{linux\_ia32\_g77+mpi\_cg01} or
879      \texttt{linux\_ia64\_efc+mpi} and then edit it to suit the machine at
880      hand.  You may need help from your user guide or local systems
881      administrator to determine the exact location of the MPI libraries.
882      If libraries are not installed, MPI implementations and related
883      tools are available including:
884      \begin{itemize}
885      \item \begin{rawhtml} <A
886          href="http://www-unix.mcs.anl.gov/mpi/mpich/">
887        \end{rawhtml}
888        MPICH
889        \begin{rawhtml} </A> \end{rawhtml}
890    
891      \item \begin{rawhtml} <A
892          href="http://www.lam-mpi.org/">
893        \end{rawhtml}
894        LAM/MPI
895        \begin{rawhtml} </A> \end{rawhtml}
896    
897      \item \begin{rawhtml} <A
898          href="http://www.osc.edu/~pw/mpiexec/">
899        \end{rawhtml}
900        MPIexec
901        \begin{rawhtml} </A> \end{rawhtml}
902      \end{itemize}
903      
904    \item Build the code with the \texttt{genmake2} \texttt{-mpi} option
905      (see Section \ref{sect:genmake}) using commands such as:
906    {\footnotesize \begin{verbatim}
907      %  ../../../tools/genmake2 -mods=../code -mpi -of=YOUR_OPTFILE
908      %  make depend
909      %  make
910    \end{verbatim} }
911      
912    \item Run the code with the appropriate MPI ``run'' or ``exec''
913      program provided with your particular implementation of MPI.
914      Typical MPI packages such as MPICH will use something like:
915    \begin{verbatim}
916      %  mpirun -np 4 -machinefile mf ./mitgcmuv
917    \end{verbatim}
918      Sightly more complicated scripts may be needed for many machines
919      since execution of the code may be controlled by both the MPI
920      library and a job scheduling and queueing system such as PBS,
921      LoadLeveller, Condor, or any of a number of similar tools.
922    
923  \item -mpi  \end{enumerate}
924    
 this is used when you want to run the model in parallel processing mode  
 under mpi (see section on parallel computation for more details).  
   
 \item -jam  
   
 this is used when you want to run the model in parallel processing mode  
 under jam (see section on parallel computation for more details).  
 \end{itemize}  
   
 For some of the examples, there is a file called \textit{.genmakerc} in the  
 \textit{input} directory that has the relevant \textit{genmake} options for  
 that particular example. In this way you don't need to type the options when  
 invoking \textit{genmake}.  
925    
926    
927  \section{Running the model}  \section{Running the model}
928  \label{sect:runModel}  \label{sect:runModel}
929    
930  If compilation finished succesfuully (section \ref{sect:buildModel})  If compilation finished succesfuully (section \ref{sect:buildingCode})
931  then an executable called {\em mitgcmuv} will now exist in the local  then an executable called \texttt{mitgcmuv} will now exist in the
932  directory.  local directory.
933    
934  To run the model as a single process (ie. not in parallel) simply  To run the model as a single process (ie. not in parallel) simply
935  type:  type:
# Line 543  normally re-direct the {\em stdout} stre Line 947  normally re-direct the {\em stdout} stre
947  % ./mitgcmuv > output.txt  % ./mitgcmuv > output.txt
948  \end{verbatim}  \end{verbatim}
949    
950  For the example experiments in {\em vericication}, an example of the  For the example experiments in {\em verification}, an example of the
951  output is kept in {\em results/output.txt} for comparison. You can compare  output is kept in {\em results/output.txt} for comparison. You can compare
952  your {\em output.txt} with this one to check that the set-up works.  your {\em output.txt} with this one to check that the set-up works.
953    
# Line 632  Some examples of reading and visualizing Line 1036  Some examples of reading and visualizing
1036  \section{Doing it yourself: customizing the code}  \section{Doing it yourself: customizing the code}
1037    
1038  When you are ready to run the model in the configuration you want, the  When you are ready to run the model in the configuration you want, the
1039  easiest thing is to use and adapt the setup of the case studies experiment  easiest thing is to use and adapt the setup of the case studies
1040  (described previously) that is the closest to your configuration. Then, the  experiment (described previously) that is the closest to your
1041  amount of setup will be minimized. In this section, we focus on the setup  configuration. Then, the amount of setup will be minimized. In this
1042  relative to the ''numerical model'' part of the code (the setup relative to  section, we focus on the setup relative to the ``numerical model''
1043  the ''execution environment'' part is covered in the parallel implementation  part of the code (the setup relative to the ``execution environment''
1044  section) and on the variables and parameters that you are likely to change.  part is covered in the parallel implementation section) and on the
1045    variables and parameters that you are likely to change.
1046    
1047  \subsection{Configuration and setup}  \subsection{Configuration and setup}
1048    
1049  The CPP keys relative to the ''numerical model'' part of the code are all  The CPP keys relative to the ``numerical model'' part of the code are
1050  defined and set in the file \textit{CPP\_OPTIONS.h }in the directory \textit{%  all defined and set in the file \textit{CPP\_OPTIONS.h }in the
1051  model/inc }or in one of the \textit{code }directories of the case study  directory \textit{ model/inc }or in one of the \textit{code
1052  experiments under \textit{verification.} The model parameters are defined  }directories of the case study experiments under
1053  and declared in the file \textit{model/inc/PARAMS.h }and their default  \textit{verification.} The model parameters are defined and declared
1054  values are set in the routine \textit{model/src/set\_defaults.F. }The  in the file \textit{model/inc/PARAMS.h }and their default values are
1055  default values can be modified in the namelist file \textit{data }which  set in the routine \textit{model/src/set\_defaults.F. }The default
1056  needs to be located in the directory where you will run the model. The  values can be modified in the namelist file \textit{data }which needs
1057  parameters are initialized in the routine \textit{model/src/ini\_parms.F}.  to be located in the directory where you will run the model. The
1058  Look at this routine to see in what part of the namelist the parameters are  parameters are initialized in the routine
1059  located.  \textit{model/src/ini\_parms.F}.  Look at this routine to see in what
1060    part of the namelist the parameters are located.
1061  In what follows the parameters are grouped into categories related to the  
1062  computational domain, the equations solved in the model, and the simulation  In what follows the parameters are grouped into categories related to
1063  controls.  the computational domain, the equations solved in the model, and the
1064    simulation controls.
1065    
1066  \subsection{Computational domain, geometry and time-discretization}  \subsection{Computational domain, geometry and time-discretization}
1067    
1068  \begin{itemize}  \begin{description}
1069  \item dimensions  \item[dimensions] \
1070  \end{itemize}    
1071      The number of points in the x, y, and r directions are represented
1072  The number of points in the x, y,\textit{\ }and r\textit{\ }directions are    by the variables \textbf{sNx}, \textbf{sNy} and \textbf{Nr}
1073  represented by the variables \textbf{sNx}\textit{, }\textbf{sNy}\textit{, }%    respectively which are declared and set in the file
1074  and \textbf{Nr}\textit{\ }respectively which are declared and set in the    \textit{model/inc/SIZE.h}.  (Again, this assumes a mono-processor
1075  file \textit{model/inc/SIZE.h. }(Again, this assumes a mono-processor    calculation. For multiprocessor calculations see the section on
1076  calculation. For multiprocessor calculations see section on parallel    parallel implementation.)
1077  implementation.)  
1078    \item[grid] \
1079  \begin{itemize}    
1080  \item grid    Three different grids are available: cartesian, spherical polar, and
1081  \end{itemize}    curvilinear (which includes the cubed sphere). The grid is set
1082      through the logical variables \textbf{usingCartesianGrid},
1083  Three different grids are available: cartesian, spherical polar, and    \textbf{usingSphericalPolarGrid}, and \textbf{usingCurvilinearGrid}.
1084  curvilinear (including the cubed sphere). The grid is set through the    In the case of spherical and curvilinear grids, the southern
1085  logical variables \textbf{usingCartesianGrid}\textit{, }\textbf{%    boundary is defined through the variable \textbf{phiMin} which
1086  usingSphericalPolarGrid}\textit{, }and \textit{\ }\textbf{%    corresponds to the latitude of the southern most cell face (in
1087  usingCurvilinearGrid}\textit{. }In the case of spherical and curvilinear    degrees). The resolution along the x and y directions is controlled
1088  grids, the southern boundary is defined through the variable \textbf{phiMin}%    by the 1D arrays \textbf{delx} and \textbf{dely} (in meters in the
1089  \textit{\ }which corresponds to the latitude of the southern most cell face    case of a cartesian grid, in degrees otherwise).  The vertical grid
1090  (in degrees). The resolution along the x and y directions is controlled by    spacing is set through the 1D array \textbf{delz} for the ocean (in
1091  the 1D arrays \textbf{delx}\textit{\ }and \textbf{dely}\textit{\ }(in meters    meters) or \textbf{delp} for the atmosphere (in Pa).  The variable
1092  in the case of a cartesian grid, in degrees otherwise). The vertical grid    \textbf{Ro\_SeaLevel} represents the standard position of Sea-Level
1093  spacing is set through the 1D array \textbf{delz }for the ocean (in meters)    in ``R'' coordinate. This is typically set to 0m for the ocean
1094  or \textbf{delp}\textit{\ }for the atmosphere (in Pa). The variable \textbf{%    (default value) and 10$^{5}$Pa for the atmosphere. For the
1095  Ro\_SeaLevel} represents the standard position of Sea-Level in ''R''    atmosphere, also set the logical variable \textbf{groundAtK1} to
1096  coordinate. This is typically set to 0m for the ocean (default value) and 10$%    \texttt{'.TRUE.'} which puts the first level (k=1) at the lower
1097  ^{5}$Pa for the atmosphere. For the atmosphere, also set the logical    boundary (ground).
1098  variable \textbf{groundAtK1} to '.\texttt{TRUE}.'. which put the first level    
1099  (k=1) at the lower boundary (ground).    For the cartesian grid case, the Coriolis parameter $f$ is set
1100      through the variables \textbf{f0} and \textbf{beta} which correspond
1101  For the cartesian grid case, the Coriolis parameter $f$ is set through the    to the reference Coriolis parameter (in s$^{-1}$) and
1102  variables \textbf{f0}\textit{\ }and \textbf{beta}\textit{\ }which correspond    $\frac{\partial f}{ \partial y}$(in m$^{-1}$s$^{-1}$) respectively.
1103  to the reference Coriolis parameter (in s$^{-1}$) and $\frac{\partial f}{%    If \textbf{beta } is set to a nonzero value, \textbf{f0} is the
1104  \partial y}$(in m$^{-1}$s$^{-1}$) respectively. If \textbf{beta }\textit{\ }%    value of $f$ at the southern edge of the domain.
1105  is set to a nonzero value, \textbf{f0}\textit{\ }is the value of $f$ at the  
1106  southern edge of the domain.  \item[topography - full and partial cells] \
1107      
1108  \begin{itemize}    The domain bathymetry is read from a file that contains a 2D (x,y)
1109  \item topography - full and partial cells    map of depths (in m) for the ocean or pressures (in Pa) for the
1110  \end{itemize}    atmosphere. The file name is represented by the variable
1111      \textbf{bathyFile}. The file is assumed to contain binary numbers
1112      giving the depth (pressure) of the model at each grid cell, ordered
1113      with the x coordinate varying fastest. The points are ordered from
1114      low coordinate to high coordinate for both axes. The model code
1115      applies without modification to enclosed, periodic, and double
1116      periodic domains. Periodicity is assumed by default and is
1117      suppressed by setting the depths to 0m for the cells at the limits
1118      of the computational domain (note: not sure this is the case for the
1119      atmosphere). The precision with which to read the binary data is
1120      controlled by the integer variable \textbf{readBinaryPrec} which can
1121      take the value \texttt{32} (single precision) or \texttt{64} (double
1122      precision). See the matlab program \textit{gendata.m} in the
1123      \textit{input} directories under \textit{verification} to see how
1124      the bathymetry files are generated for the case study experiments.
1125      
1126      To use the partial cell capability, the variable \textbf{hFacMin}
1127      needs to be set to a value between 0 and 1 (it is set to 1 by
1128      default) corresponding to the minimum fractional size of the cell.
1129      For example if the bottom cell is 500m thick and \textbf{hFacMin} is
1130      set to 0.1, the actual thickness of the cell (i.e. used in the code)
1131      can cover a range of discrete values 50m apart from 50m to 500m
1132      depending on the value of the bottom depth (in \textbf{bathyFile})
1133      at this point.
1134      
1135      Note that the bottom depths (or pressures) need not coincide with
1136      the models levels as deduced from \textbf{delz} or \textbf{delp}.
1137      The model will interpolate the numbers in \textbf{bathyFile} so that
1138      they match the levels obtained from \textbf{delz} or \textbf{delp}
1139      and \textbf{hFacMin}.
1140      
1141      (Note: the atmospheric case is a bit more complicated than what is
1142      written here I think. To come soon...)
1143    
1144    \item[time-discretization] \
1145      
1146      The time steps are set through the real variables \textbf{deltaTMom}
1147      and \textbf{deltaTtracer} (in s) which represent the time step for
1148      the momentum and tracer equations, respectively. For synchronous
1149      integrations, simply set the two variables to the same value (or you
1150      can prescribe one time step only through the variable
1151      \textbf{deltaT}). The Adams-Bashforth stabilizing parameter is set
1152      through the variable \textbf{abEps} (dimensionless). The stagger
1153      baroclinic time stepping can be activated by setting the logical
1154      variable \textbf{staggerTimeStep} to \texttt{'.TRUE.'}.
1155    
1156  The domain bathymetry is read from a file that contains a 2D (x,y) map of  \end{description}
 depths (in m) for the ocean or pressures (in Pa) for the atmosphere. The  
 file name is represented by the variable \textbf{bathyFile}\textit{. }The  
 file is assumed to contain binary numbers giving the depth (pressure) of the  
 model at each grid cell, ordered with the x coordinate varying fastest. The  
 points are ordered from low coordinate to high coordinate for both axes. The  
 model code applies without modification to enclosed, periodic, and double  
 periodic domains. Periodicity is assumed by default and is suppressed by  
 setting the depths to 0m for the cells at the limits of the computational  
 domain (note: not sure this is the case for the atmosphere). The precision  
 with which to read the binary data is controlled by the integer variable  
 \textbf{readBinaryPrec }which can take the value \texttt{32} (single  
 precision) or \texttt{64} (double precision). See the matlab program \textit{%  
 gendata.m }in the \textit{input }directories under \textit{verification }to  
 see how the bathymetry files are generated for the case study experiments.  
   
 To use the partial cell capability, the variable \textbf{hFacMin}\textit{\ }%  
 needs to be set to a value between 0 and 1 (it is set to 1 by default)  
 corresponding to the minimum fractional size of the cell. For example if the  
 bottom cell is 500m thick and \textbf{hFacMin}\textit{\ }is set to 0.1, the  
 actual thickness of the cell (i.e. used in the code) can cover a range of  
 discrete values 50m apart from 50m to 500m depending on the value of the  
 bottom depth (in \textbf{bathyFile}) at this point.  
   
 Note that the bottom depths (or pressures) need not coincide with the models  
 levels as deduced from \textbf{delz}\textit{\ }or\textit{\ }\textbf{delp}%  
 \textit{. }The model will interpolate the numbers in \textbf{bathyFile}%  
 \textit{\ }so that they match the levels obtained from \textbf{delz}\textit{%  
 \ }or\textit{\ }\textbf{delp}\textit{\ }and \textbf{hFacMin}\textit{. }  
1157    
 (Note: the atmospheric case is a bit more complicated than what is written  
 here I think. To come soon...)  
   
 \begin{itemize}  
 \item time-discretization  
 \end{itemize}  
   
 The time steps are set through the real variables \textbf{deltaTMom }and  
 \textbf{deltaTtracer }(in s) which represent the time step for the momentum  
 and tracer equations, respectively. For synchronous integrations, simply set  
 the two variables to the same value (or you can prescribe one time step only  
 through the variable \textbf{deltaT}). The Adams-Bashforth stabilizing  
 parameter is set through the variable \textbf{abEps }(dimensionless). The  
 stagger baroclinic time stepping can be activated by setting the logical  
 variable \textbf{staggerTimeStep }to '.\texttt{TRUE}.'.  
1158    
1159  \subsection{Equation of state}  \subsection{Equation of state}
1160    
1161  First, because the model equations are written in terms of perturbations, a  First, because the model equations are written in terms of
1162  reference thermodynamic state needs to be specified. This is done through  perturbations, a reference thermodynamic state needs to be specified.
1163  the 1D arrays \textbf{tRef}\textit{\ }and \textbf{sRef}. \textbf{tRef }%  This is done through the 1D arrays \textbf{tRef} and \textbf{sRef}.
1164  specifies the reference potential temperature profile (in $^{o}$C for  \textbf{tRef} specifies the reference potential temperature profile
1165  the ocean and $^{o}$K for the atmosphere) starting from the level  (in $^{o}$C for the ocean and $^{o}$K for the atmosphere) starting
1166  k=1. Similarly, \textbf{sRef}\textit{\ }specifies the reference salinity  from the level k=1. Similarly, \textbf{sRef} specifies the reference
1167  profile (in ppt) for the ocean or the reference specific humidity profile  salinity profile (in ppt) for the ocean or the reference specific
1168  (in g/kg) for the atmosphere.  humidity profile (in g/kg) for the atmosphere.
1169    
1170  The form of the equation of state is controlled by the character variables  The form of the equation of state is controlled by the character
1171  \textbf{buoyancyRelation}\textit{\ }and \textbf{eosType}\textit{. }\textbf{%  variables \textbf{buoyancyRelation} and \textbf{eosType}.
1172  buoyancyRelation}\textit{\ }is set to '\texttt{OCEANIC}' by default and  \textbf{buoyancyRelation} is set to \texttt{'OCEANIC'} by default and
1173  needs to be set to '\texttt{ATMOSPHERIC}' for atmosphere simulations. In  needs to be set to \texttt{'ATMOSPHERIC'} for atmosphere simulations.
1174  this case, \textbf{eosType}\textit{\ }must be set to '\texttt{IDEALGAS}'.  In this case, \textbf{eosType} must be set to \texttt{'IDEALGAS'}.
1175  For the ocean, two forms of the equation of state are available: linear (set  For the ocean, two forms of the equation of state are available:
1176  \textbf{eosType}\textit{\ }to '\texttt{LINEAR}') and a polynomial  linear (set \textbf{eosType} to \texttt{'LINEAR'}) and a polynomial
1177  approximation to the full nonlinear equation ( set \textbf{eosType}\textit{\  approximation to the full nonlinear equation ( set \textbf{eosType} to
1178  }to '\texttt{POLYNOMIAL}'). In the linear case, you need to specify the  \texttt{'POLYNOMIAL'}). In the linear case, you need to specify the
1179  thermal and haline expansion coefficients represented by the variables  thermal and haline expansion coefficients represented by the variables
1180  \textbf{tAlpha}\textit{\ }(in K$^{-1}$) and \textbf{sBeta}\textit{\ }(in ppt$%  \textbf{tAlpha} (in K$^{-1}$) and \textbf{sBeta} (in ppt$^{-1}$). For
1181  ^{-1}$). For the nonlinear case, you need to generate a file of polynomial  the nonlinear case, you need to generate a file of polynomial
1182  coefficients called \textit{POLY3.COEFFS. }To do this, use the program  coefficients called \textit{POLY3.COEFFS}. To do this, use the program
1183  \textit{utils/knudsen2/knudsen2.f }under the model tree (a Makefile is  \textit{utils/knudsen2/knudsen2.f} under the model tree (a Makefile is
1184  available in the same directory and you will need to edit the number and the  available in the same directory and you will need to edit the number
1185  values of the vertical levels in \textit{knudsen2.f }so that they match  and the values of the vertical levels in \textit{knudsen2.f} so that
1186  those of your configuration). \textit{\ }  they match those of your configuration).
1187    
1188    There there are also higher polynomials for the equation of state:
1189    \begin{description}
1190    \item[\texttt{'UNESCO'}:] The UNESCO equation of state formula of
1191      Fofonoff and Millard \cite{fofonoff83}. This equation of state
1192      assumes in-situ temperature, which is not a model variable; {\em its
1193        use is therefore discouraged, and it is only listed for
1194        completeness}.
1195    \item[\texttt{'JMD95Z'}:] A modified UNESCO formula by Jackett and
1196      McDougall \cite{jackett95}, which uses the model variable potential
1197      temperature as input. The \texttt{'Z'} indicates that this equation
1198      of state uses a horizontally and temporally constant pressure
1199      $p_{0}=-g\rho_{0}z$.
1200    \item[\texttt{'JMD95P'}:] A modified UNESCO formula by Jackett and
1201      McDougall \cite{jackett95}, which uses the model variable potential
1202      temperature as input. The \texttt{'P'} indicates that this equation
1203      of state uses the actual hydrostatic pressure of the last time
1204      step. Lagging the pressure in this way requires an additional pickup
1205      file for restarts.
1206    \item[\texttt{'MDJWF'}:] The new, more accurate and less expensive
1207      equation of state by McDougall et~al. \cite{mcdougall03}. It also
1208      requires lagging the pressure and therefore an additional pickup
1209      file for restarts.
1210    \end{description}
1211    For none of these options an reference profile of temperature or
1212    salinity is required.
1213    
1214  \subsection{Momentum equations}  \subsection{Momentum equations}
1215    
1216  In this section, we only focus for now on the parameters that you are likely  In this section, we only focus for now on the parameters that you are
1217  to change, i.e. the ones relative to forcing and dissipation for example.  likely to change, i.e. the ones relative to forcing and dissipation
1218  The details relevant to the vector-invariant form of the equations and the  for example.  The details relevant to the vector-invariant form of the
1219  various advection schemes are not covered for the moment. We assume that you  equations and the various advection schemes are not covered for the
1220  use the standard form of the momentum equations (i.e. the flux-form) with  moment. We assume that you use the standard form of the momentum
1221  the default advection scheme. Also, there are a few logical variables that  equations (i.e. the flux-form) with the default advection scheme.
1222  allow you to turn on/off various terms in the momentum equation. These  Also, there are a few logical variables that allow you to turn on/off
1223  variables are called \textbf{momViscosity, momAdvection, momForcing,  various terms in the momentum equation. These variables are called
1224  useCoriolis, momPressureForcing, momStepping}\textit{, }and \textit{\ }%  \textbf{momViscosity, momAdvection, momForcing, useCoriolis,
1225  \textbf{metricTerms }and are assumed to be set to '.\texttt{TRUE}.' here.    momPressureForcing, momStepping} and \textbf{metricTerms }and are
1226  Look at the file \textit{model/inc/PARAMS.h }for a precise definition of  assumed to be set to \texttt{'.TRUE.'} here.  Look at the file
1227  these variables.  \textit{model/inc/PARAMS.h }for a precise definition of these
1228    variables.
1229  \begin{itemize}  
1230  \item initialization  \begin{description}
1231  \end{itemize}  \item[initialization] \
1232      
1233  The velocity components are initialized to 0 unless the simulation is    The velocity components are initialized to 0 unless the simulation
1234  starting from a pickup file (see section on simulation control parameters).    is starting from a pickup file (see section on simulation control
1235      parameters).
1236  \begin{itemize}  
1237  \item forcing  \item[forcing] \
1238  \end{itemize}    
1239      This section only applies to the ocean. You need to generate
1240  This section only applies to the ocean. You need to generate wind-stress    wind-stress data into two files \textbf{zonalWindFile} and
1241  data into two files \textbf{zonalWindFile}\textit{\ }and \textbf{%    \textbf{meridWindFile} corresponding to the zonal and meridional
1242  meridWindFile }corresponding to the zonal and meridional components of the    components of the wind stress, respectively (if you want the stress
1243  wind stress, respectively (if you want the stress to be along the direction    to be along the direction of only one of the model horizontal axes,
1244  of only one of the model horizontal axes, you only need to generate one    you only need to generate one file). The format of the files is
1245  file). The format of the files is similar to the bathymetry file. The zonal    similar to the bathymetry file. The zonal (meridional) stress data
1246  (meridional) stress data are assumed to be in Pa and located at U-points    are assumed to be in Pa and located at U-points (V-points). As for
1247  (V-points). As for the bathymetry, the precision with which to read the    the bathymetry, the precision with which to read the binary data is
1248  binary data is controlled by the variable \textbf{readBinaryPrec}.\textbf{\ }    controlled by the variable \textbf{readBinaryPrec}.  See the matlab
1249  See the matlab program \textit{gendata.m }in the \textit{input }directories    program \textit{gendata.m} in the \textit{input} directories under
1250  under \textit{verification }to see how simple analytical wind forcing data    \textit{verification} to see how simple analytical wind forcing data
1251  are generated for the case study experiments.    are generated for the case study experiments.
1252      
1253  There is also the possibility of prescribing time-dependent periodic    There is also the possibility of prescribing time-dependent periodic
1254  forcing. To do this, concatenate the successive time records into a single    forcing. To do this, concatenate the successive time records into a
1255  file (for each stress component) ordered in a (x, y, t) fashion and set the    single file (for each stress component) ordered in a (x,y,t) fashion
1256  following variables: \textbf{periodicExternalForcing }to '.\texttt{TRUE}.',    and set the following variables: \textbf{periodicExternalForcing }to
1257  \textbf{externForcingPeriod }to the period (in s) of which the forcing    \texttt{'.TRUE.'}, \textbf{externForcingPeriod }to the period (in s)
1258  varies (typically 1 month), and \textbf{externForcingCycle }to the repeat    of which the forcing varies (typically 1 month), and
1259  time (in s) of the forcing (typically 1 year -- note: \textbf{%    \textbf{externForcingCycle} to the repeat time (in s) of the forcing
1260  externForcingCycle }must be a multiple of \textbf{externForcingPeriod}).    (typically 1 year -- note: \textbf{ externForcingCycle} must be a
1261  With these variables set up, the model will interpolate the forcing linearly    multiple of \textbf{externForcingPeriod}).  With these variables set
1262  at each iteration.    up, the model will interpolate the forcing linearly at each
1263      iteration.
1264  \begin{itemize}  
1265  \item dissipation  \item[dissipation] \
1266  \end{itemize}    
1267      The lateral eddy viscosity coefficient is specified through the
1268  The lateral eddy viscosity coefficient is specified through the variable    variable \textbf{viscAh} (in m$^{2}$s$^{-1}$). The vertical eddy
1269  \textbf{viscAh}\textit{\ }(in m$^{2}$s$^{-1}$). The vertical eddy viscosity    viscosity coefficient is specified through the variable
1270  coefficient is specified through the variable \textbf{viscAz }(in m$^{2}$s$%    \textbf{viscAz} (in m$^{2}$s$^{-1}$) for the ocean and
1271  ^{-1}$) for the ocean and \textbf{viscAp}\textit{\ }(in Pa$^{2}$s$^{-1}$)    \textbf{viscAp} (in Pa$^{2}$s$^{-1}$) for the atmosphere.  The
1272  for the atmosphere. The vertical diffusive fluxes can be computed implicitly    vertical diffusive fluxes can be computed implicitly by setting the
1273  by setting the logical variable \textbf{implicitViscosity }to '.\texttt{TRUE}%    logical variable \textbf{implicitViscosity }to \texttt{'.TRUE.'}.
1274  .'. In addition, biharmonic mixing can be added as well through the variable    In addition, biharmonic mixing can be added as well through the
1275  \textbf{viscA4}\textit{\ }(in m$^{4}$s$^{-1}$). On a spherical polar grid,    variable \textbf{viscA4} (in m$^{4}$s$^{-1}$). On a spherical polar
1276  you might also need to set the variable \textbf{cosPower} which is set to 0    grid, you might also need to set the variable \textbf{cosPower}
1277  by default and which represents the power of cosine of latitude to multiply    which is set to 0 by default and which represents the power of
1278  viscosity. Slip or no-slip conditions at lateral and bottom boundaries are    cosine of latitude to multiply viscosity. Slip or no-slip conditions
1279  specified through the logical variables \textbf{no\_slip\_sides}\textit{\ }%    at lateral and bottom boundaries are specified through the logical
1280  and \textbf{no\_slip\_bottom}. If set to '\texttt{.FALSE.}', free-slip    variables \textbf{no\_slip\_sides} and \textbf{no\_slip\_bottom}. If
1281  boundary conditions are applied. If no-slip boundary conditions are applied    set to \texttt{'.FALSE.'}, free-slip boundary conditions are
1282  at the bottom, a bottom drag can be applied as well. Two forms are    applied. If no-slip boundary conditions are applied at the bottom, a
1283  available: linear (set the variable \textbf{bottomDragLinear}\textit{\ }in s$%    bottom drag can be applied as well. Two forms are available: linear
1284  ^{-1}$) and quadratic (set the variable \textbf{bottomDragQuadratic}\textit{%    (set the variable \textbf{bottomDragLinear} in s$ ^{-1}$) and
1285  \ }in m$^{-1}$).    quadratic (set the variable \textbf{bottomDragQuadratic} in
1286      m$^{-1}$).
1287  The Fourier and Shapiro filters are described elsewhere.  
1288      The Fourier and Shapiro filters are described elsewhere.
1289  \begin{itemize}  
1290  \item C-D scheme  \item[C-D scheme] \
1291  \end{itemize}    
1292      If you run at a sufficiently coarse resolution, you will need the
1293      C-D scheme for the computation of the Coriolis terms. The
1294      variable\textbf{\ tauCD}, which represents the C-D scheme coupling
1295      timescale (in s) needs to be set.
1296      
1297    \item[calculation of pressure/geopotential] \
1298      
1299      First, to run a non-hydrostatic ocean simulation, set the logical
1300      variable \textbf{nonHydrostatic} to \texttt{'.TRUE.'}. The pressure
1301      field is then inverted through a 3D elliptic equation. (Note: this
1302      capability is not available for the atmosphere yet.) By default, a
1303      hydrostatic simulation is assumed and a 2D elliptic equation is used
1304      to invert the pressure field. The parameters controlling the
1305      behaviour of the elliptic solvers are the variables
1306      \textbf{cg2dMaxIters} and \textbf{cg2dTargetResidual } for
1307      the 2D case and \textbf{cg3dMaxIters} and
1308      \textbf{cg3dTargetResidual} for the 3D case. You probably won't need to
1309      alter the default values (are we sure of this?).
1310      
1311      For the calculation of the surface pressure (for the ocean) or
1312      surface geopotential (for the atmosphere) you need to set the
1313      logical variables \textbf{rigidLid} and \textbf{implicitFreeSurface}
1314      (set one to \texttt{'.TRUE.'} and the other to \texttt{'.FALSE.'}
1315      depending on how you want to deal with the ocean upper or atmosphere
1316      lower boundary).
1317    
1318  If you run at a sufficiently coarse resolution, you will need the C-D scheme  \end{description}
 for the computation of the Coriolis terms. The variable\textbf{\ tauCD},  
 which represents the C-D scheme coupling timescale (in s) needs to be set.  
   
 \begin{itemize}  
 \item calculation of pressure/geopotential  
 \end{itemize}  
   
 First, to run a non-hydrostatic ocean simulation, set the logical variable  
 \textbf{nonHydrostatic} to '.\texttt{TRUE}.'. The pressure field is then  
 inverted through a 3D elliptic equation. (Note: this capability is not  
 available for the atmosphere yet.) By default, a hydrostatic simulation is  
 assumed and a 2D elliptic equation is used to invert the pressure field. The  
 parameters controlling the behaviour of the elliptic solvers are the  
 variables \textbf{cg2dMaxIters}\textit{\ }and \textbf{cg2dTargetResidual }%  
 for the 2D case and \textbf{cg3dMaxIters}\textit{\ }and \textbf{%  
 cg3dTargetResidual }for the 3D case. You probably won't need to alter the  
 default values (are we sure of this?).  
   
 For the calculation of the surface pressure (for the ocean) or surface  
 geopotential (for the atmosphere) you need to set the logical variables  
 \textbf{rigidLid} and \textbf{implicitFreeSurface}\textit{\ }(set one to '.%  
 \texttt{TRUE}.' and the other to '.\texttt{FALSE}.' depending on how you  
 want to deal with the ocean upper or atmosphere lower boundary).  
1319    
1320  \subsection{Tracer equations}  \subsection{Tracer equations}
1321    
1322  This section covers the tracer equations i.e. the potential temperature  This section covers the tracer equations i.e. the potential
1323  equation and the salinity (for the ocean) or specific humidity (for the  temperature equation and the salinity (for the ocean) or specific
1324  atmosphere) equation. As for the momentum equations, we only describe for  humidity (for the atmosphere) equation. As for the momentum equations,
1325  now the parameters that you are likely to change. The logical variables  we only describe for now the parameters that you are likely to change.
1326  \textbf{tempDiffusion}\textit{, }\textbf{tempAdvection}\textit{, }\textbf{%  The logical variables \textbf{tempDiffusion} \textbf{tempAdvection}
1327  tempForcing}\textit{,} and \textbf{tempStepping} allow you to turn on/off  \textbf{tempForcing}, and \textbf{tempStepping} allow you to turn
1328  terms in the temperature equation (same thing for salinity or specific  on/off terms in the temperature equation (same thing for salinity or
1329  humidity with variables \textbf{saltDiffusion}\textit{, }\textbf{%  specific humidity with variables \textbf{saltDiffusion},
1330  saltAdvection}\textit{\ }etc). These variables are all assumed here to be  \textbf{saltAdvection} etc.). These variables are all assumed here to
1331  set to '.\texttt{TRUE}.'. Look at file \textit{model/inc/PARAMS.h }for a  be set to \texttt{'.TRUE.'}. Look at file \textit{model/inc/PARAMS.h}
1332  precise definition.  for a precise definition.
1333    
1334    \begin{description}
1335    \item[initialization] \
1336      
1337      The initial tracer data can be contained in the binary files
1338      \textbf{hydrogThetaFile} and \textbf{hydrogSaltFile}. These files
1339      should contain 3D data ordered in an (x,y,r) fashion with k=1 as the
1340      first vertical level.  If no file names are provided, the tracers
1341      are then initialized with the values of \textbf{tRef} and
1342      \textbf{sRef} mentioned above (in the equation of state section). In
1343      this case, the initial tracer data are uniform in x and y for each
1344      depth level.
1345    
1346    \item[forcing] \
1347      
1348      This part is more relevant for the ocean, the procedure for the
1349      atmosphere not being completely stabilized at the moment.
1350      
1351      A combination of fluxes data and relaxation terms can be used for
1352      driving the tracer equations.  For potential temperature, heat flux
1353      data (in W/m$ ^{2}$) can be stored in the 2D binary file
1354      \textbf{surfQfile}.  Alternatively or in addition, the forcing can
1355      be specified through a relaxation term. The SST data to which the
1356      model surface temperatures are restored to are supposed to be stored
1357      in the 2D binary file \textbf{thetaClimFile}. The corresponding
1358      relaxation time scale coefficient is set through the variable
1359      \textbf{tauThetaClimRelax} (in s). The same procedure applies for
1360      salinity with the variable names \textbf{EmPmRfile},
1361      \textbf{saltClimFile}, and \textbf{tauSaltClimRelax} for freshwater
1362      flux (in m/s) and surface salinity (in ppt) data files and
1363      relaxation time scale coefficient (in s), respectively. Also for
1364      salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on,
1365      natural boundary conditions are applied i.e. when computing the
1366      surface salinity tendency, the freshwater flux is multiplied by the
1367      model surface salinity instead of a constant salinity value.
1368      
1369      As for the other input files, the precision with which to read the
1370      data is controlled by the variable \textbf{readBinaryPrec}.
1371      Time-dependent, periodic forcing can be applied as well following
1372      the same procedure used for the wind forcing data (see above).
1373    
1374    \item[dissipation] \
1375      
1376      Lateral eddy diffusivities for temperature and salinity/specific
1377      humidity are specified through the variables \textbf{diffKhT} and
1378      \textbf{diffKhS} (in m$^{2}$/s). Vertical eddy diffusivities are
1379      specified through the variables \textbf{diffKzT} and
1380      \textbf{diffKzS} (in m$^{2}$/s) for the ocean and \textbf{diffKpT
1381      }and \textbf{diffKpS} (in Pa$^{2}$/s) for the atmosphere. The
1382      vertical diffusive fluxes can be computed implicitly by setting the
1383      logical variable \textbf{implicitDiffusion} to \texttt{'.TRUE.'}.
1384      In addition, biharmonic diffusivities can be specified as well
1385      through the coefficients \textbf{diffK4T} and \textbf{diffK4S} (in
1386      m$^{4}$/s). Note that the cosine power scaling (specified through
1387      \textbf{cosPower}---see the momentum equations section) is applied to
1388      the tracer diffusivities (Laplacian and biharmonic) as well. The
1389      Gent and McWilliams parameterization for oceanic tracers is
1390      described in the package section. Finally, note that tracers can be
1391      also subject to Fourier and Shapiro filtering (see the corresponding
1392      section on these filters).
1393    
1394    \item[ocean convection] \
1395      
1396      Two options are available to parameterize ocean convection: one is
1397      to use the convective adjustment scheme. In this case, you need to
1398      set the variable \textbf{cadjFreq}, which represents the frequency
1399      (in s) with which the adjustment algorithm is called, to a non-zero
1400      value (if set to a negative value by the user, the model will set it
1401      to the tracer time step). The other option is to parameterize
1402      convection with implicit vertical diffusion. To do this, set the
1403      logical variable \textbf{implicitDiffusion} to \texttt{'.TRUE.'}
1404      and the real variable \textbf{ivdc\_kappa} to a value (in m$^{2}$/s)
1405      you wish the tracer vertical diffusivities to have when mixing
1406      tracers vertically due to static instabilities. Note that
1407      \textbf{cadjFreq} and \textbf{ivdc\_kappa}can not both have non-zero
1408      value.
1409    
1410  \begin{itemize}  \end{description}
 \item initialization  
 \end{itemize}  
   
 The initial tracer data can be contained in the binary files \textbf{%  
 hydrogThetaFile }and \textbf{hydrogSaltFile}. These files should contain 3D  
 data ordered in an (x, y, r) fashion with k=1 as the first vertical level.  
 If no file names are provided, the tracers are then initialized with the  
 values of \textbf{tRef }and \textbf{sRef }mentioned above (in the equation  
 of state section). In this case, the initial tracer data are uniform in x  
 and y for each depth level.  
   
 \begin{itemize}  
 \item forcing  
 \end{itemize}  
   
 This part is more relevant for the ocean, the procedure for the atmosphere  
 not being completely stabilized at the moment.  
   
 A combination of fluxes data and relaxation terms can be used for driving  
 the tracer equations. \ For potential temperature, heat flux data (in W/m$%  
 ^{2}$) can be stored in the 2D binary file \textbf{surfQfile}\textit{. }%  
 Alternatively or in addition, the forcing can be specified through a  
 relaxation term. The SST data to which the model surface temperatures are  
 restored to are supposed to be stored in the 2D binary file \textbf{%  
 thetaClimFile}\textit{. }The corresponding relaxation time scale coefficient  
 is set through the variable \textbf{tauThetaClimRelax}\textit{\ }(in s). The  
 same procedure applies for salinity with the variable names \textbf{EmPmRfile%  
 }\textit{, }\textbf{saltClimFile}\textit{, }and \textbf{tauSaltClimRelax}%  
 \textit{\ }for freshwater flux (in m/s) and surface salinity (in ppt) data  
 files and relaxation time scale coefficient (in s), respectively. Also for  
 salinity, if the CPP key \textbf{USE\_NATURAL\_BCS} is turned on, natural  
 boundary conditions are applied i.e. when computing the surface salinity  
 tendency, the freshwater flux is multiplied by the model surface salinity  
 instead of a constant salinity value.  
   
 As for the other input files, the precision with which to read the data is  
 controlled by the variable \textbf{readBinaryPrec}. Time-dependent, periodic  
 forcing can be applied as well following the same procedure used for the  
 wind forcing data (see above).  
   
 \begin{itemize}  
 \item dissipation  
 \end{itemize}  
   
 Lateral eddy diffusivities for temperature and salinity/specific humidity  
 are specified through the variables \textbf{diffKhT }and \textbf{diffKhS }%  
 (in m$^{2}$/s). Vertical eddy diffusivities are specified through the  
 variables \textbf{diffKzT }and \textbf{diffKzS }(in m$^{2}$/s) for the ocean  
 and \textbf{diffKpT }and \textbf{diffKpS }(in Pa$^{2}$/s) for the  
 atmosphere. The vertical diffusive fluxes can be computed implicitly by  
 setting the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .'. In addition, biharmonic diffusivities can be specified as well through  
 the coefficients \textbf{diffK4T }and \textbf{diffK4S }(in m$^{4}$/s). Note  
 that the cosine power scaling (specified through \textbf{cosPower }- see the  
 momentum equations section) is applied to the tracer diffusivities  
 (Laplacian and biharmonic) as well. The Gent and McWilliams parameterization  
 for oceanic tracers is described in the package section. Finally, note that  
 tracers can be also subject to Fourier and Shapiro filtering (see the  
 corresponding section on these filters).  
   
 \begin{itemize}  
 \item ocean convection  
 \end{itemize}  
   
 Two options are available to parameterize ocean convection: one is to use  
 the convective adjustment scheme. In this case, you need to set the variable  
 \textbf{cadjFreq}, which represents the frequency (in s) with which the  
 adjustment algorithm is called, to a non-zero value (if set to a negative  
 value by the user, the model will set it to the tracer time step). The other  
 option is to parameterize convection with implicit vertical diffusion. To do  
 this, set the logical variable \textbf{implicitDiffusion }to '.\texttt{TRUE}%  
 .' and the real variable \textbf{ivdc\_kappa }to a value (in m$^{2}$/s) you  
 wish the tracer vertical diffusivities to have when mixing tracers  
 vertically due to static instabilities. Note that \textbf{cadjFreq }and  
 \textbf{ivdc\_kappa }can not both have non-zero value.  
1411    
1412  \subsection{Simulation controls}  \subsection{Simulation controls}
1413    
1414  The model ''clock'' is defined by the variable \textbf{deltaTClock }(in s)  The model ''clock'' is defined by the variable \textbf{deltaTClock}
1415  which determines the IO frequencies and is used in tagging output.  (in s) which determines the IO frequencies and is used in tagging
1416  Typically, you will set it to the tracer time step for accelerated runs  output.  Typically, you will set it to the tracer time step for
1417  (otherwise it is simply set to the default time step \textbf{deltaT}).  accelerated runs (otherwise it is simply set to the default time step
1418  Frequency of checkpointing and dumping of the model state are referenced to  \textbf{deltaT}).  Frequency of checkpointing and dumping of the model
1419  this clock (see below).  state are referenced to this clock (see below).
1420    
1421  \begin{itemize}  \begin{description}
1422  \item run duration  \item[run duration] \
1423  \end{itemize}    
1424      The beginning of a simulation is set by specifying a start time (in
1425  The beginning of a simulation is set by specifying a start time (in s)    s) through the real variable \textbf{startTime} or by specifying an
1426  through the real variable \textbf{startTime }or by specifying an initial    initial iteration number through the integer variable
1427  iteration number through the integer variable \textbf{nIter0}. If these    \textbf{nIter0}. If these variables are set to nonzero values, the
1428  variables are set to nonzero values, the model will look for a ''pickup''    model will look for a ''pickup'' file \textit{pickup.0000nIter0} to
1429  file \textit{pickup.0000nIter0 }to restart the integration\textit{. }The end    restart the integration. The end of a simulation is set through the
1430  of a simulation is set through the real variable \textbf{endTime }(in s).    real variable \textbf{endTime} (in s).  Alternatively, you can
1431  Alternatively, you can specify instead the number of time steps to execute    specify instead the number of time steps to execute through the
1432  through the integer variable \textbf{nTimeSteps}.    integer variable \textbf{nTimeSteps}.
1433    
1434  \begin{itemize}  \item[frequency of output] \
1435  \item frequency of output    
1436  \end{itemize}    Real variables defining frequencies (in s) with which output files
1437      are written on disk need to be set up. \textbf{dumpFreq} controls
1438  Real variables defining frequencies (in s) with which output files are    the frequency with which the instantaneous state of the model is
1439  written on disk need to be set up. \textbf{dumpFreq }controls the frequency    saved. \textbf{chkPtFreq} and \textbf{pchkPtFreq} control the output
1440  with which the instantaneous state of the model is saved. \textbf{chkPtFreq }%    frequency of rolling and permanent checkpoint files, respectively.
1441  and \textbf{pchkPtFreq }control the output frequency of rolling and    See section 1.5.1 Output files for the definition of model state and
1442  permanent checkpoint files, respectively. See section 1.5.1 Output files for the    checkpoint files. In addition, time-averaged fields can be written
1443  definition of model state and checkpoint files. In addition, time-averaged    out by setting the variable \textbf{taveFreq} (in s).  The precision
1444  fields can be written out by setting the variable \textbf{taveFreq} (in s).    with which to write the binary data is controlled by the integer
1445  The precision with which to write the binary data is controlled by the    variable w\textbf{riteBinaryPrec} (set it to \texttt{32} or
1446  integer variable w\textbf{riteBinaryPrec }(set it to \texttt{32} or \texttt{%    \texttt{64}).
1447  64}).  
1448    \end{description}
1449    
1450    
1451    %%% Local Variables:
1452    %%% mode: latex
1453    %%% TeX-master: t
1454    %%% End:

Legend:
Removed from v.1.5  
changed lines
  Added in v.1.23

  ViewVC Help
Powered by ViewVC 1.1.22